首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sorption and desorption of Cu and Cd by two species of brown macroalgae and five species of microalgae were studied. The two brown macroalgae, Laminaria japonica and Sargassum kjellmanianum, were found to have high capacities at pHs between 4.0 and 5.0 while for microalgae, optimum pH lay at 6.7. The presence of other cations in solution was found to reduce the sorption of the target cation, suggesting a competition for sorption sites on organisms. Sorption isotherms obeyed the Freundlich equation, suggesting involvement of a multiplicity of mechanisms and sorption sites. For the microalgae tested, Spirulina platensis had the highest capacity for Cd, followed by Nannochloropsis oculata, Phaeodactylum tricornutum, Platymonas cordifolia and Chaetoceros minutissimus. The reversibility of metal sorption by macroalgae was examined and the results show that both HCl and EDTA solutions were very effective in desorbing sorbed metal ions from macroalgae, with up to 99.5% of metals being recovered. The regenerated biomass showed undiminished sorption performance for the two metals studied, suggesting the potential of such material for use in water and wastewater treatment.  相似文献   

2.
Isocyanatocyclohexane and isothiocyanatocyclohexane are becoming relevant compounds in urban and industrial air, as they are used in important amounts in automobile industry and building insulation, as well as in the manufacture of foams, rubber, paints and varnishes. Glass multi-sorbent tubes (Carbotrap, Carbopack, Carboxen) were connected to LCMA-UPC pump samplers for the retention of iso- and isothiocyanatocyclohexanes. The analysis was performed by automatic thermal desorption (ATD) coupled with capillary gas chromatography (GC)/mass spectrometry detector (MSD). TD-GC/MS was chosen as analytical method due to its versatility and the possibility of analysis of a wide range of volatility and polarity VOC in air samples. The method was satisfactory sensitive, selective and reproducible for the studied compounds. The concentrations of iso- and isothioisocyanatocyclohexanes were evaluated in different urban, residential and industrial locations from extensive VOC air quality and odour episode studies in several cities in the Northeastern edge of Spain. Around 200–300 VOC were determined qualitatively in each sample. Higher values of iso- and isothiocyanatocyclohexane were found in industrial areas than in urban or residential locations. The concentrations ranged between n.d.−246 and n.d.−29 μg m−3 for isocyanatocyclohexane and isothiocyanatocyclohexane, respectively, for industrial areas. On the other hand, urban and residential locations showed concentrations ranging between n.d.−164 and n.d.−29 μg m−3 for isocyanatocyclohexane and isothiocyanatocyclohexane, respectively. The site location (urban or industrial), the kind and nearness of possible iso- and isothiocyanatocyclohexane emission activities (industrial or building construction) and the changes of wind regimes throughout the year have been found the most important factors influencing the concentrations of these compounds in the different places.  相似文献   

3.
PCDD and PCDF were found in urban air particulates from St. Louis and Washington, D.C., and in sediments from the Great Lakes and Siskiwit Lake, Isle Royale. The similarity between the PCDD and PCDF found in air particulates and sediment samples and the presence of PCDD and PCDF in sediment from Siskiwit Lake (a location which can receive only atmospheric inputs) suggest that these compounds are emitted to the atmosphere from combustion sources. The historical input of PCDD and PCDF to dated sediment cores shows a strong increase since 1940, and this suggests that the incineration of chlorinated organic compounds is an important source of PCDD and PCDF to the environment.  相似文献   

4.
Polychlorinated-dibenzo-p-dioxins and -dibenzofurans (PCDD/Fs) were measured in soils and sediments from the Yellow Sea region. Korean soils and sediments mostly contained detectable PCDD/Fs and showed a widespread distribution among locations. Soil and sedimentary PCDD/Fs from China were comparable to or less than those in Korea. The patterns of relative concentrations of individual congeners in soils were different between the two countries, but similar in sediments. Sources of PCDD/Fs in China and Korea were found to be independent of each other and their distributions reflected matrix-dependent accumulation. Spatial distribution indicated some point sources in Korea while Chinese sources were more widespread and diffuse. PCDD/Fs measured in the coastal areas of the Yellow Sea were comparable to or less than those previously reported in for eastern Asia. However, ∑TEQs in soils and sediments were near to or, in some cases exceeded environmental quality guidelines.  相似文献   

