首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为研究邯郸市PM2.5中碳组分的污染特征及其来源,于2017年4~12月采集PM2.5样品,用热光反射法(TOR)分析PM2.5中有机碳(OC)和元素碳(EC)的质量浓度.结果表明:邯郸市PM2.5和总碳气溶胶(TCA)质量浓度的年均值分别为(88.87±58.89)μg/m3和(31.45±23.35)μg/m3,PM2.5质量浓度超标率为50%,TCA/PM2.5比率的年均值为(38.23%±14.61%),表明邯郸市碳组分污染严重.冬季PM2.5中TCA质量浓度均值为(68.06±23.77)μg/m3,TCA/PM2.5比率的均值为(46.86%±10.07%),OC(37.09±13.05)μg/m3和EC(8.72±3.78)μg/m3浓度明显高于其它季节,表明冬季碳组分污染较为严重.各季节OC/EC比值均大于2,表明邯郸市全年均受二次有机碳(SOC)的污染;OC、EC及SOC与SO2、NO2呈显著正相关,与O3呈显著负相关,尤其是与NO2相关关系最强,说明邯郸市碳质气溶胶可能受到机动车尾气排放的影响.对8种碳组分进行主成分分析,发现道路扬尘、燃煤排放和机动车尾气是邯郸市PM2.5中OC和EC的主要贡献源.  相似文献   

2.
廊坊市是北京市及周边传输通道“2+26”城市之一.为研究廊坊市开发区冬季颗粒物中碳组分污染特征,于2018年1月5日—2月5日在廊坊市开发区国控点位同步开展PM2.5及PM10样品采集,使用DRI分析OC(有机碳)与EC(元素碳)的质量浓度.结果表明:廊坊开发区冬季ρ(PM2.5)、ρ(PM10)分别为(54.5±46.0)(91.0±58.2)μg/m3.PM2.5中ρ(OC)、ρ(EC)分别为14.64、3.54 μg/m3,PM10中分别为17.07、4.58 μg/m3;PM2.5、PM10中ρ(OC)与ρ(EC)相关性均较好,R2均为0.91(P < 0.01),表明二者具有相似的来源;在PM2.5和PM10中OC/EC〔ρ(OC)/ρ(EC),下同〕分别为4.46和4.16,ρ(SOC)(SOC为二次有机碳)分别为6.15和5.88 μg/m3,分别占ρ(OC)的42.1%和37.7%,表明二次污染较严重.碳组分丰度及主成分分析结果表明,PM2.5与PM10中碳组分来源基本一致,主要来源于汽车尾气、水溶性极性化合物、生物质燃烧及燃煤的混合源,柴油车排放,以及道路扬尘.后向气流轨迹聚类结果表明,颗粒物及碳组分质量浓度受途径内蒙古自治区及河北省中部、北京市南部气团的影响较大;对于碳组分来源,道路扬尘及汽车尾气受气团传输的影响较大,而生物质燃烧、燃煤等受气团传输的影响较小.研究显示,汽车尾气、燃烧源及道路扬尘为廊坊市开发区冬季碳组分的主要来源.   相似文献   

3.
于2018年12月~2019年1月对沈阳市PM2.5进行持续在线浓度监测,使用有机碳/元素碳分析仪对PM2.5中有机碳(OC)和元素碳(EC)的质量浓度进行分析,研究了不同污染程度下PM2.5及其碳组分的污染特征和来源.结果表明,沈阳地区冬季碳组分污染较为严重,不同污染程度下的总碳气溶胶(TCA)约占PM2.5的36.3%~42.8%.中/重度污染天气下PM2.5、OC和EC的平均质量浓度达到148.6,29.6,6.6μg/m3,是清洁天的3.1~3.3倍.PM2.5、OC和EC的日变化均表现为早晚高、午后低,任一时刻其浓度均为中/重度污染>轻度污染>清洁天.不同污染程度下的OC/EC值均大于2,其中污染天比值分布在2.1~25.3区间内,表明燃煤和机动车尾气排放是污染天碳质气溶胶的主要来源.二次有机碳(SOC)随污染程度增加表现出升高趋势,清洁天、轻度污染和中/重度污染下其平均浓度依次为2.9,6.5,10.6μg/m3.后向轨迹聚类结果表明,沈阳地区冬季污染天主要受偏北和西北方向气团影响.  相似文献   

