首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
《绿色视野》2010,(3):29-32
<正>我国是全球生态系统类型最多的国家,也是世界上唯一囊括全部陆地生态系统类型的国度。然而,我们这些生态系统都处在不同程度的退化过程中。中国生态系统退化的现实异常严峻,如果控制不住,将会影响  相似文献   

2.
陆地生态系统碳收支/碳平衡研究进展   总被引:2,自引:0,他引:2  
碳循环和全球变暖有着极其密切的关系,碳收支/碳平衡问题已经成为碳循环和全球变化研究的前沿与热点,其中陆地生态系统碳收支/碳平衡又是全球碳循环和影响全球变暖中最复杂、受人类活动影响最大的部分.阐述了全球陆地碳库的大小及碳收支/碳平衡状态,探讨了主要陆地生态系统碳收支/碳平衡过程,分析了当前影响陆地生态系统碳收支/碳平衡因素,并对当前陆地生态系统碳收支/碳平衡研究方向提出了自己的看法.  相似文献   

3.
李敏霞  牛冬杰 《四川环境》2011,30(1):133-138
湿地作为一种特珠的生态系统,在固碳方面也起到了举足轻重的作用.本文首先探讨了湿地生态系统的碳循环和碳平衡过程,然后介绍了当前国内外普遍运用的几种碳汇计童方法,包括生物量法、静态箱法、动态箱法、GIS法、同位素法、涡旋相关法、涡度协方差法等,并对这些方法的优缺点进行了分析,对未来湿地碳平衡及碳核算方法的研究进行了展望.  相似文献   

4.
针对二氧化碳驱油封存技术(CO2-EOR)国内尚无通用的环境监测方法的情况下,文章提出了土壤气CO2的通量以及13C监测的重要性,并结合胜利油田CO2-EOR项目开展的环境监测工作,提出了几点监测过程值得注意的问题:为识别CO2泄漏风险,注气前的环境监测数据至关重要;监测区域除了涵盖注气井和采油井,必须考虑注气过程中CO2地下运移的范围,但目前尚无明确的方法计算延伸的距离;在数据分析和挖掘过程中,由于参数的表征方式不同,借助统计学分析软件的类比功能实现监测方法之间的相互印证.  相似文献   

5.
森林资源可持续发展问题及对策   总被引:2,自引:0,他引:2  
森林是陆地生态系统的主体,是维持生态平衡和改善生态环境的重要保障,是国民经济和社会发展的物质基础,在应对全球气候变化中发挥着不可替代的作用,并且有着巨大的经济、社会和生态效益。通过分析我国的森林资源结构、质量和区域分布,发现我国森林资源保护和发展工作中面临着诸如森林资源总量不足、质量偏低、破坏严重、火灾频繁等问题,提出了森林资源可持续发展要以科学发展观为指导,围绕建设生态文明,提高森林质量,增强森林功能。  相似文献   

6.
针对地面监测点位过少,不能满足大区域范围土壤酸沉降通量研究需求的现状,建立了基于OMI痕量气体遥感数据和地面观测数据的区域酸沉降通量估算方法,并对青岛市硫元素和氮元素沉降通量进行了估算。结果表明,新方法能够实现大区域范围土壤酸沉降通量的估算。与传统估算方法相比,新方法采用大气痕量气体遥感监测数据,是对酸沉降通量常规研究手段的有益补充。  相似文献   

7.
目前,我国大部分流域均存在不同程度的水污染问题,定量河流污染物通量,掌握污染物时空分布特征,有助于深入开展污染物总量控制工作,是污染治理的重要前提和决策依据。由于新疆河流的常规监测资料中,大部分是水文监测资料,缺乏长序列的水质监测资料,所以污染物通量估算存在不确定性,为了提供精度较高的通量估算方法,本文以河流泥沙通量估算为例,采用1980年新疆北疆多条河流流量和含沙量资料,分析泥沙通量的年内变化及其影响因素,探讨常规通量估算方法与基于负荷历时曲线的通量估算方法的不确定性,适用性,得出基于负荷历时曲线的通量估算方法能较准确估算新疆河流泥沙通量,可为新疆河流泥沙通量的研究提供新思路,为流域污染物通量的计算提供方法依据。  相似文献   

