首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present the results of a study using a document-based evaluation method to better understand how residents in vulnerable coastal areas respond to risk communications about sea-level rise (SLR) and to determine whether communications localized for specific populations improve reception. Similar to climate change communication, SLR risk communication presents challenges involving complex science, uncertainty, invisibility, and politicization. To be comprehensible and persuasive, risk messages must be appropriately framed and visually compelling and must take into account risk perceptions and diverse viewpoints. Our approach involves assessing people's encounters with actual risk messages to determine their reactions and responses. Participants in this study had difficulty understanding information and expressed attitudes including fear, fatalism, skepticism, and loss. SLR risks were also perceived as both temporally and spatially distant, creating a challenge for communicators trying to convey a sense of urgency. We conclude by considering the implications of audience-focused research for SLR risk communication.  相似文献   

2.
Small tropical islands are widely recognized as having high exposure and vulnerability to climate change and other natural hazards. Ocean warming and acidification, changing storm patterns and intensity, and accelerated sea-level rise pose challenges that compound the intrinsic vulnerability of small, remote, island communities. Sustainable development requires robust guidance on the risks associated with natural hazards and climate change, including the potential for island coasts and reefs to keep pace with rising sea levels. Here we review these issues with special attention to their implications for climate-change vulnerability, adaptation, and disaster risk reduction in various island settings. We present new projections for 2010–2100 local sea-level rise (SLR) at 18 island sites, incorporating crustal motion and gravitational fingerprinting, for a range of Intergovernmental Panel on Climate Change global projections and a semi-empirical model. Projected 90-year SLR for the upper limit A1FI scenario with enhanced glacier drawdown ranges from 0.56 to 1.01 m for islands with a measured range of vertical motion from ?0.29 to +0.10 m. We classify tropical small islands into four broad groups comprising continental fragments, volcanic islands, near-atolls and atolls, and high carbonate islands including raised atolls. Because exposure to coastal forcing and hazards varies with island form, this provides a framework for consideration of vulnerability and adaptation strategies. Nevertheless, appropriate measures to adjust for climate change and to mitigate disaster risk depend on a place-based understanding of island landscapes and of processes operating in the coastal biophysical system of individual islands.  相似文献   

3.
Sound, cost efficient management strategies in developed coastal zones can be reinforced by a thorough understanding of risks associated with the combination of anthropogenic and natural drivers of change. A Regional Risk Assessment (RRA) methodology was developed for the assessment of the potential impacts of climate change in the Tunisian coastal zone of the Gulf of Gabes. It is based on the use of Multi-Criteria Decision Analysis techniques and Geographic Information Systems and is designed to support the development and prioritization of adaptation strategies. The RRA focuses on sea-level rise and storm surge flooding impacts for human and natural systems, i.e., beaches, wetlands, urban areas, agricultural areas, and terrestrial ecosystems. Results suggest that for both of the studied climate change impacts, i.e., sea-level rise and storm surge flooding, the area potentially exposed is limited to a narrow, low elevation region adjacent to the shoreline. However, the exposed areas showed a high relative risk score, obtained by the integration of exposure and susceptibility factors. Beaches have the lowest relative risk scores, while wetlands and terrestrial ecosystems have the higher relative risk scores. The final outputs of the analysis (i.e., exposure, susceptibility, and risk maps) can support end-users in the establishment of relative priorities for intervention and in the identification of suitable areas for human settlements, infrastructure, and economic activities, thus providing a basis for coastal zoning and land-use planning.  相似文献   