4.
为研究郴州市PM2.5中碳组分的污染特征及来源,于2016年7月-2017年4月分4个季度典型时段采集郴州市环境大气中的PM2.5,测定了样品中OC(有机碳)和EC(元素碳)的质量浓度,对碳气溶胶污染水平、时空分布、SOC(二次有机碳)以及OC和EC相关性等特征进行了分析,并分析了碳组分的来源.结果表明:郴州市ρ(PM2.5)年均值为(40.2±19.0)μg/m3,ρ(OC)、ρ(EC)占比分别为15.7%和7.2%;ρ(OC)与ρ(EC)相关性分析显示二者来源较为一致,但春季、夏季差异相对较大;ρ(SOC)全年估算值为1.84 μg/m3,占ρ(OC)的29.11%,夏季较高的温度和较低的相对湿度导致夏季ρ(SOC)的估算偏低.结合碳组分丰度分析、PCA(主成分分析)和PMF(正矩阵因子分解分析)结果发现,燃煤/道路尘、机动车排放和生物质燃烧对PM2.5中TC(总碳)的影响最为明显,贡献率分别为49.25%~56.71%、19.79%~25.36%和9.35%~13.69%.反向轨迹聚类结果显示,广东珠三角区域的汽油车排放、道路尘和生物质燃烧对郴州市PM2.5中碳组分有较大的影响,而燃煤和柴油车的贡献主要来源于本地.研究显示,郴州市PM2.5中碳组分污染较为严重,应重点加强本地燃煤和柴油车的控制.   相似文献   

5.
为分析灰霾期间单颗粒气溶胶化学组成和混合状态,于2014年12月9日—2015年1月10日,使用单颗粒气溶胶质谱仪(SPAMS)表征华北平原郑州市中牟县的气溶胶颗粒.结果表明:灰霾期(H1:20141213T19:00—20141215T10:00;H2:20150102T10:00—20150106T03:00)和清洁期(C1:20141215T18:00—20141217T18:00;C2:20141231T16:00—20150101T20:00)大气颗粒物种类相同,主要分为有机碳(OC)、元素碳(EC)、生物质燃烧颗粒(BB)、元素碳有机碳(ECOC)、钾二次颗粒(K-Secondary)、矿尘(Dust)以及重金属颗粒(HM)7类.C1时间段,ECOC颗粒占比最高,占总颗粒数的49.8%;其次是OC和EC颗粒物,二者分别占总颗粒数的16.5%和10.8%.H1时间段,K-Secondary颗粒的占比(31.3%)最高;其次是OC和EC颗粒,二者分别占总颗粒数的23.1%和20.2%.清洁期与灰霾期质谱差分结果表明,清洁期颗粒物中含有C3H+、C4H3+、C5H3+等有机碳碎片峰,而灰霾期颗粒物中NO3-、HSO4-、NO2-等组分的信号强度显著大于清洁期.混合状态分析表明,从清洁期到灰霾期的过程中,主要颗粒物与NO3-和HSO4-的混合程度显著增强.清洁期与灰霾期单颗粒化学组成与混合状态的对比分析表明,清洁期新鲜排放的含碳气溶胶在灰霾期不断老化,单颗粒中二次无机组分增加,气溶胶整体老化严重.此外,灰霾期(H2)EC颗粒占总颗粒数的比例增至18.1%,并且与NO3-、HSO4-二次组分的混合状态增强,使平均能见度降低为4.0 km.研究显示,郑州大气能见度主要受化学组分、颗粒物混合状态和污染物质量浓度的影响.   相似文献   

6.
为研究天津市春季道路降尘PM2.5和PM10中碳组分特征,丰富道路降尘的成分谱库,于2015年3月22日-5月23日在天津市主干道、次干道、支路、快速路和环线5种道路类型道路两侧采集道路降尘样品,通过再悬浮装置得到PM2.5和PM10的滤膜样品,并用热光碳分析仪测定PM2.5和PM10中OC(有机碳)和EC(元素碳)的百分含量,利用两相关样本非参数检验、OC/EC比值法以及相关分析法,定性分析天津市春季道路降尘PM2.5和PM10的碳组分的特征及其主要来源;利用因子分析法,进一步分析道路降尘PM2.5和PM10的主要来源.结果表明:道路降尘PM2.5中w(OC)为10.27%(主干道)~13.94%(快速路)、w(EC)为1.24%(支路)~1.77%(环线),PM10中w(OC)为8.48%(主干道)~12.56%(快速路)、w(EC)为1.01%(次干道)~1.59%(快速路),可见快速路中碳组分含量相对较高,这可能与其车流量较大,导致道路扬尘和机动车尾气排放量较大有关,也可能与其路面保养及保洁状况有关.对于大部分碳组分而言,其在PM2.5中的百分含量均高于PM10;除EC2,其他碳组分在PM2.5和PM10间均无显著性差异.不同道路类型PM2.5和PM10中OC/EC的大小顺序基本相同,与其车质量变化趋势相反.道路降尘中PM2.5中碳组分主要来源于道路扬尘、机动车尾气、生物质燃烧以及燃煤源的混合源,PM10主要受道路扬尘、燃煤和柴油车尾气等污染源的影响.   相似文献   

