首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Seventeen different wastewater sludges were characterized using both chemical and organic matter fractionation methods (water extraction, Van Soest method, and acid hydrolysis) and 6-mo incubation studies to assess their decomposition in soil. Simple correlation and multiple factor analysis (MFA) were then performed to establish relationships between composition and C and N mineralization of sludges. Carbon and N concentrations covered a wide range of values, but organic carbon (C(o)) to organic nitrogen (N(o)) ratios were relatively low (from 5 to 19). Carbon and N were mainly distributed in the most soluble fractions of the Van Soest method and in the water-insoluble fraction at 100 degrees C. Carbon mineralization varied from 180 to 661 g C kg(-1) organic C added during the 168-d incubation. The addition of sludges led to different inorganic N dynamics: from -3.3 to +120.0 g N kg(-1) sludge organic C mineralized after the 168-d incubation. Fractionation studies showed that the most discriminating method was acid hydrolysis. Carbon mineralization was linked with the proportion of sludge N and C present in the lignin-like fraction (r = -0.68 and -0.65, respectively). Significant relationships were established between N mineralization and N(o) to C(o) ratio (0.88 < r < 0.95) and the C(o) to N(o) ratio of sludges, the C to N ratio of the soluble fraction obtained by the Van Soest method, the water-soluble fraction at 100 degrees C, and the C and N present in the acid-hydrolyzable fraction. Finally, multiple factor analysis also enabled establishing a sludge typology using five clusters based on composition and mineralization characteristics.  相似文献   

2.
There are more than 10000 arsenic (As) contaminated sites in Australia. The ability of soils at these contaminated sites to sorb As is highly variable and appreciable amounts of As have been recorded in the subsurface soils. The potential risk of surface and ground water contamination by As at these sites is a major environmental concern. Factors that influence adsorption capacity of soils influence the bioavailability and subsequent mobility of As in soils. In the present study we investigated the effect of PO4(3-) and Na+ and Ca2+ on the sorption of AsV and AsIII by an Oxisol, a Vertisol, and two Alfisols. The presence of P (0.16 mmol L(-1)) greatly decreased AsV sorption by soils containing low amounts of Fe oxides (<100 mmol kg(-1)), indicating competitive adsorption between P and AsV for sorption sites. In contrast, the presence of a similar amount of P had little effect on the amount of AsV adsorbed by soils with high Fe content (>800 mmol kg(-1)). However, AsV sorption substantially decreased from 0.63 to 0.37 mmol kg(-1) as P concentration was increased from 0.16 to 3.2 mmol L(-1) in selected soils. This suggests increased competition between P and AsV for soil sorption sites, through either the higher affinity or the effect of mass action of the increasing concentration of P in solution. A similar effect of P on AsIII sorption was observed in the low sorbing Alfisol and high affinity Oxisol. However, the amount of AsIII sorbed by the Oxisol was much greater than the Alfisol for all treatments. The presence of Ca2+ increased the amount of AsV sorbed compared with that of Na+ and was manifested through changes in the surface charge characteristics of the soils. A similar trend in AsIII sorption was recorded with changes in index cation, although the effect was not as marked as recorded for AsV.  相似文献   

3.
The use of composted manures and of legumes in crop rotations may control the quality and quantity of soil organic matter and may affect nutrient retention and recycling. We studied soil organic C and N stocks and N mineralization in organically and conventionally managed dryland arable soils. We selected 13 extensive organic fields managed organically for 10 yr or more as well as adjacent fields managed conventionally. Organic farmers applied composted manures ranging from 0 to 1380 kg C ha yr and incorporated legumes in crop rotations. In contrast, conventional farmers applied fresh manures combined with slurries and/or mineral fertilizers ranging from 200 to 1900 kg C ha yr and practiced a cereal monoculture. Despite the fact that the application of organic C was similar in both farming systems, organically managed soils showed higher C and similar N content and lower bulk density than conventionally managed soils. Moreover, organic C stocks responded to the inputs of organic C in manures and to the presence of legumes only in organically managed soils. In contrast, stocks of organic N increased with the inputs of N or C in both farming systems. In organically managed soils, organic N stocks were less mineralizable than in conventional soils. However, N mineralization in organic soils was sensitive to the N fixation rates of legumes and to application rate and C/N ratio of the organic fertilizers.  相似文献   