4.
Salt marshes persist within the intertidal zone when marsh elevation gains are commensurate with rates of sea-level rise (SLR). Monitoring changes in marsh elevation in concert with tidal water levels is therefore an effective way to determine if salt marshes are keeping pace with SLR over time. Surface elevation tables (SETs) are a common method for collecting precise data on marsh elevation change. Southern New England is a hot spot for SLR, but few SET elevation change datasets are available for the region. Our study synthesizes elevation change data collected from 1999 to 2015 from a network of SET stations throughout Rhode Island (RI). These data are compared to accretion and water level data from the same time period to estimate shallow subsidence and determine whether marshes are tracking SLR. Salt marsh elevation increased at a mean overall rate of 1.40 mm year?1 and ranged from ?0.33 to 3.36 mm year?1 at individual stations. Shallow subsidence dampened elevation gain in mid-Narragansett Bay marshes, but in other areas of coastal RI, subsurface processes may augment surface accretion. In all cases, marsh elevation gain was exceeded by the 5.26 mm year?1 rate of increase in sea levels during the study period. Our study provides the first SET elevation change data from RI and shows that most RI marshes are not keeping pace with short- or long-term rates of SLR. It also lends support to previous research that implicates SLR as a primary driver of recent changes to southern New England salt marshes.  相似文献   

5.
Fiji is expected to come under increasing pressure and risk from various threats resulting from climate change and sea-level rise (SLR). Fiji consists of 332 islands and thus has a predominant and large coastline. Viti Levu is the largest and most important of the islands, harboring Fiji’s capital city and most of the major towns concentrated around its coast. The objectives of this study were to evaluate the extent of possible sea-level rise using GIS, and to identify high-risk locations. Potential sea level rise was shown graphically as an output to determine where inundation or flooding would take place. This analysis allowed important areas facing risk to be highlighted for future action. Flooding/inundation can be classified into two kinds: ‘permanent inundation’, which is the result of sea-level rise with tide; and ‘temporary flooding’, also including occasional storm surge events. The inundated area was displayed under different projections and quantified. The results produced output maps showing the distribution of inundation/flooding around the island of Viti Levu as well as the extent of flooding. Six scenarios for sea-level rise were used (0.09, 0.18, 0.48, 0.50, 0.59, 0.88 m). Six scenarios for storm surge were used with return intervals of 1, 2, 5, 10, 25, 50 years. High risk and priority locations are identified as Fiji’s capital Suva, the major tourist center and arrival port of Nadi, and Fiji’s second city Lautoka. Future action, adaptation and response strategies in these identified locations must occur to reduce risk from climate change.  相似文献   

6.
Understanding global sea levels: past, present and future   总被引:4,自引:0,他引:4  
The coastal zone has changed profoundly during the 20th century and, as a result, society is becoming increasingly vulnerable to the impact of sea-level rise and variability. This demands improved understanding to facilitate appropriate planning to minimise potential losses. With this in mind, the World Climate Research Programme organised a workshop (held in June 2006) to document current understanding and to identify research and observations required to reduce current uncertainties associated with sea-level rise and variability. While sea levels have varied by over 120 m during glacial/interglacial cycles, there has been little net rise over the past several millennia until the 19th century and early 20th century, when geological and tide-gauge data indicate an increase in the rate of sea-level rise. Recent satellite-altimeter data and tide-gauge data have indicated that sea levels are now rising at over 3 mm year−1. The major contributions to 20th and 21st century sea-level rise are thought to be a result of ocean thermal expansion and the melting of glaciers and ice caps. Ice sheets are thought to have been a minor contributor to 20th century sea-level rise, but are potentially the largest contributor in the longer term. Sea levels are currently rising at the upper limit of the projections of the Third Assessment Report of the Intergovernmental Panel on Climate Change (TAR IPCC), and there is increasing concern of potentially large ice-sheet contributions during the 21st century and beyond, particularly if greenhouse gas emissions continue unabated. A suite of ongoing satellite and in situ observational activities need to be sustained and new activities supported. To the extent that we are able to sustain these observations, research programmes utilising the resulting data should be able to significantly improve our understanding and narrow projections of future sea-level rise and variability.  相似文献   