5.
Emerging contaminants in wastewater and sewage sludge spread on agricultural soil can be transferred to the human food web directly by uptake into food crops or indirectly following uptake into forage crops. This study determined uptake and translocation of the organophosphates tris(1-chloro-2-propyl) phosphate (TCPP) (log K ow 2.59), triethyl-chloro-phosphate (TCEP) (log K ow 1.44), tributyl phosphate (TBP) (log K ow 4.0), the insect repellent N,N-diethyl toluamide (DEET) (log K ow 2.18) and the plasticiser N-butyl benzenesulfonamide (NBBS) (log K ow 2.31) in barley, wheat, oilseed rape, meadow fescue and four cultivars of carrot. All species were grown in pots of agricultural soil, freshly amended contaminants in the range of 0.6–1.0 mg/kg dry weight, in the greenhouse. The bioconcentration factors for root (RCF), leaf (LCF) and seed (SCF) were calculated as plant concentration in root, leaf or seed over measured initial soil concentration, both in dry weight. The chlorinated flame retardants (TCEP and TCPP) displayed the highest bioconcentration factors for leaf and seed but did not show the same pattern for all crop species tested. For TCEP, which has been phased out due to toxicity but is still found in sewage sludge and wastewater, LCF was 3.9 in meadow fescue and 42.3 in carrot. For TCPP, which has replaced TCEP in many products and also occurs in higher residual levels in sewage sludge and wastewater, LCF was high for meadow fescue and carrot (25.9 and 17.5, respectively). For the four cultivars of carrot tested, the RCF range for TCPP and TCEP was 10–20 and 1.7–4.6, respectively. TCPP was detected in all three types of seeds tested (SCF, 0.015–0.110). Despite that DEET and NBBS have log K ow in same range as TCPP and TCEP, generally lower bioconcentration factors were measured. Based on the high translocation of TCPP and TCEP to leaves, especially TCPP, into meadow fescue (a forage crop for livestock animals), ongoing risk assessments should be conducted to investigate the potential effects of these compounds in the food web.  相似文献   

6.
The interactions between Zn and Cd on the concentration and tissue distribution of these metals in lettuce and spinach were studied at levels corresponding to background and Zn-Cd contaminated sites. Plants were grown in nutrient solutions containing 0.398-8.91 microM Zn and 0.010-0.316 microM Cd. Cadmium accumulated more in old than in young leaves of both crops at any solution Cd level, whereas Zn followed that pattern only at Zn levels > or = 3.16 microM. Increasing solution Cd increased Zn concentrations in young leaves of lettuce but not of spinach, regardless of Zn levels. Cadmium concentrations in young leaves of both crops decreased exponentially with increasing solution Zn at low (0.0316 microM) but not at high (0.316 microM) solution Cd. The Zn: Cd concentration ratios in young leaves of lettuce and spinach grown at 0.316 microM Cd became greater as the solution Zn increased. Cadmium and Zn concentrations in young leaves were related more closely to the relative concentrations of Zn and Cd in solution than were the concentrations in old leaves, especially in lettuce. Studies of Zn-Cd interactions and Cd bioavailability should differentiate between basal and upper leaves of lettuce and spinach. Compared to Cd-only pollution, Zn-Cd combined pollution may not decrease Cd concentrations in lettuce and spinach edible tissues, but because it increases their Zn concentrations it lowers plant Cd bioavailability.  相似文献   

7.
This paper describes the tissue distribution of inorganic mercury, organic mercury and selenium in Dutch and British seals as well as in seals which were dosed with methylmercury under experimental conditions.In the experimental animals, a time-related increase of both mercury and selenium was found in liver and kidney after the administration of methylmercury, while in the other tissues examined, e.g. brain, thyroid, blood, only the concentrations of mercury increased.In the wild seals, it was also demonstrated that the selenium concentrations showed a positive correlation with the concentrations of mercury.Atomic ratios of mercury and selenium were close to one in the wild seals as was also found in previous studies. However, atomic ratios above one were found in seals fed additional methylmercury.In vitro studies with liver homogenates of seals did not provide evidence for the presence of a biochemical demethylation mechanism nor for any effect of selenium on the demethylation process.  相似文献   

