首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究含坡度隧道不同火源位置情况下车厢火灾烟气蔓延特性,采用CFD数值模拟方法,建立全尺寸地铁隧道与列车数值模型,研究车厢不同火源位置情况下火灾烟气纵向温度分布规律,探讨倾斜隧道车厢火源位置对烟气蔓延的影响。研究结果表明:当火灾烟气蔓延处于纵向通风惯性力与热浮力竞争作用控制阶段时,火源位于车厢上游方向时火灾烟气向车厢方向蔓延距离小于火源位于车厢下游方向情况,且随坡度增大,火源位于车厢上游方向烟气逆流长度不断减小,位于下游方向烟气逆流长度不断增大;当纵向通风风速达到2 m/s时,火源位于车厢上下游方向2种情况下,列车车厢方向均无烟气蔓延(逆流长度为0),此时火灾烟气蔓延将主要由纵向通风控制,隧道坡度无显著影响。  相似文献   

2.
为探究隧道横通道通风对隧道火灾烟气蔓延的影响规律,使用火灾动力学模拟软件FDS,对不同火源位置的横通道临界风速、主隧道温度分布以及烟气层高度进行研究。研究结果表明:在一定火源功率范围内,隧道横通道临界风速与火源功率的1/3次方成正比且火源距横通道越远,临界风速越小;当火源位于交叉口,横通道使用临界风速通风时,隧道内烟气温度明显降低,烟气迅速沉降到2 m以下;当火源距离交叉口10,20 m,横通道通风会加快火源下游烟气沉降,烟气沉降速度随横通道通风速率的增大而增大;当火源位于交叉口时,烟气沉降由横通道通风对烟气的降温作用和涡旋作用共同主导,当火源位于距离交叉口10,20 m时,烟气沉降主要由涡旋作用主导。  相似文献   

3.
采用火灾模型试验的研究方式,在高海拔特长铁路隧道——关角隧道(32.645 km)的斜井内进行火灾燃烧的全尺寸模型试验,测得不同火灾规模条件下隧道内温度和烟气分布,通过分析试验结果,得到高海拔隧道火灾的燃烧特性。研究结果表明:隧道拱顶处温度高于隧道中心线附近温度;火源附近温度最高,隧道内各位置温度随着距火源点距离增加而降低;纵向风速对隧道内烟气分布有重要影响,火源下游温度高于上游温度。结合试验的分析结果,就高海拔隧道火灾防灾救援设计提出建议。  相似文献   

4.
为确保非着火列车处于无烟区,长大隧道通常设置中间风井。然而随着城市空间规划日趋严格和跨江越海隧道越来越多,有时难以设置中间风井,点式排烟成为一种有效的替代方案。采用模型试验、数值计算和理论分析研究火源位置和风口尺寸对烟气控制的协同影响,结果表明:当风口长度小于等于0.10 m时,临界排烟量为靠近火源风口所需的排烟量;当风口长度大于0.10 m时,临界排烟量为远离火源风口所需的排烟量。火源逐渐偏离隧道中心时,风口长度的增加先有利于烟气控制,而后对烟气控制具有反作用,风口长度临界值为0.15 m,这是排烟惯性力与由热压引起的水平惯性力竞争的结果。此外,当风口长度小于0.15 m时,最不利火灾位置在C处;当风口长度大于0.15 m时,最不利火灾位置在D处。  相似文献   

5.
铁路特长隧道火灾应急救援问题研究   总被引:1,自引:1,他引:0  
以长27.53km的向莆铁路戴云山隧道为研究对象,提出特长隧道的火灾防灾救援总原则,并从其结构、设计、安全管理等方面论述,重点针对火灾防灾救援隧道"定点"设置问题,从设置定点的必要性、定点位置、长度、定点的引导通道、引导通道与主洞的联络横通道、定点处的渡线设置等几方面进行研究,确定了戴云山特长隧道定点设置方案以及定点内的固定消防设施、通风排烟、紧急警报、诱导避难等设备设置,对促进完善我国铁路特长隧道的火灾防灾救援和安全疏散规划管理等具有重要的实践意义。  相似文献   