8.
本文通过在线实时监测研究了三醋酸纤维(CTA)正渗透膜的活性层在朝向料液(AL-FS)和汲取液(AL-DS)两种模式下的正渗透水通量、反向溶质通量、特性反向溶质通量等因素及其变化规律。在实验室条件下模拟了三醋酸纤维膜(CTA)对于不同浓度苦咸水的处理,当苦咸水浓度为2000ppmNaCl、5000ppmNaCl、8000ppmNaCl时,CTA膜活性层朝向对脱盐率几乎没有影响,AL-FS模式和AL-DS模式的脱盐率分别为96.49%和96.13%、97.40%和96.38%、98.04%和96.81%。研究结果对于进一步开发CTA正渗透系统和实用化具有重要意义。  相似文献   

9.
<正>1896年:诺贝尔奖获得者Svante Arrhenius预言化石燃料燃烧会使大气中的CO2增加,从而导致全球变暖,大气中的CO2增加一倍,可能导致全球平均气温上升5℃。1988年:联合国成立了政府间气候变化专门委员会(IPCC),对气候变化进行科学评估。  相似文献   

10.
在全球气候变化问题不断升温的大背景下,低碳经济的概念频繁见诸报端。节能减排是内蒙古发展低碳经济的必由之路。优化能源结构,合理布局区域经济,是内蒙古实现节能减排,并保持经济快速发展的重要内容。因而,研究内蒙古能源结构调整引起的CO2减排成本变化非常有意义。  相似文献   

11.
Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.  相似文献   

12.
ABSTRACT: We review published analyses of the effects of climate change on goods and services provided by freshwater ecosystems in the United States. Climate-induced changes must be assessed in the context of massive anthropogenic changes in water quantity and quality resulting from altered patterns of land use, water withdrawal, and species invasions; these may dwarf or exacerbate climate-induced changes. Water to meet instream needs is competing with other uses of water, and that competition is likely to be increased by climate change. We review recent predictions of the impacts of climate change on aquatic ecosystems in eight regions of North America. Impacts include warmer temperatures that alter lake mixing regimes and availability of fish habitat; changed magnitude and seasonality of runoff regimes that alter nutrient loading and limit habitat availability at low flow; and loss of prairie pothole wetlands that reduces waterfowl populations. Many of the predicted changes in aquatic ecosystems are a consequence of climatic effects on terrestrial ecosystems; shifts in riparian vegetation and hydrology are particularly critical. We review models that could be used to explore potential effects of climate change on freshwater ecosystems; these include models of instream flow, bioenergetics models, nutrient spiraling models, and models relating riverine food webs to hydrologic regime. We discuss potential ecological risks, benefits, and costs of climate change and identify information needs and model improvements that are required to improve our ability to predict and identify climate change impacts and to evaluate management options.  相似文献   