7.
Sea-level rise is a dramatic effect of climate change, with profound implications for societies around the world. In the past few years, a rush of literary non-fiction books have appeared that aim to explain the threat of rising seas to the public. This paper critiques how sea-level rise is framed in many of those books, on two accounts. First, anthropogenic sea-level change is frequently framed by accounts of natural variations of sea level in earth history, focusing on geological rather than societal processes. Second, single and sudden floods are often used to exemplify sea-level rise in ways that draw attention away from incremental environmental change in favour of fast-paced but de-contextualized events. The paper argues that both these frames de-politicize sea-level rise and may steer public understanding and discussion away from relevant social, cultural, and ethical considerations. As examples of climate reductionism, these depictions may obstruct rather than facilitate appropriate negotiations in response to predicted sea-level rise.  相似文献   

8.
Like many coastal ports around the world, Rhode Island’s Port of Providence in USA is at risk for climate-related natural hazards, such as catastrophic storm surges and significant sea level rise (0.5–2.0 m), over the next century. To combat such events, communities may eventually adopt so-called “transformational adaptation” strategies, like the construction of major new infrastructure, the reorganization of vulnerable systems, or changes in their locations. Such strategies can take decades or more to plan, design, find consensus around, fund, and ultimately implement. Before any meaningful decisions can be made, however, a shared understanding of risks, consequences, and options must be generated and allowed to percolate through the decision-making systems. This paper presents results from a pre-planning exercise that utilized “boundary objects” to engage the Port of Providence's stakeholders in an early dialogue about the transformational approaches to hazard–risk mitigation. The research team piloted the following three boundary objects as a means to initiate meaningful dialogue about long-term storm resilience challenges amongst key stakeholders of this exposed seaport system: (1) a storm scenario with local-scale visualizations, (2) three long-term transformational resilience concepts, and (3) a decision support tool called Wecision. The team tested these boundary objects in a workshop setting with 30 port business owners and policy makers, and found them to be an effective catalyst to generate a robust dialogue around a very challenging topic.  相似文献   

9.
Sea-level rise (SLR) poses a significant threat to many coastal areas and will likely have important impacts on socio-economic development in those regions. Located on the eastern coast in China, the megacity of Shanghai is particularly vulnerable to SLR and associated storm surge risks. Using the municipality of Shanghai as a case study, the possible impacts of flooding risks caused by SLR and associated storm surges on socio-economic development in the region were analysed by a Source–Pathway–Receptor–Consequence (SPRC) conceptual model. The projections of flooding risk in the study area were simulated by MIKE21 (a two-dimensional hydrodynamic model) for the three time periods of 2030, 2050 and 2100. An index system for vulnerability assessment was devised, in which flooding depth, density of population, GDP per capita, GDP per unit land, loss rate under flooding and fiscal revenue were selected as the key indicators. A quantitative spatial assessment method based on a GIS platform was established by quantifying each indicator, calculating and then grading the vulnerability index. The results showed that in the 2030 projection, 99.3 % of the areas show no vulnerability to SLR and associated storm surges under the present infrastructure. By 2050, the areas with low, moderate and high vulnerabilities change significantly to 5.3, 8.0 and 23.9 %, respectively, while by 2100, the equivalent figures are 12.9, 6.3 and 30.7 %. The application of the SPRC model, the methodology and the results from this study could assist with the objective and quantitative assessment of the socio-economic vulnerability of other similar coastal regions undergoing the impacts of SLR and associated storm surges. Based on the results of this study, mitigation and adaptation measures should be considered, which include the controlling the rate of land subsidence, the reinforcement of coastal defence systems and the introduction of adaptation in long-term urban planning.  相似文献   

10.
Adaptation to climate-change impacts requires understanding of where impacts are to be expected and what their magnitude may be. Adaptation funds are only a limited resource for helping affected parties in coping with climate-change impacts. The application of suitable methods helps to determine the recipients of adaptation aid. A quantification of impacts based on different impact analyses can aid in taking on various perspectives on the same problem in order to identify the appropriate perspective for the given decision-making context or for identifying impact patterns. Once executed, this prioritizes adaptation needs and finding a suitable allocation rule, given the policy makers perception of the decision-making context. The study introduces a set of methods of spatially explicit, sub-national (province level), and country-wide impact analyses regarding inundation impacts on agricultural areas for four important food crops in Indonesia. These methods are applied to a 1 and 2 m sea-level rise scenario and include a novel approach for impact analyses, data envelopment analysis, which is not widely used in environmental studies as of yet. Based on the given case study, the paper demonstrates the applicability of these methods and identifies impact patterns.  相似文献   