6.
运用FDS软件对某半横向通风隧道火灾进行数值模拟,研究了火灾中火源与排烟口布置中烟气蔓延与排烟效果的影响。通过模拟6种不同火源与排烟口布置组合工况下隧道内烟气质量浓度、回流长度的变化规律,得出半横向通风排烟系统排烟效果规律。结果表明:火源位于隧道中间与右车道时,隧道内烟气质量浓度分布基本相同,表明火源位置横向分布对半横向通风系统排烟效果几乎没有影响,而排烟口分布对火灾烟气的蔓延影响较大,排烟口位于烟道板两侧时隧道内烟气质量浓度和回流长度都明显小于当其位于烟道板中部与右侧1/3处时,表明排烟口位于烟道板两侧时隧道排烟系统排烟效果较好,而排烟口位于烟道板中部与右侧1/3处时,两者排烟效果相同,这与文献的小尺寸试验研究结果相吻合。  相似文献   

7.
公路隧道发生火灾时易造成严重后果,纵向通风作为火场排烟降温的常用措施会改变燃烧的火源功率及相关火灾参数,影响公路隧道通风排烟的设计。利用按照弗洛德相似性原理自行设计建造的公路隧道火灾烟气输运特性研究试验台,研究了不同纵向通风风速下燃料火源功率、火焰形状和烟气层高度、距火源2 m人眼高度处一氧化碳体积分数、隧道横截面竖向温度及隧道纵向人眼高度处温度的变化规律。结果表明,所研究的火灾参数与纵向通风之间呈现非线性变化关系,火源功率在纵向通风作用下出现"双驼峰"现象,随风速增大,火源功率、火焰主体长度与亮度的变化规律相似,平均燃烧速度与一氧化碳体积分数、温度变化规律一致。  相似文献   

8.
为研究特长公路隧道火灾烟气沉降对人员疏散安全的影响,通过数值模拟方法,对0,1.0,1.5 m/s和临界风速值4种不同纵向通风风速下隧道火灾烟气沉降特征进行研究,并分析不同风速下烟气沉降对人员疏散的影响。研究结果表明:在无纵向风时,烟气沉降现象较为明显,烟气下沉造成的不均匀烟气温度、能见度分布,提前终止人员疏散的进行;随着纵向风速的增加,沉降现象仍存在,但沉降点后移,对人员疏散的影响减小;在1.5 m/s的纵向通风条件下,火源下游500 m范围内烟气基本不发生沉降且能维持分层,此时几乎不影响火灾下游人员疏散。在实际应用中,火灾初期可先以1.5 m/s的分层风速值进行通风,待下游人员疏散后,再施加临界风速加快烟气排出。研究结果可为特长公路隧道火灾防治和疏散救援提供参考。  相似文献   

9.
南京长江隧道火灾数值模拟   总被引:2,自引:1,他引:1  
以南京长江隧道为研究背景,运用火灾动力学模拟软件PYROSIM建立实体物理模型,并将空间划分为0.1 ×0.1 ×0.1m3的网格,对南京长江隧道火灾过程中的纵向通风进行模拟计算.定量分析了不同通风速率条件下火灾及烟气蔓延的规律,并得到隧道拱顶附近温度和烟气分布状况.模拟结果显示较小风速下烟气会产生回流,但随着风速增大烟气扩散速率随之加快,通过对3种不同风速的分析比较,选择3.0m/s纵向通风作为临界风速.进一步结合南京长江隧道现有的消防设施及应急救援系统,分析该临界风速下烟气温度对隧道结构和毒害气体对人员疏散救援的影响.结果显示此临界风速下隧道结构安全,且在疏散及时、救援有效的基础上,基本能保证人员疏散安全.  相似文献   

10.
为探究公路隧道不同受限程度火灾的适宜纵向通风风速,基于FDS模拟分析5种纵向通风速度下不同近壁距离火源顶棚下方烟气最高温度的分布特性、烟羽流倾角及烟气分层状况,提出合理纵向通风风速范围。研究结果表明:在隧道中心线上近火源下游,顶棚下方的最高温度沿纵向均呈指数衰减。不同贴壁距离和纵向通风风速下,均出现烟气分岔流动,随着贴壁距离减小羽流撞击处温升、火羽流偏移角显著增加。当风速小于1.6 m/s时,火源上游出现大量高温烟气回流;而当风速超过2.4 m/s时,分岔流动现象越明显,各偏移角变小,火源下游逐渐后移的烟气层严重失稳。因此,不同受限程度下火灾合理纵向风速为1.6~2.4 m/s。  相似文献   

