首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 870 毫秒
1.
Riparian zones within the Appalachian Valley and Ridge physiographic province are often characterized by localized variability in soil moisture and organic carbon content, as well as variability in the distribution of soils formed from alluvial and colluvial processes. These sources of variability may significantly influence denitrification rates. This investigation studied the attenuation of nitrate (NO3- -N) as wastewater effluent flowed through the shallow ground water of a forested headwater riparian zone within the Appalachian Valley and Ridge physiographic province. Ground water flow and NO3- -N measurements indicated that NO3- -N discharged to the riparian zone preferentially flowed through the A and B horizons of depressional wetlands located in relic meander scars, with NO3- -N decreasing from > 12 to < 0.5 mg L(-1). Denitrification enzyme activity (DEA) attributable to riparian zone location, soil horizon, and NO3- -N amendments was also determined. Mean DEA in saturated soils attained values as high as 210 microg N kg(-1) h(-1), and was significantly higher than in unsaturated soils, regardless of horizon (p < 0.001). Denitrification enzyme activity in the shallow A horizon of wetland soils was significantly higher (p < 0.001) than in deeper soils. Significant stimulation of DEA (p = 0.027) by N03- -N amendments occurred only in the meander scar soils receiving low NO3- -N (<3.6 mg L(-1)) concentrations. Significant denitrification of high NO3- -N ground water can occur in riparian wetland soils, but DEA is dependent upon localized differences in the degree of soil saturation and organic carbon content.  相似文献   

2.
The Willamette Valley of Oregon has extensive areas of poorly drained, commercial grass seed lands. Little is know about the ability of riparian areas in these settings to reduce nitrate in water draining from grass seed fields. We established two study sites with similar soils and hydrology but contrasting riparian vegetation along an intermittent stream that drains perennial ryegrass (Lolium perenne L.) fields in the Willamette Valley of western Oregon. We installed a series of nested piezometers along three transects at each site to examine NO3-N in shallow ground water in grass seed fields and riparian areas. Results showed that a noncultivated riparian zone comprised of grasses and herbaceous vegetation significantly reduced NO3-N concentrations of shallow ground water moving from grass seed fields. Darcy's law-based estimates of shallow ground water flow through riparian zone A/E horizons revealed that this water flowpath could account for only a very small percentage of the streamflow. Even though there is great potential for NO3-N to be reduced as water moves through the noncultivated riparian zone with grass-herbaceous vegetation, the potential was not fully realized because only a small proportion of the stream flow interacts with riparian zone soils. Consequently, effective NO3-N water quality management in poorly drained landscapes similar to the study watershed is primarily dependent on implementation of sound agricultural practices within grass seed fields and is less influenced by riparian zone vegetation. Wise fertilizer application rates and timing are key management tools to reduce export of NO3-N in stream waters.  相似文献   

3.
Denitrification in alluvial wetlands in an urban landscape   总被引:1,自引:0,他引:1  
Riparian wetlands have been shown to be effective "sinks" for nitrate N (NO3-), minimizing the downstream export of N to streams and coastal water bodies. However, the vast majority of riparian denitrification research has been in agricultural and forested watersheds, with relatively little work on riparian wetland function in urban watersheds. We investigated the variation and magnitude of denitrification in three constructed and two relict oxbow urban wetlands, and in two forested reference wetlands in the Baltimore metropolitan area. Denitrification rates in wetland sediments were measured with a 15N-enriched NO3- "push-pull" groundwater tracer method during the summer and winter of 2008. Mean denitrification rates did not differ among the wetland types and ranged from 147 +/- 29 microg N kg soil(-1) d(-1) in constructed stormwater wetlands to 100 +/- 11 microg N kg soil(-1) d(-1) in relict oxbows to 106 +/- 32 microg N kg soil(-1) d(-1) in forested reference wetlands. High denitrification rates were observed in both summer and winter, suggesting that these wetlands are sinks for NO3- year round. Comparison of denitrification rates with NO3- standing stocks in the wetland water column and stream NO3- loads indicated that mass removal of NO3- in urban wetland sediments by denitrification could be substantial. Our results suggest that urban wetlands have the potential to reduce NO3- in urban landscapes and should be considered as a means to manage N in urban watersheds.  相似文献   