11.
River-based cage aquaculture in Northern Thailand involves dealing with a number of climate- and weather-related risks. The purpose of this study was to improve understanding of how farmers make investment decisions in their fish farms when faced with risks from floods that are imperfectly known, and which may be changing. A role-playing simulation game was created to capture some of the key features of the decision-making context and explored with farmers in the field. In-depth interviews were conducted post-game to reflect on strategies used in the game as compared to in practice. As hypothesized, more frequent or larger impact floods reduced cumulative profits. Farmers reduced their stocking densities when playing in games with high likelihood of floods, but did not do so in games with large impacts when a flood occurred. Contrary to initial expectations, farmers were less likely to learn from experience—choose the optimal density and thus improve score within a game—when floods were common or had large impacts. Farmers learnt most when risks were decreasing and least when they were increasing. Providing information about likelihoods prior to a game had no impact on performance or decisions. The methods and findings of this study underline the importance of understanding decision-making behaviour around risks for climate risk management. The novel combination of experimental, role-playing, and qualitative methods revealed limitations in common assumptions about the ease of learning about risks from previous experiences. The findings also suggest that decision-support systems for aquaculture need to take into account how recent experiences, understanding of information, and other factors influence risk perceptions and decisions.  相似文献   

12.
Recent concerns about potential climate-change effects on coastal systems require the application of vulnerability assessment tools in order to define suitable adaptation strategies and improve coastal zone management effectiveness. In fact, while various research efforts were devoted to evaluate coastal vulnerability to climate change on a national to global level, fewer applications were carried out so far to develop more comprehensive and site-specific vulnerability assessments suitable to plan possible adaptation measures at the regional scale. In this respect, specific indicators are needed to address climate-change-related issues for coastal zones and to identify vulnerable areas at the regional level. Two sets of coastal vulnerability indicators were selected, one for regional and one for global studies, respectively, concerning the same features of coastal systems, including topography and slope, geomorphological characteristics, presence and distribution of wetlands and vegetation cover, density of coastal population and number of coastal inhabitants. The proposed set of indicators for the regional scale was chosen taking into account the availability of environmental and territorial data for the whole coastal area of the Veneto region and was based on site-specific datasets characterized by a spatial resolution appropriate for a regional analysis. Moreover, a GIS-based segmentation procedure was applied to divide the coastline into linear segments, homogeneous in terms of vulnerability to climate change and sea-level rise at the regional scale. This approach allowed to divide the Veneto shoreline into 140 segments with an average length of about 1 km, while the global scale approach identified four coastal segments with an average length of about 66 km. The performed comparison indicated how the more detailed approach adopted at the regional scale is essential to understand and manage the complexities of the specific study area. In fact, the 25-m DEM employed at the regional scale provided a more accurate differentiation of the coastal area's elevation and thus of coastal susceptibility to the inundation risks, compared to the 1-km DEM used at the global level. Moreover, at the regional level the use of a 1:20,000 geomorphological map allowed to differentiate the unique landform class detected at the global level (e.g., fluvial plain) in a variety of more detailed coastal typologies (e.g., open coast eroding sandy shores backed by bedrock) characterized by a different sensitivity to climate change and sea-level rise. Accordingly, the information provided by regional indicators can support decision-makers in improving the management of coastal resources by considering the potential impacts of climate change and in the definition of appropriate actions to reduce inundation risks, to avoid the potential loss of valuable wetlands and vegetation and to plan the nourishment of sandy beaches subject to erosion processes.  相似文献   