13.
Influence of Geoengineered Climate on the Terrestrial Biosphere   总被引:3,自引:0,他引:3  
Various geoengineering schemes have been proposed to counteract anthropogenically induced climate change. In a previous study, it was suggested that a 1.8% reduction in solar radiation incident on the Earths surface could noticeably reduce regional and seasonal climate change from increased atmospheric carbon dioxide (CO2). However, the response of the terrestrial biosphere to reduced solar radiation in a CO2-rich climate was not investigated. In this study, we hypothesized that a reduction in incident solar radiation in a Doubled CO2 atmosphere will diminish the net primary productivity (NPP) of terrestrial ecosystems, potentially accelerating the accumulation of CO2 in the atmosphere. We used a dynamic global ecosystem model, the Integrated Biosphere Simulator (IBIS), to investigate this hypothesis in an unperturbed climatology. While this simplified modeling framework effectively separated the influence of CO2 and sunlight on the terrestrial biosphere, it did not consider the complex feedbacks within the Earths climate system. Our analysis indicated that compared to a Doubled CO2 scenario, reduction in incident solar radiation by 1.8% in a double CO2 world will have negligible impact on the NPP of terrestrial ecosystems. There were, however, spatial variations in the response of NPP-engineered solar radiation. While productivity decreased by less than 2% in the tropical and boreal forests as hypothesized, it increased by a similar percentage in the temperate deciduous forests and grasslands. This increase in productivity was attributed to a 1% reduction in evapotranspiration in the Geoengineered scenario relative to the Doubled CO2 scenario. Our initial hypothesis was rejected because of unanticipated effects of engineered solar radiation on the hydrologic cycle. However, any geoengineering approaches that reduce incident solar radiation need to be thoroughly analyzed in view of the implications on ecosystem productivity and the hydrologic cycle.  相似文献   

14.
Summary The balance of evidence suggests a perceptible human influence on global ecosystems. Human activities are affecting the global ecosystem, some directly and some indirectly. If researchers could clarify the extent to which specific human activities affect global ecosystems, they would be in a much better position to suggest strategies for mitigating against the worst disturbances. Sophisticated statistical analysis can help in interpreting the influence of specific human activities on global ecosystems more carefully. This study aims at identifying significant or influential human activities (i.e. factors) on CO2 emissions using statistical analyses. The study was conducted for two cases: (i) developed countries and (ii) developing countries. In developed countries, this study identified three influential human activities for CO2 emissions: (i) combustion of fossil fuels, (ii) population pressure on natural and terrestrial ecosystems, and (iii) land use change. In developing countries, the significant human activities causing an upsurge of CO2 emissions are: (i) combustion of fossil fuels, (ii) terrestrial ecosystem strength and (iii) land use change. Among these factors, combustion of fossil fuels is the most influential human activity for CO2 emissions both in developed and developing countries. Regression analysis based on the factor scores indicated that combustion of fossil fuels has significant positive influence on CO2 emissions in both developed and developing countries. Terrestrial ecosystem strength has a significant negative influence on CO2 emissions. Land use change and CO2 emissions are positively related, although regression analysis showed that the influence of land use change on CO2 emissions was still insignificant. It is anticipated, from the findings of this study, that CO2 emissions can be reduced by reducing fossil-fuel consumption and switching to alternative energy sources, preserving exiting forests, planting trees on abandoned and degraded forest lands, or by planting trees by social/agroforestry on agricultural lands.  相似文献   

15.
Among greenhouse gases, carbon dioxide (CO(2)) is one of the most significant contributors to regional and global warming as well as climatic change. A field study was conducted to (i) determine the effect of soil characteristics resulting from changes in soil management practices on CO(2) flux from the soil surface to the atmosphere in transitional land from perennial forages to annual crops, and (ii) develop empirical relationships that predict CO(2) flux from soil temperature and soil water content. The CO(2) flux, soil temperature (T(s)), volumetric soil water content (theta(v)) were measured every 1-2 weeks in no-till (NT) and conventional till (CT) malt barley and undisturbed soil grass-alfalfa (UGA) systems in a Lihen sandy loam soil (sandy, mixed, frigid Entic Haplustoll) under irrigated and non-irrigated conditions in western North Dakota. Soil air-filled porosity (epsilon) was calculated from total soil porosity and theta(v) measurements. Significant differences in CO(2) fluxes between land management practices (irrigation and tillage) were observed on some measurement dates. Higher CO(2) fluxes were detected in CT plots than in NT and UGA treatments immediately after rainfall or irrigation. Soil CO(2) fluxes increased with increasing soil moisture (R(2)=0.15, P<0.01) while an exponential relationship was found between CO(2) emission and T(s) (R(2)=0.59). Using a stepwise regression analysis procedure, a significant multiple regression equation was developed between CO(2) flux and theta(v), T(s) (CO(2) [Formula: see text] ; R(2)=0.68, P0.01). Not surprisingly, soil temperature was a driving factor in the equation, which accounted for approximately 59% in variation of CO(2) flux. It was concluded that less intensive tillage, such as no-till or strip tillage, along with careful irrigation management will reduce soil CO(2) evolution from land being converted from perennial forages to annual crops.  相似文献   