4.
Biochars are increasingly used as soil amendment and for C sequestration in soils. The influence of feedstock differences and pyrolysis temperature on biochar characteristics has been widely studied. However, there is a lack of knowledge about the formation of potentially toxic compounds that remain in the biochars after pyrolysis. We investigated biochars from three feedstocks (wheat straw, poplar wood, and spruce wood) that were slowly pyrolyzed at 400, 460, and 525°C for 5 h (straw) and 10 h (woodchips), respectively. We characterized the biochars' pH, electrical conductivity, elemental composition (by dry combustion and X-ray fluorescence), surface area (by N adsorption), water-extractable major elements, and cation exchange capacity (CEC). We further conducted differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffractometry to obtain information on the biochars' molecular characteristics and mineralogical composition. We investigated trace metal content, total polycyclic aromatic hydrocarbon (PAH) content, and PAH composition in the biochars. The highest salt (4.92 mS cm) and ash (12.7%) contents were found in straw-derived biochars. The H/C ratios of biochars with highest treatment temperature (HTT) 525°C were 0.46 to 0.40. Surface areas were low but increased (1.8-56 m g) with increasing HTT, whereas CEC decreased (162-52 mmol kg) with increasing HTT. The results of DSC and FTIR suggested a loss of labile, aliphatic compounds during pyrolysis and the formation of more recalcitrant, aromatic constituents. X-ray diffractometry patterns indicated a mineralogical restructuring of biochars with increasing HTT. Water-extractable major and trace elements varied considerably with feedstock composition, with trace elements also affected by HTT. Total PAH contents (sum of EPA 16 PAHs) were highly variable with values up to 33.7 mg kg; irrespective of feedstock type, the composition of PAHs showed increasing dominance of naphthalene with increasing HTT. The results demonstrate that biochars are highly heterogeneous materials that, depending on feedstock and HTT, may be suitable for soil application by contributing to the nutrient status and adding recalcitrant C to the soil but also potentially pose ecotoxicological challenges.  相似文献   

5.
The objective of this study was to quantify C and N mineralization rates from a range of organic amendments that differed in their total C and N contents and C quality, to gain a better understanding of their influence on the soil N cycle. A pelletized poultry manure (PP), two green waste-based composts (GWCa, GWCb), a straw-based compost (SBC), and a vermi-cast (VER) were incubated in a coarse-textured soil at 15 degrees C for 142 d. The C quality of each amendment was determined by chemical analysis and by 13C nuclear magnetic resonance (NMR). Carbon dioxide (CO2-C) evolution was determined using alkali traps. Gross N mineralization rates were calculated by 15N isotopic pool dilution. The CO2-C evolution rates and gross N mineralization rates were generally higher in amended soils than in the control soil. With the exception of GWCb all amendments released inorganic N at concentrations that would be high enough to warrant a reduction in inorganic N fertilizer application rates. The amount of N released from PP was high indicating that application rates should be reduced, or alternative amendments used, to minimize leaching losses in regions where ground water quality is of concern. There was a highly significant relationship between CO2-C evolution and gross N mineralization (R2= 0.95). Some of the chemically determined C quality parameters had significant relationships (p < 0.05) with both the cumulative amounts of C and N evolved. However, we found no significant relationships between 13C NMR spectral groupings, or their ratios, and either the CO2-C evolved or gross N mineralized from the amendments.  相似文献   