4.
Riparian ecosystems, through their unique position in the agricultural landscape and ability to influence nutrient cycles, can potentially reduce NO3 loading to surface and ground waters. The purpose of this study was to determine the fate of NO3 in shallow groundwater moving along a lateral flowpath from a grass seed cropping system through an undisturbed mixed-species herbaceous riparian area. Soil A (30-45 cm) and C horizon (135-150 cm) NO3, dissolved oxygen, and nitrous oxide concentrations were significantly higher in the cropping system than the adjacent riparian area. Nitrate concentrations in both horizons of the riparian soil were consistently at or below 0.05 mg N L(-1) while cropping system concentrations ranged from 1 to 12 mg N L(-1). Chloride data suggested that NO3 dilution occurred from recharge by precipitation. However, a sharp decrease in NO3/Cl ratios as water moved into the riparian area indicated that additional dilution of NO3 concentrations was unlikely. Riparian area A horizon soil water had higher dissolved organic carbon than the cropping system and when the riparian soil became saturated, available electron acceptors (O2, NO3) were rapidly reduced. Dissolved inorganic carbon was significantly higher in the riparian area than the cropping system for both horizons indicating high biological activity. Carbon limitation in the cropping system may have led to microbial respiration using primarily O2 and to a lesser degree NO3. Within 6 m of the riparian/cropping system transition, NO3 was virtually undetectable.  相似文献   

5.
The effectiveness of riparian zones in mitigating nutrient in ground and surface water depends on the climate, management, and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well drained, mixed-deciduous riparian forest to buffer a river from N originating from a poorly drained grass seed cropping system. The study site was adjacent to the Calapooia River in the Willamette Valley, Oregon. Water was found to move from the rapid drainage of swale surface water. During winter hydrological events, the riparian forest also received river water. Low nitrate (NO3-) concentrations (0.2-0.4 mg NO3- -NL(-1)) in the shallow groundwater of the cropping system were associated with low rates of mineralization and nitrification (33 kg N ha(-1) yr(-1)) and high grass seed crop uptake of N (155 kg N ha(-1) yr(-1)). The riparian forest soil had higher rates of mineralization (117 kg N ha(-1) yr(-1)) that produced quantities of soil N that were within the range of literature values for plant uptake, leading to relatively low concentrations of shallow groundwater NO3 (0.6-1.8 mg NO3- -NL(-1)). The swale that dissected the cropping system and riparian area was found to have the highest rates of denitrification and to contribute dissolved organic C to the river. Given the dynamic nature of the hydrology of the Calapooia River study site, data suggest that the riparian forest plays a role not only in reducing export of NO3- from the cropping system to the river but also in processing nutrients from river water.  相似文献   

6.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decline with depth in glacial outwash vs. negligible decline with depth in alluvium). We measured in situ ground water denitrification rates at three depths (65, 150, and 300 cm) within hydric soils at four riparian sites (two per setting) using a 15N-enriched nitrate "push-pull" method. No significant difference was found in the pattern and magnitude of denitrification when grouping sites by setting. At three sites there was no significant difference in denitrification among depths. Correlations of site characteristics with denitrification varied with depth. At 65 cm, ground water denitrification correlated with variables associated with the surface ecosystem (temperature, dissolved organic carbon). At deeper depths, rates were significantly higher closer to the stream where the subsoil often contains organically enriched deposits that indicate fluvial geomorphic processes. Mean rates ranged from 30 to 120 microg N kg(-1) d(-1) within 10 m versus <1 to 40 microg N kg(-1) d(-1) at >30 m from the stream. High denitrification rates observed in hydric soils, down to 3 m within 10 m of the stream in both alluvial and glacial outwash settings, argue for the importance of both settings in evaluating the significance of riparian wetlands in catchment-scale N dynamics.  相似文献   