8.
The degradation and ecotoxicity of sulfonylurea herbicide rimsulfuron and its major metabolites were examined in batch samples of an alluvial sandy loam and in freshwater. An HPLC-DAD method was adapted to simultaneously identify and quantify rimsulfuron and its metabolites, which was successfully validated by GC-MS analysis. In aqueous solutions, pure rimsulfuron was rapidly hydrolyzed into metabolite 1 (N-(4,6-dimethoxypyrimidin-2-yl)-N-(3-(ethylsulfonyl)-2-pyridinylurea)), which itself was transformed into the more stable metabolite 2 (N-((3-(ethylsulfonyl)-2-pyridinyl)-4,6-dimethoxy-2-pyrimidineamine)), with half-life (t(1/2)) values of 2 and 2.5 days, respectively. Hydrolysis was instantaneous under alkaline conditions (pH = 10). In aqueous suspensions of the alluvial soil (pH = 8), formulated rimsulfuron had a half-life of 7 days, whereas that of metabolite 1 was similar to that in water (about 3.5 days). The degradation of the two major metabolites was also studied in soil suspensions with the pure compounds at concentrations ranging from 1 to 10 mg l(-1). The half-life of metabolite 1 ranged from 3.9 to 5 days, close to the previous values. Metabolite 2 was more persistent and its degradation is strongly dependent on the initial concentration (C0): half-life values ranged from 8.1 to 55 days at 2-10 mg l(-1), respectively. These values are higher than those determined from the kinetics of metabolite 1 transformation into metabolite 2 (t(1/2) = 8-19 days). The ecotoxicity of the three chemicals was evaluated through their effect on Daphnia magna and Vibrio fischeri (Microtox bioassay). No effect was observed on D. magna with 24 and 48 h acute toxicity tests. Similarly, no toxic effect was observed with the Microtox test for the three chemicals in the range of concentrations tested that included the field application dose. Thus, being of low persistence and lacking acute toxicity, these chemicals present a low environmental risk. However, chronic effects should be studied in order to confirm the safety of rimsulfuron and its major metabolites.  相似文献   

9.
Waterfowl and passerines in northern Idaho in 1987 had high levels of lead in their blood and tissues that originated primarily from mining and smelting activities. Four Canada geese (Branta canadensis) and one common goldeneye (Bucephala clangula) found dead contained 8 to 38 microg/g (wet mass) of lead in their livers. These levels exceed the lower lethal limit of 5 microg/g in experimental birds. Two of the Canada geese (one each from the contaminated and reference areas) died with ingested lead shotgun pellets (shot) in their gizzards, whereas the other three birds from the contaminated area contained no ingested shot and evidently died from ingesting environmental lead in sediment or biota. Lead burdens in most American robins (Turdus migratorius) and mallards (Anas platyrhynchos) were high, whereas those in tree swallows (Tachycineta bicolor) were slightly elevated. Lead accumulated to potentially hazardous levels in blood and tissues of some nestling robins (maxima of 0.87 microg/g in blood and 5.6 microg/g in liver) and mallards (maxima of 10.2 microg/g in blood and 2.8 microg/g in liver). In mallards, lead levels and associated physiological characteristics of blood were significantly different in juveniles (HY) versus adults (AHY). Activity of delta-aminolevulinic acid dehydratase (ALAD) was about 87 to 95% lower than values for control birds in experimental studies. Activity of ALAD was significantly inversely correlated with blood lead levels. Cadmium was detected in kidneys of most birds, but even the maximum concentration of 7.5 microg/g in an AHY mallard was below known harmful levels.  相似文献   

