首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
To evaluate the importance of both the inorganic and organic fractions in biosolids on Cd chemistry, a series of Cd sorption and desorption batch experiments (at pH 5.5) were conducted on different fractions of soils from a long-term field experimental site. The slope of the Cd sorption isotherm increased with rate of biosolids and was different for the different biosolids. Removal of organic carbon (OC) reduced the slope of the Cd sorption isotherm but did not account for the observed differences between biosolids-amended soils and a control soil, indicating that the increased adsorption associated with biosolids application was not limited to the increased OC from the addition of biosolids. Removal of both OC and Fe/Mn further reduced the slopes of Cd sorption isotherms and the sorption isotherm of the biosolids-amended soil was the same as that of the control, indicating both OC and Fe/Mn fractions added by the biosolids were important to the increased sorption observed for the biosolids-amended soil samples. Desorption experiments failed to remove from 60 to 90% of the sorbed Cd. This "apparent hysteresis" was higher for biosolids-amended soil than the control soil. Removal of both OC and Fe/Mn fractions was more effective in removing the observed differences between the biosolids-amended soil and the control than either alone. Results show that Cd added to biosolids-amended soil behaves differently than Cd added to soils without biosolids and support the hypothesis that the addition of Fe and Mn in the biosolids increased the retention of Cd in biosolids-amended soils.  相似文献   

2.
Continuous addition of municipal biosolids to soils based on plant nitrogen (N) requirements can cause buildup of soil phosphorus (P) in excess of crop requirements; runoff from these soils can potentially contribute to nonpoint P pollution of surface waters. However, because biosolids are often produced using lime and/or metal salts, the potential for biosolids P to cause runoff P losses can vary with wastewater treatment plant (WWTP) process. This study was conducted to determine the effect of wastewater treatment process on the forms and amounts of P in biosolids, biosolids-amended soils, and in runoff from biosolids-amended soils. We amended two soil types with eight biosolids and a poultry litter (PL) at equal rates of total P (200 kg ha(-1); unamended soils were used as controls. All biosolids and amended soils were analyzed for various types of extractable P, inorganic P fractions, and the degree of P saturation (acid ammonium oxalate method). Amended soils were placed under a simulated rainfall and all runoff was collected and analyzed for dissolved reactive phosphorus (DRP), iron-oxide-coated filter paper strip-extractable phosphorus (FeO-P), and total phosphorus (EPA3050 P). Results showed that biosolids produced with a biological nutrient removal (BNR) process caused the highest increases in extractable soil P and runoff DRP. Alternatively, biosolids produced with iron only consistently had the lowest extractable P and caused the lowest increases in extractable soil P and runoff DRP when added to soils. Differences in soil and biosolids extractable P levels as well as P runoff losses were related to the inorganic P forms of the biosolids.  相似文献   

3.
From 1974 to 1984, 543 Mg ha(-1) of biosolids were applied to portions of a land-reclamation site in Fulton County, IL. Soil organic C increased to 5.1% then decreased significantly (p < 0.01) to 3.8% following cessation of biosolids applications (1985-1997). Metal concentrations in amended soils (1995-1997) were not significantly different (p > 0.05) (Ni and Zn) or were significantly lower (p < 0.05) (6.4% for Cd and 8.4% for Cu) than concentrations from 1985-1987. For the same biosolids-amended fields, metal concentrations in corn (Zea mays L.) either remained the same (p > 0.05, grain Cu and Zn) or decreased (p < 0.05, grain Cd and Ni, leaf Cd, Cu, Ni, Zn) for plants grown in 1995-1997 compared with plants grown immediately following termination of biosolids applications (1985-1987). Biosolids application increased (p < 0.05) Cd and Zn concentrations in grain compared with unamended fields (0.01 to 0.10 mg kg(-1) for Cd and 23 to 28 mg kg(-1) for Zn) but had no effect (p > 0.05) on grain Ni concentrations. Biosolids reduced (p < 0.05) Cu concentration in grain compared with grain from unamended fields (1.9 to 1.5 mg kg(-1)). Biosolids increased (p < 0.05) Cd, Ni, and Zn concentrations in leaves compared with unamended fields (0.3 to 5.6 mg kg(-1) for Cd, 0.2 to 0.5 mg kg(-1) for Ni, and 32 to 87 mg kg(-1) for Zn), but had no significant effect (p > 0.05) on leaf Cu concentrations. Based on results from this field study, USEPA's Part 503 risk model overpredicted transfer of these metals from biosolids-amended soil to corn.  相似文献   