7.
为研究西南高原城市昆明的碳气溶胶浓度特征及其来源,2018年11月20日—2019年3月23日,在昆明主城区采集PM2.5样品共117个,测定有机碳(OC,organic carbon)和元素碳(EC,elemental carbon)的质量浓度,对其进行源解析。结果显示:昆明市PM2.5平均浓度为72.31±26.19μg/m3,碳气溶胶浓度(TC,total carbon)为38.04±18.74μg/m3,约占PM2.5的53%。碳气溶胶以有机碳排放为主,OC约占TC的75%,EC平均质量为9.15±4.02μg/m3。OC/EC值为3.23,二次有机碳(SOC,secondary organic carbon)约占有机碳的40%左右,存在二次有机污染物。碳组分浓度排序为:OC3>OC4>OPC>EC1>OC2>OC1>EC2>EC3,以汽油车尾气排放、燃煤、扬尘、生物质燃烧源占主导。外源气团影响了昆明市碳质...  相似文献   

8.
为更加准确地估算环境受体PM2.5中SOC(二次有机碳)的质量浓度,于2015年6-8月利用在线监测仪器同步采集小时分辨率的PM2.5及OC(有机碳)和EC(元素碳)样品数据,分析碳气溶胶的变化特征,并尝试运用改进的EC示踪法估算ρ(SOC).结果表明:天津市区夏季ρ(PM2.5)为(70.9±46.0)μg/m3,ρ(OC)和ρ(EC)分别为(7.6±3.1)(2.2±1.5)μg/m3,占ρ(PM2.5)的11.8%±4.6%和3.1%±1.4%,OC/EC(质量浓度之比,下同)的平均值为4.0±2.0.ρ(OC)与ρ(EC)之间的Pearson相关系数(R)仅为0.66,说明OC和EC的来源较为复杂,SOC的产生可能是重要影响因素.ρ(NO2)与OC/EC呈显著负相关(R=-0.47,P < 0.01),并且OC/EC(4.0)相对较低,说明天津市区机动车可能对碳气溶胶具有重要影响.ρ(SO2)与ρ(OC)、ρ(EC)的相关性较低(R均为0.33,P均小于0.01),说明天津市区碳气溶胶可能受燃煤源的影响较低.改进的EC示踪法主要是利用O3和CO、EC作为光化学反应和一次源排放的指标,并结合ρ(OC)、ρ(EC)和OC/EC的变化特征,逐步筛选一次排放源主导的时间段的ρ(OC)和ρ(EC)数据,然后利用最小二乘法拟合获得ρ(OC)和ρ(EC)的线性方程,最后进行ρ(SOC)和ρ(POC)(POC为一次有机碳)的估算.天津市区夏季ρ(SOC)的平均值为(2.5±2.0)μg/m3,分别占ρ(OC)和ρ(PM2.5)的28.8%±15.0%和3.7%±3.6%;ρ(POC)的平均值为(5.2±1.7)μg/m3,分别占ρ(OC)和ρ(PM2.5)的71.2%±15.0%和8.1%±5.2%,说明天津市区夏季有机碳的主要来源是一次排放源.研究显示,相比于EC示踪法,改进的EC示踪法估算的ρ(SOC)明显降低,ρ(POC)明显升高.AT(大气温度)对ρ(SOC)的影响较为显著,而WS(风速)对ρ(POC)的影响较为显著.   相似文献   