7.
We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentration of stream NO3-N and the proportion of upland area in drainage basins in both catchments. The regression slope, which we assumed to reflect the impact on water quality, was 24% lower for the Akkeshi catchment (0.012 +/- 0.001) than for the Shibetsu catchment (0.016 +/- 0.001). In the Akkeshi catchment, there was a significant negative correlation between the proportion of wetlands in the drainage basins and stream NO3-N concentration. Stream dissolved organic nitrogen (DON) and carbon (DOC) concentrations were significantly higher in the Akkeshi catchment. Upland and urban land uses were strongly linked to increases in in-stream N concentrations in both catchments, whereas wetlands and forests tended to mitigate water quality degradation. The denitrification potential of the soils was highest in wetlands, medium in riparian forests, and lowest in grasslands; and was significant in wetlands and riparian forests in the Akkeshi catchment. The solubility of soil organic carbon (SOC) and soil moisture tended to determine the denitrification potential. These results indicate that the water environment within the catchments, which influences denitrification potential and soil organic matter content, could have caused the difference in stream water quality between the two catchments.  相似文献   

8.
To quantify ground water denitrification in discrete locations of riparian aquifers, we modified and evaluated an in situ method based on conservative tracers and 15N-enriched nitrate. Ground water was "pushed" (i.e., injected) into a mini-piezometer and then "pulled" (i.e., extracted) from the same mini-piezometer after an incubation period. This push-pull method was applied in replicate mini-piezometers at two Rhode Island riparian sites, one fresh water and one brackish water. Conservative tracer pretests were conducted to determine incubation periods, ranging from 5 to 120 h, to optimize recovery of introduced plumes. For nitrate push-pull tests, we used two conservative tracers, sulfur hexafluoride and bromide, to provide insight into plume recovery. The two conservative tracers behaved similarly. The dosing solutions were amended with 15N-enriched nitrate that enabled us to quantify the mass of denitrification gases generated during the incubation period. The in situ push-pull method detected substantial denitrification rates at a site where we had previously observed high denitrification rates. At our brackish site, we found high rates of ground water denitrification in marsh locations and minimal denitrification in soils fringing the marsh. The push-pull method can provide useful insights into spatial and temporal patterns of denitrification in riparian zones. The method is robust and results are not seriously affected by dilution or degassing from ground water to soil air. In conjunction with measurements of ground water flow-paths, this method holds promise for evaluating the influence of site and management factors on the ground water nitrate removal capacity of riparian zones.  相似文献   

9.
Numerous studies have shown that riparian wetlands can play an important role in reducing nitrate concentrations before the ground water discharges into streams. Denitrification has been identified as an important process for this removal. Several approaches have been proposed to predict the denitrifying removal capacity of a riparian wetland, but no widely used tool exists to precisely quantify this capacity at the landscape scale. We propose such a methodology based on modeling the spatial variation of soil-water interactions in the entire riparian wetland. Mean values of denitrification enzyme activity (DEA) within three soil-denitrifying classes were 604, 212, and 24 ng N g(-1) h(-1) for Classes 3, 2, and 1, respectively. The study area, having a ground surface of about 15000 m2, was underlain by an aquifer with a calculated volume of 60000 m3, less than 10000 m3 of which corresponded to active denitrifying horizons (Classes 2 and 3). By volume, approximately 30% of Class 3 and 70% of Class 2 were interacting with ground water. The denitrifying removal capacity of our wetland was calculated to be about 1.8 kg N m(-2) yr(-1). The calculated denitrifying capacity of our site was less than expected. This is due to the fact that not all ground water interacts with the horizons having the highest denitrifying capacity. Thus, we show that whatever the system is, specific local pedological and hydrogeological conditions and their interactions are paramount in controlling the denitrification process.  相似文献   