6.
Environmentally sound management of the use of composts in agriculture relies on matching the rate of release of available N from compost-amended soils to the crop demand. To develop such management it is necessary to (i) characterize the properties of composts that control their rates of decomposition and release of N and (ii) determine the optimal amount of composts that should be applied annually to wheat (Triticum aestivum L.). Carbon and N mineralization were measured under controlled conditions to determine compost decomposition rate parameters, and the NCSOIL model was used to derive the organic wastes parameters that control the rates of N and C transformations in the soil. We also characterized the effect of a drying period to estimate the effects of the dry season on C and N dynamics in the soil. The optimized compost parameters were then used to predict mineral N concentration dynamics in a soil-wheat system after successive annual applications of compost. Sewage sludge compost (SSC) and cattle manure compost (CMC) mineralization characteristics showed similar partitioning into two components of differing ease of decomposition. The labile component accounted for 16 to 20% of total C and 11 to 14% of total N, and it decomposed at a rate of 2.4 x 10(-2) d(-1), whereas the resistant pool had a decomposition rate constant of 1.2 to 1.4 x 10(-4) d(-1). The main differences between the two composts resulted from their total C and N and inorganic N contents, which were determined analytically. The long-term effect of a drying period on C and N mineralization was negligible. Use of these optimization results in a simulation of compost mineralization under a wheat crop, with a modified plant-effect version of the NCSOIL model, enabled us to evaluate the effects of the following factors on the C and N dynamics in soil: (i) soil temperature, (ii) mineral N uptake by plants, and (iii) release of very labile organic C in root exudates. This labile organic C enhanced N immobilization following application, and so decreased the N available for uptake by plants.  相似文献   

7.
Phosphorus exchangeability and leaching losses from two grassland soils   总被引:1,自引:0,他引:1  
Although phosphate phosphorus (P) is strongly sorbed in many soils, it may be quickly transported through the soil by preferential flow. Under flood irrigation, preferential flow is especially pronounced and associated solute losses may be important. Phosphorus losses induced by flood irrigation were investigated in a lysimeter study. Detailed soil chemical analyses revealed that P was very mobile in the topsoil, but the higher P-fixing capacity of the subsoil appeared to restrict P mobility. Application of a dye tracer enabled preferential flow pathways to be identified. Soil sampling according to dye staining patterns revealed that exchangeable P was significantly greater in preferential flow areas as compared with the unstained soil matrix. This could be partly attributed to the accumulation of organic carbon and P, together with enhanced leaching of Al- and Fe-oxides in the preferential flow areas, which resulted in reduced P sorption. The irrigation water caused a rapid hydrologic response by displacement of resident water from the subsoil. Despite the occurrence of preferential flow, most of the outflowing water was resident soil water and very low in P. In these soils the occurrence of preferential flow per se is not sufficient to cause large P losses even if the topsoil is rich in P. It appears that the P was retained in lower parts of the soil profile characterized by a very high P-fixing capacity. This study demonstrates the risks associated with assessing potential P losses on the basis of P mobility in the topsoil alone.  相似文献   

8.
Biochar is the product of pyrolysis produced from feedstock of biological origin. Due to its aromatic structure and long residence time, biochar may enable long-term carbon sequestration. At the same time, biochar has the potential to improve soil fertility and reduce greenhouse gas (GHG) emissions from soils. However, the effect of biochar application on GHG fluxes from soil must be investigated before recommendations for field-scale biochar application can be made. A laboratory experiment was designed to measure carbon dioxide (CO) and nitrous oxide (NO) emissions from two Irish soils with the addition of two different biochars, along with endogeic (soil-feeding) earthworms and ammonium sulfate, to assist in the overall evaluation of biochar as a GHG-mitigation tool. A significant reduction in NO emissions was observed from both low and high organic matter soils when biochars were applied at rates of 4% (w/w). Earthworms significantly increased NO fluxes in low and high organic matter soils more than 12.6-fold and 7.8-fold, respectively. The large increase in soil NO emissions in the presence of earthworms was significantly reduced by the addition of both biochars. biochar reduced the large earthworm emissions by 91 and 95% in the low organic matter soil and by 56 and 61% in the high organic matter soil (with and without N fertilization), respectively. With peanut hull biochar, the earthworm emissions reduction was 80 and 70% in the low organic matter soil, and only 20 and 10% in the high organic matter soil (with and without N fertilization), respectively. In high organic matter soil, both biochars reduced CO efflux in the absence of earthworms. However, soil CO efflux increased when peanut hull biochar was applied in the presence of earthworms. This study demonstrated that biochar can potentially reduce earthworm-enhanced soil NO and CO emissions. Hence, biochar application combined with endogeic earthworm activity did not reveal unknown risks for GHG emissions at the pot scale, but field-scale experiments are required to confirm this.  相似文献   