11.
为了分析单洞双线铁路隧道火灾人员疏散安全性,基于单洞双线铁路隧道结构特点,分析不同火灾场景下人员疏散模式,利用火灾动力学模拟软件FDS,建立隧道火灾模型,分别研究火源位于车头和列车中部车厢内时可用安全疏散时间。利用Pathfinder软件,模拟人员折返路线与不同疏散口间距下人员疏散过程,分析必需安全疏散时间及其影响因素。研究结果表明:隧道发生火灾时,人员可用安全疏散时间与火源位置有关,必需安全疏散时间受疏散总人数、疏散口选择、疏散口间距等因素影响很大。在设计隧道疏散系统时,可通过减小疏散口间距和设置明显的疏散设施指示标识,减少人员疏散所用时间。  相似文献   

12.
为研究坡度隧道内列车阻滞后的火灾烟气蔓延行为,利用火灾动力学模拟软件(FDS)建立盾构铁路隧道火灾模型和CRH6高速列车阻滞模型,隧道坡度分别为0%、1.0%、1.5%、2.0%、2.5%、3.0%、3.5%和4.0%,通过分析隧道内烟气、温度、能见度等特征参数的变化规律,研究坡度隧道内高温烟气的受力情况,探讨坡度变化对火灾烟气蔓延的作用机理。结果表明,坡度隧道内发生火灾,随着烟气的蔓延,隧道内形成沿坡度方向的烟囱效应力,使得烟气在火源两侧呈不对称分布。火源下游区域的高温烟气在火风压和烟囱效应的协同作用下蔓延速度比上游更快,下游烟气层分界中性面与隧道轴线平行,上游烟气层分界中性面呈现水平状态。有坡度的铁路隧道内发生火灾,建议向火源下游方向施加纵向机械通风,人员向火源的上游方向疏散逃生更安全。  相似文献   

13.
研究了细水雾灭火系统对铁路隧道救援站火灾的扑救性能。试验在铁路隧道救援站全尺寸模拟隧道平台上开展,研究了隧道内不同纵向通风条件下,细水雾灭火系统作用前后隧道内的温度场、燃烧成分、火源热辐射参量的分布及变化。结果表明,细水雾灭火系统可有效抑制模拟隧道内火灾,验证了细水雾灭火系统在铁路隧道救援站内的可行性和有效性。  相似文献   

14.
隧道结构对火灾具有一定的影响,为了得到大曲率、变坡度复杂结构隧道火灾的烟气特性,依托深圳市某长大公路隧道建设工程,建立隧道模型,利用Star-CD/CCM^+数值模拟软件的烟火向导模块,对不同通风速度下的重型货车火灾进行了模拟研究,分析了不同通风速度下隧道内的纵向温度分布规律。结果表明:火灾热释放速率为30 M W时,无通风条件下,火灾烟气的最高温度位于隧道顶棚下方20 cm处,火源正上方的温度最大达到1190℃,隧道坡度的存在使得火源上游烟气逐渐向下游扩散,下游烟气温度在300 s后保持在500℃以上,该高温会对隧道结构造成一定的损伤;控制烟气逆流的临界风速为4.0 m/s,大于由Wu&Baker经验公式得到的值.表明隧道曲率对流场运动有一定的抑制作用;在该临界风速的作用下,烟气向火源下游扩散,扩散速度为6 m/S,烟气的最高温度降低至550℃,且位置向火源下游偏移6 m。建议火源下游行驶车辆的疏散逃生速度大于6m/s。  相似文献   

15.
为探究隧道强制通风风速对隧道火灾发展的影响,采用全尺寸实体试验方法,搭建一个长50. 0 m,宽5. 5 m,高8. 2 m的试验隧道,以木垛作为火源,采用一端强制通风的方式进行通风,研究隧道内起火时隧道内部温度变化、火源热释放速率、烟气成分含量等与强制通风风速的关系。结果表明:强制通风的风速对于隧道内起火源的燃烧情况有较大影响;风速的增加会降低火源对隧道上方温度的影响,同时也会降低隧道中的环境温度;强制通风风速的增大会明显增加火源的热释放速率,但是不会影响热释放速率的变化趋势;强制通风风速明显影响烟气中二氧化碳和一氧化碳的体积分数。  相似文献   