13.
The quantitative analysis of hurricane impacts on coastal development in the Caribbean is surprisingly infrequent and many tools to assess physical vulnerability to sea level rise (SLR) are insufficient to evaluate risk in coastal areas exposed to wave attack during extreme events. This paper proposes a practical methodology to quantify coastal hazards and evaluate SLR impact scenarios in coastal areas, providing quantitative input for coastal vulnerability analysis. We illustrate the implementation of the proposed methodology with results from a site-specific analysis. We quantify how storm wave impacts penetrate farther inland and reach higher elevations for increasing SLR conditions. We also show that the increase in elevation of storm wave impacts is more than the nominal increase in mean sea level, and that elevation increase may be on the order of up to twice the nominal SLR. By developing design parameters for multiple scenarios, as opposed to the determination of a single SLR value for design established by consensus, this approach generates information that we argue encourages resilient design and embedding future adaptation in coastal design. We discuss how government planners and regulators, as well as real estate developers, lenders, and investors, can improve coastal planning and resilient design of coastal projects by using this approach.  相似文献   

14.
Whilst future air temperature thresholds have become the centrepiece of international climate negotiations, even the most ambitious target of 1.5 °C will result in significant sea-level rise and associated impacts on human populations globally. Of additional concern in Arctic regions is declining sea ice and warming permafrost which can increasingly expose coastal areas to erosion particularly through exposure to wave action due to storm activity. Regional variability over the past two decades provides insight into the coastal and human responses to anticipated future rates of sea-level rise under 1.5 °C scenarios. Exceeding 1.5 °C will generate sea-level rise scenarios beyond that currently experienced and substantially increase the proportion of the global population impacted. Despite these dire challenges, there has been limited analysis of how, where and why communities will relocate inland in response. Here, we present case studies of local responses to coastal erosion driven by sea-level rise and warming in remote indigenous communities of the Solomon Islands and Alaska, USA, respectively. In both the Solomon Islands and the USA, there is no national government agency that has the organisational and technical capacity and resources to facilitate a community-wide relocation. In the Solomon Islands, communities have been able to draw on flexible land tenure regimes to rapidly adapt to coastal erosion through relocations. These relocations have led to ad hoc fragmentation of communities into smaller hamlets. Government-supported relocation initiatives in both countries have been less successful in the short term due to limitations of land tenure, lacking relocation governance framework, financial support and complex planning processes. These experiences from the Solomon Islands and USA demonstrate the urgent need to create a relocation governance framework that protects people’s human rights.  相似文献   

15.
Sea-level rise is a major threat facing the Coral Triangle countries in the twenty-first century. Assessments of vulnerability and adaptation that consider the interactions among natural and social systems are critical to identifying habitats and communities vulnerable to sea-level rise and for supporting the development of adaptation strategies. This paper presents such an assessment using the DIVA model and identifies vulnerable coastal regions and habitats in Coral Triangle countries at national and sub-national levels (administrative provinces). The following four main sea-level rise impacts are assessed in ecological, social and economic terms over the twenty-first century: (1) coastal wetland change, (2) increased coastal flooding, (3) increased coastal erosion, and (4) saltwater intrusion into estuaries and deltas. The results suggest that sea-level rise will significantly affect coastal regions and habitats in the Coral Triangle countries, but the impacts will differ across the region in terms of people flooded annually, coastal wetland change and loss, and damage and adaptation costs. Indonesia is projected to be most affected by coastal flooding, with nearly 5.9 million people expected to experience flooding annually in 2100 assuming no adaptation. However, if adaptation is considered, this number is significantly reduced. By the end of the century, coastal wetland loss is most significant for Indonesia in terms of total area lost, but the Solomon Islands are projected to experience the greatest relative loss of coastal wetlands. Damage costs associated with sea-level rise are highest in the Philippines (US $6.5 billion/year) and lowest in the Solomon Islands (US $70,000/year). Adaptation is estimated to reduce damage costs significantly, in particular for the Philippines, Indonesia, and Malaysia (between 68 and 99%). These results suggest that the impacts of sea-level rise are likely to be widespread in the region and adaptation measures must be broadly applied.  相似文献   