9.
In this study, a comparative thermodynamic performance analysis of cascade system (CCS) for cooling and heating applications is presented and compared for different refrigerant couples. The CCS consists of the low-temperature cycle (LTC) and high-temperature cycle (HTC). The CO2 was used as working fluid in LTC, whereas the HFE 7000, R134a, R152a, R32, R1234yf, and R365mfc refrigerants were used in HTC. The heating and cooling coefficients of performance (COPht, COPcl) and exergy efficiency of CCS are investigated parametrically according to various factors such as the evaporator, condenser, and reference temperatures. After thermodynamic analyses are completed, the COPcl of CCS is obtained as 1.802, 1.806, 1.826, 1.769, 1.777, and 1.835 for CO2-HFE7000, CO2-R134a, CO2-R152a, CO2-R32, CO2-R1234yf, and CO2-365mfc refrigerant couples, respectively. Furthermore, the heat exchanger has the highest exergy destruction rate, whereas the expansion valves have the lowest of exergy destruction rate.  相似文献   

10.
Biosolids are effective forest fertilizers. In order to facilitate their use it is important that one be able to predict the amount and rate of mineralization of nutrients, particularly nitrogen, and the relationship between substrate chemistry and N release. We examined the relationships between substrate quality and nitrogen release in a variety of organic materials. Rates of decomposition and net N mineralization from four biosolids, wheat straw, paper fines, and Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] needle litter were measured during 391-d incubations in a greenhouse, and at two field sites in wet coastal and dry interior forests. Decomposition rates were best predicted by a model incorporating the ratio of carbon to organic matter. The decomposition model extrapolated well to the field when site-specific correction factors were applied. There was a weak relationship between rates of decomposition and net N mineralization. Rates of net N mineralization were best predicted by a model incorporating the initial organic N concentration and the proportion of phenolic C determined from solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The mineralization model extrapolated less well to the field, but the effect of substrate chemistry was still apparent. Among the four biosolids there was a strong correlation between organic N concentration and indices or protein determined from 13C NMR, suggesting that these protein indices may be useful for predicting N mineralization from biosolids. There was some evidence that the protein content and N mineralization in biosolids may be predictable from the sewage treatment process employed.  相似文献   

11.
Nitrogen mineralization from organic residues: research opportunities   总被引:1,自引:0,他引:1  
Research on nitrogen (N) mineralization from organic residues is important to understand N cycling in soils. Here we review research on factors controlling net N mineralization as well as research on laboratory and field modeling efforts, with the objective of highlighting areas with opportunities for additional research. Among the factors controlling net N mineralization are organic composition of the residue, soil temperature and water content, drying and rewetting events, and soil characteristics. Because C to N ratio of the residue cannot explain all the variability observed in N mineralization among residues, considerable effort has been dedicated to the identification of specific compounds that play critical roles in N mineralization. Spectroscopic techniques are promising tools to further identify these compounds. Many studies have evaluated the effect of temperature and soil water content on N mineralization, but most have concentrated on mineralization from soil organic matter, not from organic residues. Additional work should be conducted with different organic residues, paying particular attention to the interaction between soil temperature and water content. One- and two-pool exponential models have been used to model N mineralization under laboratory conditions, but some drawbacks make it difficult to identify definite pools of mineralizable N. Fixing rate constants has been used as a way to eliminate some of these drawbacks when modeling N mineralization from soil organic matter, and may be useful for modeling N mineralization from organic residues. Additional work with more complex simulation models is needed to simulate both gross N mineralization and immobilization to better estimate net N mineralized from organic residues.  相似文献   