16.
城市地下交通联系隧道烟气控制探讨   总被引:1,自引:0,他引:1  
为了给城市地下交通联系隧道(UTLT)防排烟系统设计和人员应急救援提供参考依据,以重庆某UTLT二期工程一段主隧道为例,开展全尺寸火灾试验,探讨了横向排烟方案的烟控效果,并验证了Alpert顶棚最高温升衰减模型。结果表明,UTLT主隧道段采用横向排烟方案,当防烟分区长度为120 m时,采用的排烟量设计方法是合理的。当隧道为上坡时,最有利的烟气控制模式为同时开启着火分区及下游相邻分区的排烟系统和与排烟分区紧邻的上、下游两个分区的补风系统。隧道顶部烟气最高温升衰减规律为:下游距火源无量纲距离r/H0.57及上游部分,呈指数衰减;下游距火源无量纲距离r/H0.57部分,呈幂函数衰减,且衰减程度与排烟方案有关。  相似文献   

17.
结合某过江盾构隧道,基于三维流体动力学模拟仿真软件平台,建立三维仿真模型,研究火灾发生在隧道盾构段典型区段时,排烟开口在火源上下游不同的分布模式时烟气层的温度场分布。通过分析模拟结果可知:随着火源上游排烟开口逐步增加,火源上游烟气逆流长度和蔓延速度都相对稳定而后又逐步增长,火源下游的烟气蔓延长度先减小而后又基本趋于稳定,下游烟气沉降高度则有所升高;火源位置处正上方温度则随着上游排烟开口的个数逐步增加而逐渐升高。而从其他的排烟开口变化模式模拟结果可知:随着排烟开口面积或者开口间距的逐步增大,烟气蔓延的速度先增加而后又逐步减小,且开口间距为30m左右时烟气蔓延速度相对较慢;排烟开口宽高比对烟气蔓延影响较小。所获得的结论将有助于相关类型工程的设计和管理。  相似文献   

18.
为探索隧道与横通道交叉角对火灾烟气蔓延的影响机制,采用FDS数值模拟,研究横通道与隧道不同交叉角情况下火灾烟气温度、浓度、烟气层高度等的变化规律,建立开启火源下风向横通道时隧道内烟气最高温度修正公式,提出烟气纵向蔓延恢复长度的概念,并探讨其影响规律。 结果表明:隧道和横通道交叉角越小,隧道内同一位置烟气层高度越高,当交叉角由90°降低到30°时,烟气层高度最大增加32%;烟气纵向蔓延恢复长度与交叉角及通风速率呈正相关,而与火源功率几乎无关。研究结果对隧道通风排烟系统设计及相关标准的制定具有参考意义。  相似文献   

19.
通过数值模拟方法对车辆阻塞效应下的隧道火灾烟气温度及烟气逆流长度的变化规律进行了研究。主要分两种车辆阻塞效应讨论:1辆设定大小车辆障碍物阻塞;2辆设定大小车辆障碍物阻塞,且在同一车道。通过改变火源高度、纵向通风速度探究了车辆阻塞效应下隧道火灾烟气温度及烟气逆流长度的变化规律。结果表明:两种车辆阻塞效应下,随着火源高度的升高,隧道内顶棚烟气温度的变化规律相同:随火源高度的升高而增大。2辆车辆阻塞下的隧道顶棚烟气温度略低;两种车辆阻塞效应下,随着火源高度的升高,隧道内烟气逆流长度的变化规律不同。1辆车辆阻塞下烟气逆流长度随火源高度的升高而增大,而2辆车辆阻塞效应下烟气逆流长度随火源高度的升高而减小。  相似文献   

20.
在公路隧道火灾中,限制风速控制烟气逆流长度的同时可保持烟气稳定分层,有利于排烟和救援疏散。以南京市富贵山隧道为实例,利用FDS软件建立火源功率为3 MW,纵向风速为1. 4,1. 6,1. 8,2. 0m/s条件下的隧道模型,分析不同纵向风速下,隧道内顶棚下不同位置和人体特征高度2. 0 m平面处的温度分布规律。结果表明:风速为1. 4 m/s时烟气逆流长度超过30 m,其他风速时的逆流距离均在允许范围内;风速为1. 4,1. 6,1. 8,2. 0 m/s时均可保持烟气稳定分层,且在2. 0 m平面内,火源上游范围内出现的最高温度低于人体平均耐受温度。因此,提出此隧道的限制风速1. 6 m/s≤v 2. 2 m/s时,能够保证烟气层稳定分布,为人员安全疏散提供有利条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号