4.
Heavy metal pollution of soil has been recognized as a major factor impeding soil microbial processes. From this perspective, we studied responses of the soil biological activities to metal stress simulated by soil amendment with Zn, Pb, and Cd chlorides. The amounts of heavy metal salts added to five metal-polluted soils and four nonpolluted soils were selected to match the total metal concentrations typically found in polluted soils of the Silesia region of Poland. From the perspective of soil quality, metal mobility in amended soils could not be described by simple functions of pH or organic matter. Reaction of Pb with the soil caused strong immobilization with less than 1% of the Pb amendment recovered by 0.01 M CaCl2 extractions. Immobilization of Cd was also significant, whereas immobilization of the Zn amendment was much weaker than that of Cd or Pb. The Zn amendment had substantial inhibitory effect on soil dehydrogenase, acid and alkaline phosphatase, arylsulfatase, urease, and nitrification potential. Generally, Cd and Pb had limited or stimulatory effect on most of these biological activities, with an exception of Pb strongly inhibiting soil urease. The effect of the metal amendments on biological activities could not be satisfactorily accounted for by metal toxicity because no strong relationship was observed between extractable metal content and the degree of inhibition. The Zn amendment had a significant effect on soil pH, resulting in confounding effects of pH and Zn toxicity on activities. Metal amendment experiments seem to be of limited utility for meaningful assessment of metal contamination effects on soil quality.  相似文献   

5.
Application of animal manure amendments to agricultural soils is a common practice to improve soil fertility through the addition of essential plant nutrients. This practice may increase the potential for atrazine (2-chloro-4-ethylamino-6-isopropylamino-1, 3, 5-triazine) leaching due to competition for adsorption sites between the pesticide and dissolved organic carbon (DOC) added through manure. We evaluated the influence of liquid cow manure (LCM) application on soil properties, atrazine adsorption, and the physicochemical controlling mechanisms in an Andisol. The LCM was applied at rates equivalent to 0, 100,000, 200,000, and 300,000 L ha(-1), resulting in treatments S-0, S-100, S-200, and S-300, respectively. The LCM application increased DOC and pH of the soils immediately on addition, but pH returned to S-0 values 30 d after application. The LCM application did not modify atrazine adsorption with the two lowest application rates (S-100 and S-200), but atrazine adsorption was decreased in S-300 (K(f) = 0.96) compared with the control (S-0) (K(f) = 1.19), possibly due to the competitive adsorption of DOC with the pesticide. The Fourier-transformed infrared analysis showed that LCM increased aliphaticity and presence of N-containing groups and polysaccharide-like groups in amended soils; however, these properties did not modify the atrazine interaction in the studied amended soils. Interestingly the addition of DOC to soil at the high application rate (S-300) reduced atrazine adsorption in this rich OM Andisol despite the LCM not raising the concentration of stable organic matter. The application of high rates of liquid manure containing DOC incurs an increased risk of pesticide leaching.  相似文献   

