首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
阐述了用于板材成形过程静力隐式数值模拟的弹塑性大变形有限元方法 ,基于给出的方法编制了板材成形过程数值模拟软件 ,并对矩形板的液压胀形进行了有限元分析 ,计算结果与典型的实验结果吻合很好。对球形模具拉伸成形过程进行了数值模拟 ,给出了计算结果  相似文献   

2.
主要介绍利用探针和传感器测定拉深过程中摩擦系数的实验方法,据此获得变形区内摩擦系数的分布情况.该方法有助于进一步分析板材在拉深成形过程中的摩擦和润滑情况.同时对计算机数值模拟金属板材在拉深成形过程中,如何确定摩擦系数边界条件提供了一种实验方法.  相似文献   

3.
粘性压力成形技术是金属板材成形领域里新近出现的一种先进的加工工艺。对双面施放粘性介质的板材胀形进行了模拟研究 ,在双面施放介质的板材粘性介质胀形时 ,排放孔位置分布对毛坯成形过程有明显的影响。排放孔位置分布的不同造成模腔内介质的速度场不同 ,进而导致板材不同部位的流动速度的方向大小发生变化 ,最终使成形件的厚度分布不同  相似文献   

4.
研究了泡沫铝芯三明治板材U型弯曲工艺,建立了冲压弯曲试验系统,给出了泡沫铝芯三明治板材弯曲变形模式和载荷位移曲线。综合运用试验、塑性力学理论分析了三明治板材冲压弯曲宏微观协调变形机制,以及泡沫铝三明治板材冲压成形板面泡沫铝芯问界面剥离、圆角半径处过度减薄、泡沫铝芯剪应力裂纹等主要成形缺陷。探讨了压边力和冲压成形板厚的控制规律。  相似文献   

5.
金属板材成形性试验方法 (HB61 4 0 .4- 87)是测定各种成形工艺参数的重要依据 ,但在应用该标准进行试验研究过程中 ,发现弯曲试验部分所规定的弯曲凸模形状和尺寸不能很好地满足试验原理的要求。在深入研究的基础上指出了问题所在 ,并提出了建议性的设计修改意见 ,这对完善标准内容、提高材料成形试验研究水平和更准确地指导生产实践有着重要的现实意义。  相似文献   

6.
对板材成形智能化控制技术进行了综述,介绍了智能化控制系统的4个基本要素,重点介绍了以板材V形弯曲智能化控制技术、板材拉深智能化控制技术为代表的板材成形过程中智能化控制原理,弯曲和拉深的实验证明该项技术实验效果良好,同时对该技术的进一步应用做出了展望,指出多学科研究成果的不断涌现加快了板材智能化成形工业应用进程。  相似文献   

7.
介绍了一种利用激光扫描板料时形成的不均匀温度场所诱发的热应力进行弯曲变形的技术。采用非耦合模型,用有限元法对成形过程中的三维瞬态温度场及形变场进行了数值模拟,定量地解释了板料激光弯曲的变形机理。文中还介绍了动态边界热流的引入方法及改进热弹塑有限元计算精度和收敛性的措施。模拟值与实测值吻合。  相似文献   

8.
通过对圆管镦锻法兰成形过程进行有限元数值模拟 ,分析了圆管坯料尺寸、摩擦等因素对圆管镦锻法兰成形过程中金属流动的影响及缺陷产生的原因。根据有限元数值模拟结果 ,进行了圆管镦锻法兰成形试验 ,数值模拟结果与试验结果具有较好的一致性。  相似文献   

9.
介绍了板材成形数值模拟技术的研究和应用在国内外发展的概况 ,并从基本算法、单元模型和网格划分、材料模型、接触摩擦、起皱问题、破裂问题和回弹计算等方面介绍了弹塑性有限元的基本原理、关键技术和主要难点 ,结合在工厂实际生产中的使用情况和存在的问题 ,展望了板材数值模拟技术今后的发展方向  相似文献   

10.
第 14届国际金属板材成形会议将于 2 0 0 3年 6月 15日~ 18日在英国伯明翰举行。这次大会由国际金属板材成形协会联盟 (ICOSPA)与英国锻压协会 (CBM)主办 ,法国金属板材成形协会 (GIMEF)、美国精密金属成形协会 (PMA)、德国金属板材成形协会 (IBU)、日本金属冲压协会 (JMSP)、比利时金属板材成形协会 (Fabrimetal)和荷兰金属板材成形协会 (NEVAT)协办。会议内容除举办世界金属板材成形行业先进技术交流、全球经济形式和市场报告、研讨以外还组织著名大型企业和各种专业制造企业参观第14届国际金属…  相似文献   