10.
Transfer of bioactive organic compounds from soil to plants might represent animal and human health risks. Sewage sludge and manure are potential sources for bioactive compounds such as human- and veterinary drugs. In the present study, uptake of the anti-diabetic compound, metformin, the antibiotic agent ciprofloxacin and the anti-coccidial narasin in carrot (Daucuscarota ssp. sativus cvs. Napoli) and barley (Hordeumvulgare) were investigated. The pharmaceuticals were selected in order to cover various chemical properties, in addition to their presence in relevant environmental matrixes. The root concentration factors (RCF) found in the present study were higher than the corresponding leaf concentration factors (LCF) for the three test pharmaceuticals. The uptake of metformin was higher compared with ciprofloxacin and narasin for all plant compartments analyzed. Metformin was studied more explicitly with regard to uptake and translocation in meadow fescue (Festucapratense), three other carrot cultivars (D.carota ssp. sativus cvs. Amager, Rothild and Nutri Red), wheat cereal (Triticumaestivum) and turnip rape seed (Brassicacampestris). Uptake of metformin in meadow fescue was comparable with uptake in the four carrot cultivars (RCF 2-10, LCF approximately 1.5), uptake in wheat cereals were comparable with barley cereals (seed concentration factors, SCF, 0.02-0.04) while the accumulation in turnip rape seeds was as high as 1.5. All three pharmaceuticals produced negative effects on growth and development of carrots when grown in soil concentration of 6-10 mg kg−1 dry weight.  相似文献   

11.
The bioavailability of pollutants, pesticides and/or their degradation products in soil depends on the strength of their sorption by the different soil components, particularly by the clay minerals. This study reports the sorption-desorption behavior of the environmentally hazardous industrial pollutants and certain pesticides degradation products, 3-chloroaniline, 3,4-dichloroaniline, 2,4,6-trichloroaniline, 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol on the reference clays kaolinite KGa-1 and Na-montmorillonite SWy-l. In batch studies, 2.0 g of clay were equilibrated with 100.0 mL solutions of each chemical at concentrations ranging from 10.0 to 200.0 mg/L. The uptake of the compounds was deduced from the results of HPLC-UV-Vis analysis. The lipophilic species were best retained by both clay materials. The most lipophilic chemical used in the study, 2,4,6-trichloroaniline, was also the most strongly retained, with sorption of up to 8 mg/g. In desorption experiments, which also relied on HPLC-UV-Vis technique, 2,4,6-trichloroaniline was the least desorbed from montmorillonite. However, on kaolinite all of the compounds under study were irreversibly retained. The experimental data have been modelled according to the Langmuir and Freundlich isotherms. A hypothesis is proposed concerning the sorption mechanism and potential applications of the findings in remediation strategies have been suggested.  相似文献   

12.
The chlorination and condensation of acetylene at low temperatures is demonstrated using copper chlorides as chlorinated agents coated to model borosilicate surfaces. Experiments with and without both a chlorine source and borosilicate surfaces indicate the absence of gas-phase and gas-surface reactions. Chlorination and condensation occur only in the presence of the copper catalyst. C2 through C8 organic products were observed in the effluent; PCDD/F were only observed from extraction of the borosilicate surfaces. A global reaction model is proposed that is consistent with the observed product distributions. Similar experiments with dichloroacetylene indicate greater reactivity in the absence of the copper catalyst. Reaction is observed in the gas-phase and in the presence of borosilicate surfaces at low temperatures. The formation of hexachlorobenzene is only observed in the presence of a copper catalyst. PCDD/F were only observed from extraction of the borosilicate surfaces. A global reaction model is proposed for the formation of hexachlorobenzene from dichloroacetylene.  相似文献   

13.
This review focuses on the occurrence and treatment of arsenic (As) in the arid region of northern Mexico (states of Chihuahua and Coahuila) and bordering states of the southwestern US (New Mexico, Arizona, and Texas), an area known for having high As concentrations. Information assembled and assessed includes the content and probable source of As in water, soil, and sediments and treatment methods that have been applied in the area. High As concentrations were found mainly in groundwater, their source being mostly from natural origin related to volcanic processes with significant anthropogenic contributions near mining and smelting of ores containing arsenic. The affinity of As for solid phases in alkaline conditions common to arid areas precludes it from being present in surface waters, accumulating instead in sediments and shifting its threat to its potential remobilization in reservoir sediments and irrigation waterways. Factors such as oxidation and pH that affect the mobility of As in the subsurface environment are mentioned. Independent of socio-demographic variables, nutritional status, and levels of blood lead, cognitive development in children is being affected when exposed to As. Treatments known to effectively reduce As content to safe drinking water levels as well as those that are capable of reducing As content in soils are discussed. Besides conventional methods, emergent technologies, such as phytoremediation, offer a viable solution to As contamination in drinking water.  相似文献   

14.