6.
Laws mandating phosphorus (P)-based nutrient management plans have been passed in several U.S. Mid-Atlantic states. Biosolids (sewage sludge) are frequently applied to agricultural land and in this study we evaluated how biosolids treatment processes and biosolids P tests were related to P behavior in biosolids-amended soils. Eight biosolids generated by different treatment processes, with respect to digestion and iron (Fe), aluminum (Al), and lime addition, and a poultry litter (PL), were incubated with an Elkton silt loam (fine-silty, mixed, active, mesic Typic Endoaquult) and a Suffolk sandy loam (fine-loamy, siliceous, semiactive, thermic Typic Hapludult) for 51 d. The amended soils were analyzed at 1 and 51 d for water-soluble phosphorus (WSP), iron-oxide strip--extractable phosphorus (FeO-P), Mehlich-1 P and pH. The biosolids and PL were analyzed for P, Fe, and Al by USEPA 3050 acid-peroxide digestion and acid ammonium oxalate, Mehlich-1, and Mehlich-3 extractions. Biosolids and PL amendments increased extractable P in the Suffolk sandy loam to a greater extent than in the Elkton silt loam throughout the 51 d of the incubation. The trend of extractable WSP, FeO-P, and Mehlich-1 P generally followed the pattern: [soils amended with biosolids produced without the use of Fe or Al] > [PL and biosolids produced using Fe or Al and lime] > [biosolids produced using only Fe and Al salts]. Mehlich-3 P and the molar ratio of P to [Al + Fe] by either the USEPA 3050 digestion or oxalate extraction of the biosolids were good predictors of changes in soil-extractable P following biosolids but not PL amendment. Therefore, the testing of biosolids for P availability, rather than total P, is a more appropriate tool for predicting extractable P from the biosolids-amended soils used in this study.  相似文献   

7.
The application of biosolids (sewage sludge) to agricultural soils provides P in excess of crop needs when applied to meet the N needs of most agronomic crops. These overapplications can result in the buildup of P in soils to values well above those needed for optimum crop yields and also may increase risk of P losses to surface and ground waters. Because of concerns regarding the influence of P on water quality in the USA, many state and federal agencies now recommend or require P-based nutrient management plans for animal manures. Similar actions are now under consideration for the land application of biosolids. We reviewed the literature on this subject and conducted a national survey to determine if states had restrictions on P levels in biosolids-amended soils. The literature review indicates that while the current N-based approach to biosolids management does result in increases of soil P, some properties of biosolids may mitigate the environmental risk to water quality associated with land application of P in biosolids. Results of the survey showed that 24 states have regulations or guidelines that can be imposed to restrict land application of biosolids based on P. Many of these states use numerical thresholds for P in biosolids-amended soils that are based on soil test phosphorus (STP) values that are much greater than the values considered to be agronomically beneficial. We suggest there is the need for a comprehensive environmental risk assessment of biosolids P. If risk assessment suggests the need for regulation of biosolids application, we suggest regulations be based on the P Site Index (PSI), which is the method being used by most states for animal manure management.  相似文献   

8.
The long-term application of biosolids that periodically contained elevated metal concentrations has raised questions about potential effects on animal health. To address these concerns, we determined metal concentrations (As, Cd, Cu, Pb, Hg, Mo, Ni, Se, and Zn) in both soil and bermudagrass [Cynodon dactylon (L.) Pers.] forage from 10 fields in the following categories of biosolids application: six or more years (>6YR), less than six years (<6YR), and no applications (NS). Soil metal concentrations in all groups were similar to values reported for mineral soils in Georgia, and well below USEPA cumulative limits. Average metal concentrations in the forage were below the maximum tolerable level (MTL) for beef cattle, although two biosolids-amended fields in the >6YR group produced forage that was at or near the MTL for Cd and Mo, and one field in the <6YR group produced forage above the MTL for Cd. The Cu to Mo ratios in forage decreased with increasing time of sludge application, with the average in the >6YR group at a proposed 5:1 Cu to Mo ratio limit to protect ruminant health. Sulfur concentrations in the forage from all three groups was near the MTL of 4 g kg(-1). The study indicated that toxic levels of metals have not accumulated in the soils due to long-term biosolids application. Overall forage quality from the biosolids-amended fields was similar to that of commercially fertilized fields; however, due to the relatively high S and potential for a low Cu to Mo ratio, Cu supplements should be used to ensure ruminant health.  相似文献   

9.
Soil organic carbon (SOC) and dissolved organic carbon (DOC) affect long-term heavy metal solubility in biosolids-amended soils, but their role needs to be further studied under Mediterranean climatic conditions. We investigated Zn solubility, as assessed by water extraction, in two typical Greek soils amended with biosolids at 0, 20, and 100 Mg ha(-1) during a 310-d incubation period. It was found that SOC decreased by nearly 30% over time in the 100 Mg ha(-1) treatment. There was evidence that DOC affected Zn solubility, because DOC increased significantly on Day 23, probably due to a flush in microbial activity, and water-extractable Zn followed the same trend. After that, both DOC and water-extractable Zn decreased back to values similar to those of the unamended soils. Although Zn solubility did not increase overall even at high biosolids application rates, this study shows that time-limited fluctuations in Zn solubility due to sudden DOC flushes, can be significant, and need to be further investigated.  相似文献   