10.
In manure disposal systems, denitrification is a major pathway for N loss and to reduce N transport to surface and ground water. We measured denitrification and the changes in soil N pools in a liquid manure disposal system at the interface of a pasture and a riparian forest. Liquid swine manure was applied weekly at two rates (approximately 800 and 1600 kg N ha-1 yr-1) to triplicate plots of overland flow treatment systems with three different vegetation treatments. Denitrification (acetylene block technique on intact cores) and soil N pools were determined bimonthly for 3 yr. The higher rate of manure application had higher denitrification rates and higher soil nitrate. Depth 1 soil (0-6 cm) had higher denitrification, nitrate, and ammonium than depth 2 soil (6-12 cm). The vegetation treatment consisting of 20 m of grass and 10 m of forest had lower denitrification. Denitrification did not vary significantly with position in the plot (7, 14, 21, and 28 m downslope), but nitrate decreased in the downslope direction while ammonium increased downslope. Denitrification ranged from 4 to 12% of total N applied in the manure. Denitrification rates were similar to those from a nearby dairy manure irrigation site, but were generally a lower percent of N applied, especially at the high swine effluent rate. Denitrification rates for these soils range from 40 to 200 kg N ha-1 yr-1 for the top 12 cm of soil treated with typical liquid manure that is high in ammonium and low in nitrate.  相似文献   

11.
The influence of riparian zone lithology on nitrate dynamics is poorly understood. We investigated vertical variations in potential denitrification activity in relation to the lithology and stratigraphy of five headwater riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Conductive coarse sand and gravel layers occurred in four of the five riparian areas. These layers were thin and did not extend to the field-riparian perimeter in some riparian zones, which limited their role as conduits for ground water flow. We found widespread organic-rich layers at depths ranging from 40 to 300 cm that resulted from natural floodplain processes and the burial of surface soils by rapid valley-bottom sedimentation after European settlement. The organic matter content of these layers varied considerably from 2 to 5% (relic channel deposit) to 5 to 21% (buried soils) and 30 to 62% (buried peat). Denitrification potential (DNP) was measured by the acetylene block method in sediment slurries amended with nitrate. The highest DNP rates were usually found in the top 0- to 15-cm surface soil layer in all riparian zones. However, a steep decline in DNP with depth was often absent and high DNP activity occurred in the deep organic-rich layers. Water table variations in 2000-2002 indicated that ground water only interacted frequently with riparian surface soils between late March and May, whereas subsurface organic layers that sustain considerable DNP were below the water table for most of the year. These results suggest that riparian zones with organic deposits at depth may effectively remove nitrate from ground water even when the water table does not interact with organic-rich surface soil horizons.  相似文献   

12.
Mechanisms of nutrient attenuation in a subsurface flow riparian wetland   总被引:2,自引:0,他引:2  
Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.  相似文献   

13.
Denitrification potential in urban riparian zones   总被引:3,自引:0,他引:3  
Denitrification, the anaerobic microbial conversion of nitrate (NO3-) to nitrogen (N) gases, is an important process contributing to the ability of riparian zones to function as "sinks" for NO3- in watersheds. There has been little analysis of riparian zones in urban watersheds despite concerns about high NO3- concentrations in many urban streams. Vegetation and soils in urban ecosystems are often highly disturbed, and few studies have examined microbial processes like denitrification in these ecosystems. In this study, we measured denitrification potential and a suite of related microbial parameters (microbial biomass carbon [C] and N content, potential net N mineralization and nitrification, soil inorganic N pools) in four rural and four urban riparian zones in the Baltimore, MD metropolitan area. Two of the riparian zones were forested and two had herbaceous vegetation in each land use context. There were few differences between urban and rural and herbaceous and forest riparian zones, but variability was much higher in urban than rural sites. There were strong positive relationships between soil moisture and organic matter content and denitrification potential. Given the importance of surface runoff in urban watersheds, the high denitrification potential of the surface soils that we observed suggests that if surface runoff can be channeled through areas with high denitrification potential (e.g., stormwater detention basins with wetland vegetation), these areas could function as important NO3- sinks in urban watersheds.  相似文献   