11.
Laser forming process is used in forming and bending of metallic and non-metallic sheets. Laser beam irradiation causes a localized temperature increase and a localized mechanical strength decrease. In this article, an external mechanical force is added to a laser beam irradiation, which is called external force-assisted laser forming process, to gain a 90-degree bending angle. Furthermore, Numerical simulation of the process is performed to achieve a good understanding of the process. Simulation results show that more than two-third of the final forming is due to the laser beam irradiation. Equivalent plastic strain values during laser forming and external force-assisted laser forming processes are compared. Results show that equivalent plastic strain in laser forming process increases in a step pattern, with increasing in scan pass numbers. This occurs because when the laser beam irradiates on the sheet surface, it reduces the yield strength of the sheet. Equivalent plastic strain in external force-assisted laser forming process has an oscillatory step nature. This attributes to simultaneous effects of strain hardening and thermal induced reduction of yield strength of the sheet. Simulations were in good accordance with experiments.  相似文献   

12.
Laser forming, a novel manufacturing method for bending sheet metal first reported in 1985, has been investigated as an alternative to hot brake forming (industry standard) of titanium sheet parts for the aircraft industry. Laser forming involves scanning a focused or partially defocused laser beam over the surface of a titanium workpiece to cause localized heating along the bend line and angular deflection toward the beam. The main advantage that laser forming has over conventional brake forming is increased process flexibility. An experimental investigation of this process (primarily designed experiments) met the following objectives: identified the response variables related to change in geometry (bend angle) and material microstructure; characterized the influence of process variables (scanning speed, beam diameter, laser power) on these response variables; determined the degree of controllability over the process variables; and evaluated the suitability of laser forming for the aircraft industry (most important), all with respect to titanium sheet. It has been determined that laser forming with an Nd:YAG laser is a controllable, flexible manufacturing process for titanium sheet bending. Unfortunately, these advantages over traditional hot brake forming are overshadowed by the fact that, with regard to forming with titanium, laser forming is significantly slower and more labor and energy intensive, and results in unacceptable material properties at the bend line according to aircraft industry standards. These findings cast doubt over the assertions of some researchers that laser forming may be a viable manufacturing process for parts made in small batches. Instead, it appears that it may be best suited for rapid prototyping of sheet metal parts.  相似文献   

13.
介绍了数控冲床、数控折弯机、数控激光切割机、数控剪板机等CNC板材加工设备的特点,以及这些先进的设备在钣金加工业中的应用和我国钣金生产的加工技术的发展趋向.  相似文献   

14.
Welding is a fabrication process to join two different materials. Among the many welding processes, the arc and laser welding processes are the most widely used. Great effort is required to understand the physical phenomena of arc and laser welding due to the complex behaviors which include liquid phase, solid phase and, gas phase. So it is necessary to conduct numerical simulation to understand the detailed procedures of welding. This paper will present the various numerical simulation methods of the arc welding processes such as arc plasma, gas tungsten arc welding, gas metal arc welding, laser welding, and laser–arc hybrid welding. These simulations are conducted by the finite element method, finite differential method and volume of fluid method to describe and analyze the various welding processes.  相似文献   

15.
Laser microscale peen forming has recently received more and more attention as a viable laser processing technology as it not only imparts desirable residual stress for improvement of fatigue life of the material, but can also precisely control part deformation. In the present study, the effect of energy level on the deformation mechanism in laser microscale peen forming was investigated by both numerical and experimental methods. Deformation curvatures and residual stress distributions of both sides of the specimen, characterized by X-ray microdiffraction, were compared with the results obtained from FEM simulation. The forming mechanism for convex and concave bending was explained in terms of the resulting pressure, compressive stress distribution, and plastic strain. Differences in residual stress distribution patterns were also investigated as a function of the forming mechanism.  相似文献   

16.
The dimpling process is a novel cold-roll forming process that involves dimpling of a rolled flat strip prior to the roll forming operation. This is a process undertaken to enhance the material properties and subsequent products’ structural performance while maintaining a minimum strip thickness. In order to understand the complex and interrelated nonlinear changes in contact, geometry and material properties that occur in the process, it is necessary to accurately simulate the process and validate through physical tests. In this paper, 3D non-linear finite element analysis was employed to simulate the dimpling process and mechanical testing of the subsequent dimpled sheets, in which the dimple geometry and material properties data were directly transferred from the dimpling process. Physical measurements, tensile and bending tests on dimpled sheet steel were conducted to evaluate the simulation results. Simulation of the dimpling process identified the amount of non-uniform plastic strain introduced and the manner in which this was distributed through the sheet. The plastic strain resulted in strain hardening which could correlate to the increase in the strength of the dimpled steel when compared to plain steel originating from the same coil material. A parametric study revealed that the amount of plastic strain depends upon on the process parameters such as friction and overlapping gap between the two forming rolls. The results derived from simulations of the tensile and bending tests were in good agreement with the experimental ones. The validation indicates that the finite element analysis was able to successfully simulate the dimpling process and mechanical properties of the subsequent dimpled steel products.  相似文献   