10.
The soil solid phase components most responsible for P sorption in Florida soils are Fe and Al oxides. Thus, we hypothesized that land application of biosolids would significantly increase a soil's P retention by increasing its content of P-sorbing solids, especially when biosolids with high Fe and Al concentrations are applied to soils that sorb P poorly. Biosolids effects were quantified by a series of single-point isotherms on soils from two field studies sampled for up to 4 yr after initial biosolids application. Biosolids additions had little effect on P retention in a soil with abundant oxalate-extractable Fe and Al and a correspondingly large native P-sorbing capacity. However, biosolids significantly increased P retention in a soil with low oxalate-extractable Fe and Al content and low native P-sorbing capacity. Biosolids effects on P retention lasted 1 to 3 yr after application, depending on biosolids source and rate of application, and generally mimicked persistence of increased extractable Fe and Al concentrations in the poorly P-sorbing soil. Disappearance of added Fe and Al (and, hence, P retention capacity) from the surface horizons over time was relatively rapid, perhaps due to abundant organic acid production associated with biosolids degradation. Phosphorus in biosolids containing (or tailored to contain) abundant Fe and/or Al can be expected to behave as a slowly available P source, and to be less subject to leaching losses than completely soluble P sources.  相似文献   

11.
Bioavailability of biosolids molybdenum to soybean grain   总被引:2,自引:0,他引:2  
Legumes grown in biosolids-amended soils and then fed to ruminants can represent problematic sources of molybdenum (Mo), but few field data are available to quantify the risk. We used a set of fields amended to high cumulative biosolids Mo loads (>18 kg ha(-1)) over 27 yr to generate additional data. Soybean [Glycine max (L.) Merr.] was grown on 29 fields (pH values>6.8) amended to a wide range of soil Mo loads. Soybean grain harvested from each field was analyzed for Mo and the concentrations regressed against soil Mo loads estimated from actual soil Mo concentrations in the 0- to 15-cm depth. Slopes of such linear regressions represent uptake coefficients (UC values) used by the USEPA to assess risk of biosolids Mo to ruminants fed forage grown on biosolids-amended land. The UC value for all 29 fields was estimated as 1.66, which agrees with the few soybean grain data in the literature. The UC value, however, is well below a conservative UC value of 4, recently recommended for all fresh legume materials fed to cattle. Soybean grain can contain high concentrations of Mo (>10 mg kg(-1)) and have low (<2:1) Cu to Mo ratios, which can exacerbate molybdenosis problems in cattle. However, soybean grain normally constitutes only -10% of dairy cattle diet, and other constituents (e.g., corn grain, stover, mineral supplements) are sufficient, or can be manipulated, to control molybdenosis.  相似文献   

12.
Detectable levels of dioxins have been reported in biosolids, but very little information is available on the effect of long-term application of biosolids on dioxins accumulation in soil and uptake by plants. We analyzed dioxins in soil and corn tissue samples from field plots after 30 continuous applications of biosolids at 0 (Control), 16.8, and 67.2 Mg biosolids ha(-1) yr(-1) resulting in 0, 504, and 2016 Mg ha(-1) cumulative loadings of biosolids, respectively. The levels of dioxins in soil were only 79.9, 115.5, and 247.5 ng toxic equivalents (TEQs) kg(-1) in the 0, 504, and 2016 Mg biosolids ha(-1) plots, respectively. Dioxins were not detected in the corn grain, and only trace levels (6.8-7.5 ng TEQs kg(-1)) were found in the corn stover; however, these values were not statistically different between control and biosolids-amended soils. These observations suggest that although long-term application of biosolids may increase the levels of dioxins in soil, it does not affect dioxins uptake by corn.  相似文献   