The bioavailability of pollutants, pesticides and/or their degradation products in soil depends on the strength of their sorption by the different soil components, particularly by the clay minerals. This study reports the sorption-desorption behavior of the environmentally hazardous industrial pollutants and certain pesticides degradation products, 3-chloroaniline, 3,4-dichloroaniline, 2,4,6-trichloroaniline, 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol on the reference clays kaolinite KGa-1 and Na-montmorillonite SWy-l. In batch studies, 2.0 g of clay were equilibrated with 100.0 mL solutions of each chemical at concentrations ranging from 10.0 to 200.0 mg/L. The uptake of the compounds was deduced from the results of HPLC-UV-Vis analysis. The lipophilic species were best retained by both clay materials. The most lipophilic chemical used in the study, 2,4,6-trichloroaniline, was also the most strongly retained, with sorption of up to 8 mg/g. In desorption experiments, which also relied on HPLC-UV-Vis technique, 2,4,6-trichloroaniline was the least desorbed from montmorillonite. However, on kaolinite all of the compounds under study were irreversibly retained. The experimental data have been modelled according to the Langmuir and Freundlich isotherms. A hypothesis is proposed concerning the sorption mechanism and potential applications of the findings in remediation strategies have been suggested.  相似文献   

15.
Abstract

Results from 31 epidemiology studies linking air pollution with premature mortality are compared and synthesized. Consistent positive associations between mortality and various measures of air pollution have been shown within each of two fundamentally different types of regression studies and in many variations within these basic types; this is extremely unlikely to have occurred by chance. In this paper, the measure of risk used is the elasticity, which is a dimensionless regression coefficient defined as the percentage change in the dependent variable associated with a 1% change in an independent variable, evaluated at the means. This metric has the advantage of independence from measurement units and averaging times, and is thus suitable for comparisons within and between studies involving different pollutants. Two basic types of studies are considered: time-series studies involving daily perturbations, and cross-sectional studies involving longer-term spatial gradients. The latter include prospective studies of differences in individual survival rates in different locations and studies of the differences in annual mortality rates for various communities.

For a given data set, time-series regression results will vary according to the seasonal adjustment method used, the covariates included, and the lag structure assumed. The results from both types of cross-sectional regressions are highly dependent on the methods used to control for socioeconomic and personal lifestyle factors and on data quality. Amajor issue for all of these studies is that of partitioning the response among collinear pollution and weather variables. Previous studies showed that the variable with the least exposure measurement error may be favored in multiple regressions; assigning precise numerical results to a single pollutant is not possible under these circumstances. We found that the mean overall elasticity as obtained from timeseries studies for mortality with respect to various air pollutants entered jointly was about 0.048, with a range from 0.01 to 0.12. This implies that about 5% of daily mortality is associated with air pollution, on average. The corresponding values from population-based cross-sectional studies were similar in magnitude, but the results from the three recent prospective studies varied from zero to about five times as much. Long-term responses in excess of short-term responses might be interpreted as showing the existence of chronic effects, but the uncertainties inherent in both types of studies make such an interpretation problematic.  相似文献   

16.
This study examines a new mechanism for the uptake of Pb and Cd into Brassica napus and Zea mays roots. During hydroponic experiments, the uptake of Pb and Cd was enhanced in the presence of cysteine and glutathione, whereas no or very low uptake was observed in EDTA and penicillamine controls. Uptake rates were also enhanced after pre-exposure to cysteine or glutathione and inhibited in the presence of vanadate, suggesting a biological mechanism of uptake. Increasing concentrations of glutathione in solution resulted in decreasing Pb uptake rates, indicating competition for transport between free-glutathione and Pb–glutathione species. Pb uptake in the presence of increasing cysteine concentrations resulted in decreased uptake initially but linearly increasing uptake at higher concentrations. Experimentation showed concentration dependent Pb uptake rates. We speculate that there are specific transporters for these thiol ligands and describe what barriers remain for application of this novel transport mechanism in chelator-assisted phytoremediation.  相似文献   