12.
The behavior of the herbicide terbuthylazine (TA) was studied in a clay loam soil after the addition of different organic amendments (OAs). Addition of poultry compost (PC) and urban sewage sludge (USS) retarded degradation of TA with half-life values of 60.3 and 73.7 d, respectively. In contrast, addition of corn straw (CS) did not significantly alter the degradation of TA (half-life 55.5 d) compared with its degradation in nonamended soils (half-life 57.3 d). Sterilization of amended and nonamended soils resulted in a partial inhibition of TA degradation, indicating that biotic and abiotic processes are involved in TA degradation in soil. Degradation of TA led to the formation of desethyl-terbuthylazine, which was detected in low amounts (<8% of the initially applied TA) in all soils. Adsorption of TA was relatively low, with Kd values ranging from 2.31 L kg(-1) in the nonamended soil to 3.93 L kg(-1) in the soil amended with USS. In general, Kd values increased with increasing soil organic carbon content. The dissolved organic matter extracted from the OAs did not appear to interact with the pesticide or the soil surfaces, suggesting that it would not probably facilitate herbicide transport. Desorption studies indicated a slight hysteresis of TA desorption in the amended soils compared with TA desorption in the nonamended soil, which was entirely reversible. These findings might have practical implications for the environmental fate of TA in agricultural soils, where the studied OAs are commonly used.  相似文献   

13.
Herbicides applied to soils potentially affect soil microbial activity. The quantity and frequency of Roundup Ultra [RU; N-(phosphonomethyl)glycine; Monsanto, St. Louis, MO] applications have escalated with the advent of Roundup-tolerant crops. The objective of this study was to determine the effect of Roundup Ultra on soil microbial biomass and activity across a range of soils varying in fertility. The isoproplyamine salt of glyphosate was applied in the form of RU at a rate of 234 mg active ingredient kg(-1) soil based on an assumed 2-mm glyphosate-soil interaction depth. Roundup Ultra significantly stimulated soil microbial activity as measured by C and N mineralization, as well as soil microbial biomass. Cumulative C mineralization as well as mineralization rate increased above background levels for all soils tested with addition of RU. There were strong linear relationships between C and N mineralized, as well as between soil microbial C and N (r2 = 0.96 and 0.95, respectively). The slopes of the relationships with RU addition approximated three. Since the isopropylamine salt of glyphosate has a C to N ratio of 3:1, the data strongly suggest that RU was the direct cause of the enhanced microbial activity. An increase in the C mineralization rate occurred the first day following RU addition and continued for 14 d. Roundup Ultra appeared to be rapidly degraded by soil microbes regardless of soil type or organic matter content, even at high application rates, without adversely affecting microbial activity.  相似文献   

14.
为筛选出适宜东北寒冷区快速腐解秸秆的腐熟剂,通过网袋腐解试验明确施入3种秸秆腐熟剂对玉米秸秆生物量及养分释放的影响。结果显示:经过100 d的腐解,玉米秸秆生物量失重率随着时间的延长逐渐增加,玉米秸秆失重率为57.1%-64.1%,其中以施用3号秸秆腐熟剂的玉米秸秆生物量失重率最高,为64.1%。施入不同秸秆腐熟剂后玉米秸秆氮、磷、钾释放率分别为35.1%-57.2%、44.2%-59.6%、77.4%-89.7%,其中以3号腐熟剂的秸秆磷、钾素释放率最高。各处理有机碳矿化率呈相同的趋势,均随时间的延长逐渐增加,取样末期有机碳矿化率在65.3%-69.1%之间,且各处理间差异不明显。综上,以3号秸秆腐熟剂腐解秸秆的效果最好。  相似文献   