14.
Streamside vegetated buffer strips (riparian zones) are often assumed to be zones of ground water nitrate (NO3(-)) attenuation. At a site in southwestern Ontario (Zorra site), detailed monitoring revealed that elevated NO3(-) -N (4-93 mg L(-1)) persisted throughout a 100-m-wide riparian floodplain. Typical of riparian zones, the site has a soil zone of recent river alluvium that is organic carbon (OC) rich (36 +/- 16 g kg(-1)). This material is underlain by an older glacial outwash aquifer with a much lower OC content (2.3 +/- 2.5 g kg(-1). Examination of NO3(-), Cl(-), SO4(2-), and dissolved organic carbon (DOC) concentrations; N/Cl ratios; and NO3(-) isotopic composition (delta15N and delta18O) provides evidence of four distinct NO3(-) source zones within the riparian environment. Denitrification occurs but is incomplete and is restricted to a narrow interval located within ~0.5 m of the alluvium-aquifer contact and to one zone (poultry manure compost zone) where elevated DOC persists from the source. In older ground water close to the river discharge point, denitrification remains insufficient to substantially deplete NO3(-). Overall, denitrification related specifically to the riparian environment is limited at this site. The persistence of NO3(-) in the aquifer at this site is a consequence of its Pleistocene age and resulting low OC content, in contrast to recent fluvial sediments in modern agricultural terrain, which, even if permeable, usually have zones enriched in labile OC. Thus, sediment age and origin are additional factors that should be considered when assessing the potential for riparian zone denitrification.  相似文献   

15.
Anaerobic microbial processes play particularly important roles in the biogeochemical functions of wetlands, affecting water quality, nutrient transport, and greenhouse gas fluxes. This study simultaneously examined nitrate and sulfate removal rates in sediments of five southwestern Michigan wetlands varying in their predominant water sources from ground water to precipitation. Rates were estimated using in situ push-pull experiments, in which 500 mL of anoxic local ground water containing ambient nitrate and sulfate and amended with bromide was injected into the near-surface sediments and subsequently withdrawn over time. All wetlands rapidly depleted nitrate added at ambient ground water concentrations within 5 to 20 h, with the rate dependent on concentration. Sulfate, which was variably present in porewaters, was also removed from injected ground water in all wetlands, but only after nitrate was depleted. The sulfate removal rate in ground water-fed wetlands was independent of concentration, in contrast to rates in precipitation-fed wetlands. Sulfate production was observed in some sites during the period of nitrate removal, suggesting that the added nitrate either stimulated sulfur oxidation, possibly by bacteria that can utilize nitrate as an oxidant, or inhibited sulfate reduction by stimulating denitrification. All wetland sediments examined were consistently capable of removing nitrate and sulfate at concentrations found in ground water and precipitation inputs, over short time and space scales. These results demonstrate how a remarkably small area of wetland sediment can strongly influence water quality, such as in the cases of narrow riparian zones or small isolated wetlands, which may be excluded from legal protection.  相似文献   

16.
Abstract: Dissolved inorganic nitrogen (DIN) retention‐transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ~3 mg‐N/l to <0.1 mg‐N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification‐denitrification. Numerical simulations of seasonal hyporheic sediment nitrification‐denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989‐93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel features such as sloughs, wetlands and floodplains that provide surface water‐ground water connectivity, will be required to develop effective nitrate management strategies.  相似文献   

17.
Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3(-)) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d "snapshots" during biotically active periods, we estimated reach-level NO3(-) sources, NO3(-) mass balance, in-stream processing (nitrification, denitrification, and NO3(-) uptake), and NO3(-) retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3(-) input. Streambed processes potentially reduced 45 to 75% of ground water NO3(-) before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3(-) retention. Estimated nitrification (1.6-4.4 mg N m(-2) h(-1)) and unamended denitrification rates (2.0-16.3 mg N m(-2) h(-1)) in sediment slurries were high relative to pristine streams. Denitrification of NO3(-) was largely independent of nitrification because both stream and ground water were sources of NO3(-). Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3(-) exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3(-) inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3(-) variation. Biotic processing potentially removed 75% of ground water NO3(-) at this site, suggesting an important role for photosynthetic assimilation of ground water NO3(-) relative to subsurface denitrification as water passed directly through benthic diatom beds.  相似文献   