17.
The iron content was studied in the epiphytic lichens Hypogymnia physodes (L.) Nyl. and Pseudevernia furfuracea (L.) Zopf, in the terricolous lichens Cladina sp. and Peltigera aphthosa (L.) Willd., and in pine bark collected from 31 sites in Finland. There appeared to be differences between lichen species, epiphytes having generally higher concentrations. The iron content of H. physodes was highly significantly correlated (p<0.001) with its sulphur content, reflecting the relations of these elements in precipitation. The highly significant correlations between the iron and titanium contents indicated differences of the phorophytes. The iron/sulphur ratio of H. physodes on pine was 1.3 and on birch 1.4 and iron/titanium ratios were 10.4 and 11.3 respectively. The iron content of Cladina sp. showed highly significant parallel correlations (p<0.001) with its sulphur and titanium contents. The iron/titanium ratio decreased from 9.6 to 8.2 when the iron content increased by 95%, the sulphur content being equal. The iron/titanium ratio of Cladina sp. was nearly identical to that of P. furfuracea. The relation between iron and sulphur, and the fraction of soluble and insoluble iron in precipitation versus lichens and pine bark were considered. Special attention was paid in the discussion to differences in substrate: pine and birch bark for H. physodes, and soil for Cladina sp.  相似文献   

18.
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.  相似文献   

19.
Residues of three phenazone-type pharmaceuticals have been identified in routine analyses of groundwater samples from selected areas in the north-western districts of Berlin, Germany. Phenazone, propiphenazone, and dimethylaminophenazone have been detected in some wells at concentrations up to the low microg/l-level. Additionally, three phenazone-type metabolites namely 1-acetyl-1-methyl-2-dimethyl-oxamoyl-2-phenylhydrazide (AMDOPH), 1-acetyl-1-methyl-2-phenylhydrazide, and dimethyloxalamide acid-(N'-methyl-N-phenyl)-hydrazide have also been identified in these groundwater samples. The residues are suspected to originate from former production spills of a pharmaceutical plant located in a city north of Berlin. It was observed that with the exception of AMDOPH all other residues were efficiently removed during conventional drinking water treatment. The drug metabolite AMDOPH deriving from dimethylaminophenazone residues was found at concentrations of 0.9 microg/l in finished drinking water. However, a following study on the toxicological relevance of the AMDOPH residues has shown that there is no toxicological harm for humans at the low concentrations of AMDOPH observed in Berlin drinking water.  相似文献   

20.
The stereoselectivity of R,S-venlafaxine and its metabolites R,S-O-desmethylvenlafaxine, N-desmethylvenlafaxine, O,N-didesmethylvenlafaxine, N,N-didesmethylvenlafaxine and tridesmethylvenlafaxine was studied in three processes: (i) anaerobic and aerobic laboratory scale tests; (ii) six wastewater treatment plants (WWTPs) operating under different conditions; and (iii) a variety of wastewater treatments including conventional activated sludge, natural attenuation along a receiving river stream and storage in operational and seasonal reservoirs. In the laboratory and field studies, the degradation of the venlafaxine yielded O-desmethylvenalfaxine as the dominant metabolite under aerobic and anaerobic conditions. Venlafaxine was almost exclusively converted to O-desmethylvenlafaxine under anaerobic conditions, but only a fraction of the drug was transformed to O-desmethylvenlafaxine under aerobic conditions. Degradation of venlafaxine involved only small stereoisomeric selectivity. In contrast, the degradation of O-desmethylvenlafaxine yielded remarkable S to R enrichment under aerobic conditions but none under anaerobic conditions. Determination of venlafaxine and its metabolites in the WWTPs agreed well with the stereoselectivity observed in the laboratory studies. Our results suggest that the levels of the drug and its metabolites and the stereoisomeric enrichment of the metabolite and its parent drug can be used for source tracking and for discrimination between domestic and nondomestic wastewater pollution. This was indeed demonstrated in the investigations carried out at the Jerusalem WWTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号