15.
Soil organic C (SOC) content can increase by managing land use practices in which the rates of organic C input exceed those of organic C mineralization. Understanding the changes in SOC content of Black soils (mainly Typic Halpudoll) in northeast China is necessary for sustainable using of soil resources there. We used the RothC model to estimate SOC levels of Black soils under monoculture cropping corn in a long-term fertilization trial at Gongzhuling, Jilin Province, China. The model outputs for the changes in SOC were compared with measured data in this long-term fertilization/manure trial. The sound performance of model in simulating SOC changes suggests that RothC is feasible with Black soils in the temperate climatic region of northeast China. The modeled and measured results indicated that the treatment without fertilizer/farmyard manure (FYM) addition led to a continuous decline in SOC during the study period and N and NPK fertilization were inadequate to maintain the SOC levels in the plow layer (upper 20 cm) unless FYM was added under the current conventional management associated with no above-ground crop residues returning into the soil. Soil organic carbon could follow the same path of decline if the same management practices are maintained. Model results indicate that returning above-ground crop residues to the soil from 2002 to 2022 would increase SOC by 26% for the treatment without fertilization addition, 40% for N treatment, 45% for NPK treatment, and 38% and 46% for N and NPK treatments with FYM addition, compared to the levels in the corresponding treatments in 2002. The simulation results suggest that the RothC model is a feasible tool to assess SOC trend under different management practices, and returning above-ground crop residues into the soil would lead to a remarkable increase in SOC of Black soils in the region.  相似文献   

16.
Soils in the Mediterranean area are very prone to erosion due to the loss of organic matter and the consequent lack of protective vegetation. In this experiment a Mediterranean degraded soil with a 15% slope was amended at a rate of 250 t ha–1 wet weight with sewage sludge and with a mixture of sewage sludge and barley straw (70% carbon from sewage sludge and 30% from the straw) in order to study their influence on soil structure recovery and hence the soilss resistance to erosion processes. Both types of organic amendment led to an improvement in several soil properties (physical, biological, and microbiological) as a result of the spontaneous growth plant covering that became evident three months after amendment. This vegetation remained throughout the two years of the experiment and prevented the water erosion processes that normally precede soil degradation. Amendment by sewage sludge alone reduced soil loss by 80% compared with the control soil, while the mixture that included both sewage sludge and barley straw reduced losses by 84%, both reducing runoff by 57%. The amended soils showed increases in the percentage of stable aggregates, the levels of the total and water-soluble C fractions, microbial biomass C, basal respiration, and the activity of the different enzymes involved in the biogeochemical cycles of C, N, and P. The results confirm the usefulness of sewage sludge as an organic amendment for recovering damaged soils.  相似文献   

17.
Phosphorus leaching in relation to soil type and soil phosphorus content   总被引:6,自引:0,他引:6  
Phosphorus losses from arable soils contribute to eutrophication of freshwater systems. In addition to losses through surface runoff, leaching has lately gained increased attention as an important P transport pathway. Increased P levels in arable soils have highlighted the necessity of establishing a relationship between actual P leaching and soil P levels. In this study, we measured leaching of total phosphorus (TP) and dissolved reactive phosphorus (DRP) during three years in undisturbed soil columns of five soils. The soils were collected at sites, established between 1957 and 1966, included in a long-term Swedish fertility experiment with four P fertilization levels at each site. Total P losses varied between 0.03 and 1.09 kg ha(-1) yr(-1), but no general correlation could be found between P concentrations and soil test P (Olsen P and phosphorus content in ammonium lactate extract [P-AL]) or P sorption indices (single-point phosphorus sorption index [PSI] and P sorption saturation) of the topsoil. Instead, water transport mechanism through the soil and subsoil properties seemed to be more important for P leaching than soil test P value in the topsoil. In one soil, where preferential flow was the dominant water transport pathway, water and P bypassed the high sorption capacity of the subsoil, resulting in high losses. On the other hand, P leaching from some soils was low in spite of high P applications due to high P sorption capacity in the subsoil. Therefore, site-specific factors may serve as indicators for P leaching losses, but a single, general indicator for all soil types was not found in this study.  相似文献   