18.
We determined the water quality effect of a restored forested riparian wetland adjacent to a manure application area and a heavily fertilized pasture in the Georgia Coastal Plain. The buffer system was managed based on USDA recommendations and averaged 38 m in width. Water quality and hydrology data were collected from 1991-1999. A nitrate plume in shallow ground water with concentrations exceeding 10 mg NO3-N L(-1) moved into the restored forested riparian wetland. Along most of the plume front, concentrations were less than 4 mg NO3-N L(-1) within 25 m. Two preferential flow paths associated with past hydrologic modifications to the site allowed the nitrate plume to progress further into the restored forested riparian wetland. Surface runoff total N, dissolved reactive phosphorus (DRP), and total P concentrations averaged 8.63 mg N L(-1), 1.37 mg P L(-1), and 1.48 mg P L(-1), respectively, at the field edge and were reduced to 4.18 mg N L(-1), 0.31 mg P L(-1), and 0.36 mg P L(-1), respectively, at the restored forested riparian wetland outlet. Water and nutrient mass balance showed that retention and removal rates for nitrogen species ranged from a high of 78% for nitrate to a low of 52% for ammonium. Retention rates for both DRP and total P were 66%. Most of the N retention and removal was accounted for by denitrification. Mean annual concentrations of total N and total P leaving the restored forested riparian wetland were 1.98 mg N L(-1) and 0.24 mg P L(-1), respectively.  相似文献   

19.
Nitrate (NO3-) leaching to ground water poses water quality concerns in some settings. Riparian buffers have been advocated to reduce excess ground water NO3- concentrations. We characterized inorganic N in soil solution and shallow ground water for 16 paired cropland-riparian plots from 2003 to 2005. The sites were located at two private dairy farms in Central New York on silt and gravelly silt loam soils (Aeric Endoaqualfs, Fluvaquentic Endoaquepts, Fluvaquentic Eutrudepts, Glossaquic Hapludalfs, and Glossic Hapludalfs). It was hypothesized that cropland N inputs and soil-landscape variability would jointly affect NO3- leaching and transformations in ground water. Results showed that well and moderately well drained fields had consistently higher ground water NO3- compared to more imperfectly drained fields receiving comparable N inputs. Average 50-cm depth soil solution NO3- and ground water dissolved oxygen (DO) explained 64% of average cropland ground water NO3- variability. Cropland ground water with an average DO of <3 mg L(-1) tended to have <4 mg L(-1) of NO3- with a water table depth (WTD) of 相似文献   

20.
Riparian zones are recognized as landscape features that buffer streams from pollutants, particularly nitrogen. The objectives of this experiment were to (i) assess denitrification activity within a riparian zone and (ii) determine the influence of physical, chemical, and landscape features on denitrification. This experiment was conducted from 1994 to 1997 in North Carolina on a riparian zone contiguous to a spray field that was heavily loaded with swine lagoon wastewater. Denitrification enzyme activity (DEA) was measured on soils collected from (i) the soil surface, (ii) midway between the soil surface and water table, and (iii) above the water table. The DEA ranged from 3 to 1660 microg N(2)O-N kg(-1) soil h(-1). The DEA was highest next to the stream and lowest next to the spray field. Nitrate was found to be the limiting factor for denitrification. The DEA generally decreased with soil depth; means for the surface, middle, and bottom depths were 147, 83, and 67 microg N(2)O-N kg(-1) soil h(-1), respectively. These DEA values are higher than those reported for riparian zones adjoining cropland of the southeastern United States, but are lower than those reported for a constructed wetland used for treatment of swine wastewater. Regression analysis indicated that soil total nitrogen was the highest single factor correlated to DEA (r(2) = 0.65). The inclusion of water table depth, soil depth, and distance from the spray field improved the R(2) to 0.86. This riparian zone possessed sufficient soil area with high denitrifying conditions to be a significant factor in the removal of excess nitrogen in the ground water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号