13.
The amendment of soil with compost may significantly influence the mobility and persistence of pesticides and thus affect their environmental fate. Factors like adsorption, kinetics, and rate of degradation of pesticides could be altered in amended soils. The aim of this study was to determine the effects of the addition of compost made from source-separated municipal waste and green waste, on the fate of triasulfuron [(2-(2-chloroethoxy)-N-[[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide], a sulfonylurea herbicide used in postemergence treatment of cereals. Two native soils with low organic matter content were used. A series of analyses was performed to evaluate the adsorption and degradation of the herbicide in soil and in solution after the addition of compost and compost-extracted organic fractions, namely humic acids (HA), fulvic acids (FA), and hydrophobic dissolved organic matter (HoDOM). Results have shown that the adsorption of triasulfuron to soil increases in the presence of compost, and that the HA and HoDOM fractions are mainly responsible for this increase. Hydrophobic dissolved organic matter applied to the soils underwent sorption reactions with the soils, and in the sorbed state, served to increase the adsorption capacity of the soil for triasulfuron. The rate of hydrolysis of triasulfuron in solution was significantly higher at acidic pH and the presence of organic matter fractions extracted from compost also slightly increased the rate of hydrolysis. The rate of degradation in amended and nonamended soils is explained by a two-stage degradation kinetics. During the initial phase, although triasulfuron degradation was rapid with a half-life of approximately 30 d, the presence of compost and HoDOM was found to slightly reduce the rate of degradation with respect to that in nonamended soil.  相似文献   

14.
Little research has been conducted in the Lake States (Minnesota, Wisconsin, and Michigan) to evaluate the effects of municipal and industrial by-product applications on the early growth of short rotation woody crops such as hybrid poplar. Anticipated shortages of harvestable-age aspen in the next decade can be alleviated and rural development can be enhanced through the application of by-products to forest soils. This study was conducted to evaluate the effects of inorganic fertilizer, boiler ash, biosolids, and the co-application of ash and biosolids application on tree growth and soil properties by measuring hybrid poplar clone NM-6 (Populus nigra L. x P. maximowiczii A. Henry) yield, nutrient uptake, and select post-harvest soil properties after 15 wk of greenhouse growth. Treatments included a control of no amendment; agricultural lime; inorganic N, P, and K; three types of boiler ash; biosolids application rates equivalent to 70, 140, 210, and 280 kg available N ha(-1); and boiler ash co-applied with biosolids. All of the by-products treatments showed biomass production that was equal to or greater than inorganic fertilizer and lime treatments. A trend of increased biomass with increasing rates of biosolids was observed. Soil P concentration increased with increasing rates of biosolids application. None of the by-products treatments resulted in plant tissue metal concentrations greater than metal concentrations of plant tissue amended with inorganic amendments. Biosolids, boiler ash, and the co-application of biosolids and boiler ash together on forest soils were as beneficial to plant growth as inorganic fertilizers.  相似文献   

15.
This research examined the fate of polydimethylsilicones (PDMS) in agricultural test plots amended with municipal biosolids. This 4 yr field study involved addition of 0, 15, and 100 Mg ha(-1) of municipal biosolids, which contained ambient concentrations of PDMS (1272 mg kg(-1) biosolids), to corn and soybean test plots. Soil samples collected at intermittent time intervals were analyzed for soil water, soil organic C, extractable PDMS and PDMS hydrolysis products. Above normal precipitation during the field study maintained soil water levels in excess of 100 g kg(-1) for most of the testing period of 1994-1998. Under these conditions half-lives for PDMS (based on field dissipation data) ranged from 876 to 1443 d. When biosolids amended soil samples were brought into the laboratory and subjected to more rapid drying, >80% of the PDMS was transformed to lower molecular weight hydrolysis products within 20 d. No difference in relative PDMS transformation rates were evident for soils that received PDMS in the form of a biosolids amendment or directly dosed to the soil (in the absence of biosolids) indicating little if any effect of direct PDMS-biosolids interactions on PDMS transformation rates. These results support that the overriding factor controlling the fate of PDMS in field soils is the soil moisture content.  相似文献   