18.
The effect of the addition of spent mushroom substrate (SMS) to the soil as an amendment on the distribution and/or fate of copper from a copper-based fungicide applied to a vineyard soil in La Rioja (N. Spain) was studied. The study was carried out on experimental plots amended or not with SMS at rates of 40 and 100 t ha(-1). The variation in total Cu content in the topsoil (0-10 cm) and in the soil profile (0-50 cm), and the distribution of Cu in different fractions of the topsoil were studied as a function of the dose of Cu added (5 and 10 kg ha(-1)) and of the time elapsed since application (0-12 months). In addition, the changes in the chemical properties (solid organic carbon (OC), dissolved organic carbon (DOC) and pH) of the soils were studied. A greater capacity for Cu retention by the amended soils than by the unamended one was observed only when the fungicide was applied at the high dose. No effect of the amendment rate was noted on this retention capacity. The metal content in the topsoil decreased over time in step with the disappearance of the OC in the amended soil due to its oxidation, mineralization and/or leaching. This decrease in total Cu content was possibly due to the formation of soluble Cu complexes with the DOC, which facilitated its transport through the soil. A re-distribution of Cu in the different soil fractions was also observed over time, mainly from the organic to the residual fraction. The results obtained indicate that the increase in OC due to the application of SMS at the rates used does not lead to any significant increase in the persistence of Cu in the soil over time. Of greater interest would be the assessment of the risk for groundwater quality, owing to possible leaching of the fungicide enhanced by the SMS when SMS and Cu-based fungicides are jointly applied to vineyard soils.  相似文献   

19.
Leaching to the ground water of metabolites from the herbicide metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5-one] has been measured in a Danish field experiment in concentrations exceeding the European Union threshold limit for pesticides at 0.1 microg/L. In the present work, degradation and sorption of metribuzin and the metabolites desamino-metribuzin (DA), diketo-metribuzin (DK), and desamino-diketo-metribuzin (DADK) were studied in a Danish sandy loam topsoil and subsoil from the field in question, using accelerated solvent extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Fast dissipation of metribuzin and the metabolites was observed in the topsoil, with 50% disappearance within 30 to 40 d. A two-compartment model described degradation of metribuzin and DA, whereas that of DADK could be described using first-order kinetics. Part of the dissipation was probably due to incorporation into soil organic matter. Degradation in subsoil occurred very slowly, with extrapolated half-lives of more than one year. Sorption in the topsoil followed the order DA > metribuzin > DK > DADK. Subsoil sorption was considerably lower, and was hardly measurable for metribuzin and DK. Abiotic degradation was considerably higher in the topsoil than the subsoil, especially concerning the de-amination step, indicating that organic matter may be related to the degradation process. The present results confirm observations of metribuzin and transformation product leaching made in the field experiment and demonstrate the need for knowledge on primary metabolites when assessing the risk for pesticide leaching.  相似文献   

20.
The effect of soil fumigation on N mineralization and nitrification needs to be better quantified to optimize N fertilizer advice and predict NO(-)(3) concentrations in crops and NO(-)(3) leaching risks. Seven soils representing a range in soil texture and organic matter contents were fumigated with Cyanamid DD 95 (a mixture of 1,3-dichloropropane and 1,3-dichloropropene). After removal of the fumigant, the fumigated soils and unfumigated controls were incubated for 20 wk and N mineralization and nitrification were monitored by destructive sampling. The average short-term N mineralization rates (k(s)) were significantly larger in the fumigated than in the unfumigated soils (P = 0.025), but the differences in k(s) between fumigated and unfumigated soils could not be related to soil properties. The average long-term N mineralization rates (k(l)) were slightly larger in the fumigated soils but the difference with the unfumigated soils was not significant. Again, the differences in k(l) values could not be related to soil properties. Nitrification was inhibited completely for at least 3 wk in all soils, and an effect on nitrification could be observed up to 17 wk in one soil. An S-shaped function was fitted to the nitrification data corrected for N mineralization, and both the rate constant (gamma) and the time at which maximum nitrification was reached (t(max)) were strongly correlated to soil pH. However, since no correlations were found between the effect of fumigation on N mineralization and soil properties, taking into account the effects of fumigation in fertilizer advice and in the prediction of NO(-)(3) leaching risks will need further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号