16.
ABSTRACT: Data from long‐term ecosystem monitoring and research stations in North America and results of simulations made with interpretive models indicate that changes in climate (precipitation and temperature) can have a significant effect on the quality of surface waters. Changes in water quality during storms, snowmelt, and periods of elevated air temperature or drought can cause conditions that exceed thresholds of ecosystem tolerance and, thus, lead to water‐quality degradation. If warming and changes in available moisture occur, water‐quality changes will likely first occur during episodes of climate‐induced stress, and in ecosystems where the factors controlling water quality are sensitive to climate variability. Continued climate stress would increase the frequency with which ecosystem thresholds are exceeded and thus lead to chronic water‐quality changes. Management strategies in a warmer climate will therefore be needed that are based on local ecological thresholds rather than annual median condition. Changes in land use alter biological, physical, and chemical processes in watersheds and thus significantly alter the quality of adjacent surface waters; these direct human‐caused changes complicate the interpretation of water‐quality changes resulting from changes in climate, and can be both mitigated and exacerbated by climate change. A rigorous strategy for integrated, long‐term monitoring of the ecological and human factors that control water quality is necessary to differentiate between actual and perceived climate effects, and to track the effectiveness of our environmental policies.  相似文献   

17.
Discharge of heated waste water may affect the entire aquatic ecosystem–the interrelated biological, chemical, physical system–and, if the temperature change is large, may destroy the capacity of the ecosystem to serve a variety of beneficial purposes. However, it is possible to discharge heated waste water in carefully controlled amounts without seriously degrading the aquatic ecosystem. There are four basic alternatives which are open to us with regard to the heated waste water problem which we may choose singly or in various combinations: (1) Placing all heated, waste water in streams, lakes, and oceans without regard to the effects. Thus considering the environmental damage as a necessary consequence of our increased power demand. (2) Using, but not abusing, existing ecosystems. This means regulating the heated waste water discharge to fit the receiving capacity of the ecosystem. (3) Finding alternative ways to dissipate or beneficially use waste heat. (4) Modifying ecosystems to fit the new temperature conditions. We are all dependent upon a life-support system which is partly industrial and partly ecological. Unfortunately, we have reached a stage of development where the non-expandable, ecological portion of our life-support system is endangered by the expanding industrial portion. Optimal function and full beneficial use of both portions of our life-support system will only be possible if a variety of disciplines and diverse points of view can cooperate and work together effectively. Since wastes in amounts that are acceptable taken one at a time may be lethal collectively, environmental management should be on a regional basis.  相似文献   

18.
Abstract:  It is critical that evapotranspiration (ET) be quantified accurately so that scientists can evaluate the effects of land management and global change on water availability, streamflow, nutrient and sediment loading, and ecosystem productivity in watersheds. The objective of this study was to derive a new semi‐empirical ET modeled using a dimension analysis method that could be used to estimate forest ET effectively at multiple temporal scales. The model developed describes ET as a function of water availability for evaporation and transpiration, potential ET demand, air humidity, and land surface characteristics. The model was tested with long‐term hydrometeorological data from five research sites with distinct forest hydrology in the United States and China. Averaged simulation error for daily ET was within 0.5 mm/day. The annual ET at each of the five study sites were within 7% of measured values. Results suggest that the model can accurately capture the temporal dynamics of ET in forest ecosystems at daily, monthly, and annual scales. The model is climate‐driven and is sensitive to topography and vegetation characteristics and thus has potential to be used to examine the compounding hydrologic responses to land cover and climate changes at multiple temporal scales.  相似文献   

19.
The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号