16.
Many studies have implicated dissolved organic carbon (DOC) as an important contributor to the elevated mobility of trace metals in soils amended with biosolids. Few of these studies, however, have quantified both DOC and metal concentrations. We completed laboratory leaching column studies on a dryland Platner loam (fine, smectitic, mesic Aridic Paleustoll) and an irrigated Osgood sand (loamy, mixed, mesic Arenic Ustollic Haplargid), both with a history of biosolids application. The soils were neutral to slightly alkaline in pH prior to amendment. We performed an additional application of biosolids to one set of columns in the laboratory at a rate of 28 Mg ha(-1) to investigate the effect of time following application on metal mobility. The effect of electrolyte concentration was studied by using both distilled water and simulated irrigation water. Biosolids application increased both DOC and Cu in the column effluents resulting in a positive correlation between Cu and DOC across application treatments for both soils. Both Cu and Pb were mobilized under conditions of low electrical conductivity (EC). This may be the result of the release of a strong metal-binding component of DOC under these conditions. Conversely, Zn mobility was positively correlated with EC, suggesting that either cation exchange or the formation of inorganic complexes influences Zn mobility. Anodic stripping voltammetry measurements indicated that only a small percentage of the total dissolved metals existed as free ions or inorganic complexes; the remainder appears to be complexed to DOC.  相似文献   

17.
Reactions of heavy metals with soil are important in determining metal fates in the environment. Sorption characteristics of two heavy metals, Cd and Pb, in three tropical soils (Mollisol, Oxisol, and Ultisol) from Puerto Rico were assessed at varying metal concentrations (0 to 1.2 mM) and pH values (approximately 2 to 7). All soils sorbed more Pb than Cd. Sorption maxima were obtained for each metal for the Oxisol and Ultisol soils, but not the Mollisol. Sorption appeared to depend more on soil mineralogy than organic matter content. Sorption isotherms were linear within the sorption envelope with similar slopes for each soil-metal curve, when plotting metal sorption as a function of pH. Cadmium and Pb isotherms yielded average slopes of approximately 36+/-1 and 28+/-1 units (percent increase in metal sorption per 1-unit increase in pH), respectively. Metal sorption depended more on metal type than soil composition. Cadmium sorption displayed a greater pH dependence than Pb. Cadmium sorption was less than or equal to the amount of negative surface charge except at pH values greater than the point of zero net charge (PZNC). This suggests that Cd was probably sorbed via electrostatic surface reactions and/or possible inner-sphere complexation at pH > 3.7. However, the amount of Pb sorbed by the Oxisol was greater than the amount of negative surface charge, suggesting that Pb participates in inner-sphere surface reactions. Lead was sorbed more strongly than Cd in our soils and poses less of a threat to underlying ground water systems due to its lower mobility and availability.  相似文献   

18.
There is considerable concern about pollution of surface waters with P. Although most of the research has focused on inorganic P in surface runoff, it has recently become possible to easily follow the fate of soluble organic P forms in soils and waters. Two experiments were performed to compare the relative mobility and soil fixation affinity of orthophosphate monoesters, orthophosphate diesters, and soluble inorganic P. We used three P substrates, 4-methylumbelliferyl phosphate (MUP), deoxyribonucleic acid (DNA), and KH(2)PO(4) in (i) a soil column experiment and (ii) a soil P adsorption test tube experiment. Shortly after columns were prepared, approximately two pore volumes of 0.005 M CaCl(2) were passed through 25 cm length columns containing 10 cm of loamy sand amended with approximately 10 mg P as MUP, DNA, or KH(2)PO(4) above 15 cm of nonamended loamy sand. The total net quantity of 757.8 microg P 2L(-1) of orthophosphate diesters in the leachate from the DNA columns exceeded the net quantity of orthophosphate monoesters in leachate from the MUP columns (4.6 microg P 2L(-1)) and soluble inorganic P from the KH(2)PO(4) columns (34.0 microg P 2L(-1)). Adsorption of soluble organic and inorganic P in the test tube experiment yielded similar results: DNA, containing orthophosphate diesters, had a relatively low affinity for soils. In both experiments, high concentrations of other P compounds were identified in samples treated with organic P substrates, suggesting enzymatic hydrolysis by native soil phosphatase enzymes. These findings indicate that repeated application of organic forms of P could lead to significant leaching of P to ground water.  相似文献   