17.
Cylindrical as well as conical cross-section structural parts are widely used in industrial applications worldwide. Such parts are produced from metal plates using many manufacturing methods. 3-roller conical bending process is one such process. In this process first the metal plates in specified blank shapes are given static bending in the rollers. Then the rollers are driven using motors for bending of the blanks under dynamic condition. During bending reaction forces will be there on the rollers. Forces acting on the rollers during the process are transmitted to the machine frame at the roller supports. In the paper an analytical model is developed for the prediction of force during the stage of dynamic bending. The model consists of various parameters like material parameters and geometrical parameters. Experimentation is carried out and the developed model is validated with the experimental results. Effects of various material and geometrical parameters are studied in the present paper. The present work can give insight in the process and can be helpful to the designers as well as to the researchers working in the area of metal forming.  相似文献   

18.
目的 改善块体非晶合金的弯曲力学性能,同时考虑航空结构材料选材的经济性,研究激光表面处理工艺对工业级Zr49.7Ti2Cu37.8Al10Er0.5块体非晶合金弯曲变形和缺口韧性的影响规律。方法 采用低纯原料和低真空制备条件获得工业级Zr49.7Ti2Cu37.8Al10Er0.5块体非晶合金试样,考虑到弯曲条件下试样受到拉伸和压缩2种正应力状态,研究不同处理工艺和激光处理表面对试样弯曲变形和缺口韧性的影响。结果 当激光处理表面位于弯曲试样的2个侧表面时,其对试样的塑性变形能力和断裂强度没有明显的影响,但会显著降低试样的缺口韧性,从(56.4±3.4)MPa·m1/2降低到(26.2±4.8)MPa·m1/2;激光处理表面位于弯曲试样的受拉侧时,试样的弯曲断裂强度从2 150 MPa降低到1 800 MPa;当激光处理表面位于...  相似文献   

19.
目的 获取船舶海水管路系统中弯管在不同因素影响下的冲刷腐蚀规律,预测其冲刷腐蚀速率.方法 采用试验测试和数值仿真相结合的方法,研究管路系统中弯管在不同海水流速、管径、弯径比影响下的冲刷腐蚀规律,采用灰色关联分析各因素对冲刷腐蚀影响的严重程度,最后建立冲刷腐蚀速率预测方程.结果 随流速增加,最大冲刷腐蚀速率先增大、后趋于平稳;随管径增加,管壁最大冲刷腐蚀速率逐渐减小;随弯径比增加,管壁最大冲刷腐蚀速率先减小后略有增加.不同因素对冲刷腐蚀速率影响的严重程度由大到小为弯径比、流速、管径.结论 数值仿真方法可快速获取管路参数变化对冲刷腐蚀速率的影响,基于仿真结果建立的冲刷腐蚀速率预测方程可以很好地预测不同因素影响下的弯管冲刷腐蚀,有较高的预测精度.  相似文献   

20.
目的 预测钢制全表面轮毂易产生疲劳破坏的危险区域,并分析其弯曲疲劳寿命。方法 针对全表面轮毂的弯曲疲劳试验工况,建立有限元分析模型,综合考虑螺栓拧紧方式、螺栓预紧力以及材料非线性特征的影响,通过在加载轴末端建立局部坐标系,实现载荷的分解,并最终实现弯矩的动态加载。在此基础上,进行轮毂的受力分析,然后构造适用于轮毂的应力寿命曲线,并使用名义应力法进行疲劳寿命预测。结果 动态弯矩的加载方向变化会显著影响轮辐表面的应力分布特点,螺栓预紧力施加后,螺栓孔附近区域的应力显著增大,在计算中应考虑其影响。在获得各节点载荷历程后,以高应力幅和平均应力为标准,筛选出了轮毂的危险节点。结论 基于数值仿真的本型全表面轮毂弯曲疲劳试验,危险节点位置均位于轮辐通风孔的内圆角附近区域,可有针对性地对该区域进行相应的优化设计,以进一步提高轮毂的弯曲疲劳寿命。分析得到当前轮辋弯曲疲劳寿命约7.6万次,符合国家标准的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号