16.
There is a growing consensus among researchers that social aspects and the involvement of local communities play a critical role in public decision-making processes in the coastal zone. Social capital is a parameter which has recently gained significant attention in this context. It is regarded that it has a significant influence on the adaptation capacity of local communities to climate change impacts. The present paper aims to contribute to this field through an examination of citizens’ perceptions of three coastal zone management policies (hold the line, managed realignment and no active intervention) along with the influence of social capital on the level of social acceptability for these proposed policy options. For this purpose, a quantitative empirical study was conducted for the first time in five coastal areas of Greece that are regarded as high flood-risk areas due to sea-level rise. Respondents demonstrated that they are willing to accept changes in their social and natural environments in order to confront sea-level rise and are more positive towards the managed realignment option, as long as this is accompanied by financial compensation for those whose properties will be affected. Regarding the influence of social capital, through the results of an ordinal regression, it was observed that institutional and social trust influence positively citizens’ level of agreement for the managed realignment policy. Furthermore, respondents who believe that a sense of reciprocity exists in their community are also more willing to accept active intervention policies.  相似文献   

17.
海平面上升及其带来的资源与环境问题是目前全球环境变化研究的核心问题之一。海平面上升分全球性理论海平面上升及区域相对海平面上升两类,前者与温室效应导致的海水表层受热膨胀、大陆高山及格陵兰地区冰川融化有关,后者更多起因于局部自然或人为造成的地面沉降及其他相关因素。研究海平面上升机理、过程,制定切实预防、预测措施,应引起广泛的社会关注。  相似文献   

18.
An increasing demand for the development and implementation of low carbon energy systems has furthered the need to understand the factors that influence a community's support for or opposition to local energy developments. Carbon dioxide capture and geological storage (CCS) is one such energy system where it is widely acknowledged that public perceptions and acceptance of CCS technologies are critical to their implementation. CCS refers to the capture of carbon dioxide emissions from industrial sources and the long-term storage of these emissions in stable underground reservoirs. This case study examines how place attachment and community networks factored into resident's perceptions of a proposed CCS project that was ultimately canceled due to local opposition. Participants were concerned about preserving shared places, spaces, and interactions that were valued by community members. Results demonstrate the need to ascertain how locally affected populations view CCS or other energy developments, especially with regard to their ideas about community, sense of place (ties to area and local relationships), and how they communicate about those factors. Such factors are important given the initiative to develop low carbon energy systems in rural areas.  相似文献   

19.

Even if climate change mitigation is successful, sea levels will keep rising. With subsidence, relative sea-level rise represents a long-term threat to low-lying deltas. A large part of coastal Bangladesh was analysed using the Delta Dynamic Integrated Emulator Model to determine changes in flood depth, area and population affected given sea-level rise equivalent to global mean temperature rises of 1.5, 2.0 and 3.0 °C with respect to pre-industrial for three ensemble members of a modified A1B scenario. Annual climate variability today (with approximately 1.0 °C of warming) is potentially more important, in terms of coastal impacts, than an additional 0.5 °C warming. In coastal Bangladesh, the average depth of flooding in protected areas is projected to double to between 0.07 and 0.09 m when temperatures are projected at 3.0 °C compared with 1.5 °C. In unprotected areas, the depth of flooding is projected to increase by approximately 50% to 0.21–0.27 m, whilst the average area inundated increases 2.5 times (from 5 to 13% of the region) in the same temperature frame. The greatest area of land flooded is projected in the central and north-east regions. In contrast, lower flood depths, less land area flooded and fewer people are projected in the poldered west of the region. Over multi-centennial timescales, climate change mitigation and controlled sedimentation to maintain relative delta height are key to a delta’s survival. With slow rates of sea-level rise, adaptation remains possible, but further support is required. Monitoring of sea-level rise and subsidence in deltas is recommended, together with improved datasets of elevation.

  相似文献   

20.
Regional Environmental Change - This article proposes an innovative approach to assess the benefits of adapting to sea level rise (SLR) in a coastal area on a regional scale. The valuation...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号