19.
A study was established near a former Zn and Pb smelter to test the ability of soil amendments to reduce the availability of Pb, Zn, and Cd in situ. Soil collected from the field was amended in the lab with P added as 1% P-H3PO4, biosolids compost added at 10% (referred to hereafter as "compost"), and a high-Fe by-product (referred to hereafter as "Fe") + P-triple superphosphate (TSP) (2.5% Fe + 1% P-TSP) and incubated under laboratory conditions at a constant soil pH. Changes in Pb bioavailability were measured with an in vitro test and a feeding study with weanling rats. Field-amended and incubated soils using these plus additional treatments were evaluated using the in vitro extraction and tall fescue (Festuca arundinacea Schreb. cv. Kentucky-31) metal concentration. Reductions were observed across all parameters but were not consistent. In the feeding study, the 1% P-H3PO4 and compost treatments resulted in a decrease of 26% in rat tissue Pb concentration compared with the control soil. The 2.5% Fe + 1% P-TSP showed a 39% decrease. The 1% P-H3PO4 treatment caused the greatest reduction in in vitro extractable Pb from field samples (pH 2.2) with a measured reduction of 66%, while the compost treatment had a 39% reduction and the 2.5% Fe + 1% P-TSP treatment a 50% reduction. The in vitro extraction (pH 1.5) run on field samples showed no reduction in the compost or Fe treatments. The 1% P-H3PO4 treatment was the most effective at reducing plant Pb, Zn, and Cd.  相似文献   

20.
Biosolids are known to have a potential to restore degraded land, but the long-term impacts of this practice on the environment, including water quality, still need to be evaluated. The surface water chemistry (NO3-, NH4+, and total P, Cd, Cu, and Hg) was monitored for 31 yr from 1972 to 2002 in a 6000-ha watershed at Fulton County, Illinois, where the Metropolitan Water Reclamation District of Greater Chicago was restoring the productivity of strip-mined land using biosolids. The mean cumulative loading rates during the past 31 yr were 875 dry Mg ha(-1) for 1120-ha fields in the biosolids-amended watershed and 4.3 dry Mg ha(-1) for the 670-ha fields in the control watershed. Biosolids were injected into mine spoil fields as liquid fertilizer from 1972 to 1985, and incorporated as dewatered cake from 1980 to 1996 and air-dried solids from 1987 to 2002. The mean annual loadings of nutrients and trace elements from biosolids in 1 ha were 735 kg N, 530 kg P, 4.5 kg Cd, 30.7 kg Cu, and 0.11 kg Hg in the fields of the biosolids-amended watershed, and negligible in the fields of the control watershed. Sampling of surface water was conducted monthly in the 1970s, and three times per year in the 1980s and 1990s. The water samples were collected from 12 reservoirs and 2 creeks receiving drainage from the fields in the control watershed, and 8 reservoirs and 4 creeks associated with the fields in the biosolids-amended watershed for the analysis of NO3- -N (including NO2- N), NH4+-N, and total P, Cd, Cu, and Hg. Compared to the control (0.18 mg L(-1)), surface water NO3- -N in the biosolids-amended watershed (2.23 mg L(-1)) was consistently higher; however, it was still below the Illinois limit of 10 mg L(-1) for public and food-processing water supplies. Biosolids applications had a significant effect on mean concentrations of ammonium N (0.11 mg L(-1) for control and 0.24 mg L(-1) for biosolids) and total P (0.10 mg L(-1) for control and 0.16 mg L(-1) for biosolids) in surface water. Application of biosolids did not increase the concentrations of Cd and Hg in surface water. The elevation of Cu in surface water with biosolids application only occurred in some years of the first decade, when land-applied sludges contained high concentrations of trace metals, including Cu. In fact, following the promulgation of 40 CFR Part 503, the concentrations of all three metals fell below the method detection level (MDL) in surface water for nearly all samplings. Nitrate in the surface water tends to be higher in spring, and ammonium, total P, and total Hg in summer and fall. Mean nitrate, ammonium, and total phosphorus concentrations were found to be greater in creeks than reservoirs. The results indicate that application of biosolids for land reclamation at high loading rates from 1972 to 2002, with adequate runoff and soil erosion control, had only a minor impact on surface water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号