9.
杭州市冬季环境空气PM2.5中碳组分污染特征及来源   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州市PM2.5中碳组分特征,于2013年12月-2014年2月在7个常规点位和2个对照点同步采集PM2.5样品,分析其污染特征及来源.结果表明:杭州市冬季有机碳(OC)、元素碳(EC)、二次有机碳(SOC)的平均质量浓度分别为(23.7±7.5)(5.0±2.4)和(9.2±4.5)μg/m3,OC/EC[ρ(OC)/ρ(EC)]和SOC/OC[ρ(SOC)/ρ(OC)]的平均值分别为5.3±1.9和0.4±0.2.对照点ρ(OC)、ρ(EC)、ρ(SOC)和OC/EC、SOC/OC分别为常规点位的0.8、0.6、1.2、1.2和1.3倍.采样期间,常规点位和对照点ρ(OC)和ρ(EC)的日均值具有相同的时间变化趋势.对照点ρ(OC)和ρ(EC)的相关性(0.49)低于常规点位(0.61),对照点PM2.5中OC和EC的来源差异性更明显.8个碳组分的丰度分析表明,常规点位和对照点PM2.5中碳组分的来源基本一致,主要来源于道路尘、燃煤、机动车和生物质燃烧.绝对主因子分析法源解析结果表明,杭州市冬季PM2.5中总碳(TC)的主要来源中,燃煤/汽油车排放/道路尘、柴油车排放和生物质燃烧的分担率为79.1%、13.1%和3.5%.   相似文献   

10.
以一辆国Ⅴ柴油公交车为研究对象,在重型底盘测功机上运行中国典型城市公交循环,研究了纯柴油(D100),体积混合比例分别为5%,10%和20%餐厨废弃油脂制生物柴油-柴油混合燃料(即B5,B10,B20)的颗粒物(PM)碳质组分排放特性.结果表明:国Ⅴ柴油公交车尾气颗粒物碳质组分包括有机碳(OC)和元素碳(EC),OC占73%~82%,OC的主要组分是OC2和OC3,生物柴油对车辆尾气颗粒物OC组成比例没有影响;随着生物柴油混合比例的增加,公交车尾气颗粒物OC和OC+EC排放呈降低的趋势,EC排放增加,且B10的OC排放较高;PM0.05~0.1,PM0.1~0.5,PM0.5~2.5,PM2.5~18 4个粒径段颗粒物中,PM0.1~0.5的OC和EC排放最高,PM2.5~18的EC排放几乎为零,生物柴油可改善公交车尾气超细颗粒(PM0.05~0.1)的OC排放,对公交尾气颗粒物EC排放基本没有影响;公交使用生物柴油混合燃料尾气颗粒物OC/EC减小,且PM0.05~0.1和PM0.5~2.5OC/EC降低幅度明显,对大气二次气溶胶的影响减弱.  相似文献   

11.
南京江北新区大气单颗粒来源解析及混合状态   总被引:4,自引:4,他引:0  
于兴娜  时政  马佳  李梅  龚克坚 《环境科学》2019,40(4):1521-1528
利用单颗粒气溶胶飞行时间质谱(SPAMS)于2015年12月1~31日对南京江北新区大气单颗粒进行了测量,共采集到同时含有正负离子谱图的颗粒747.8万个.结果表明,监测期间南京江北新区总体空气质量较差,污染天气占比为49.2%,SPAMS所捕获的颗粒数与PM2.5质量浓度的相关性达到0.83,因此颗粒物数浓度在一定程度上能够用来反映大气污染状况,监测点主要污染源包括燃煤源以及机动车尾气源,工业工艺源污染占比居第3位,3种源的总贡献率达到63.5%.从整体上看,PM2.5质量浓度的升高大多伴随着燃煤及机动车尾气占比的升高,EC、混合碳(ECOC)与OC在生物质燃烧、扬尘、汽车尾气排放、燃煤燃烧以及工业源中均与NO2-、NO3-以及SO4-有较高的混合程度.  相似文献   

12.
曹力媛 《环境科学研究》2017,30(10):1524-1532
为分析太原市采暖期和非采暖期PM2.5的特征,利用单颗粒气溶胶质谱仪(SPAMS)分析太原市典型生活区采暖期(2016年3月11-18日)和非采暖期(2016年4月1-7日)PM2.5的来源及组成.结果表明:① 采暖期(停暖前)颗粒物有机碳、硫酸盐和多环芳烃等信号强度大于非采暖期(停暖后),而元素碳、硝酸盐、铵盐等反之.② 为了尽可能排除气象因素的影响,选取风向(东南风)、风级(二级)相同时段的颗粒物进行分析,停暖前后颗粒物主要化学组分为有机碳、混合碳和元素碳,采暖前有机碳占比(达51.9%)最高,非采暖期元素碳占比(32.6%)最高.采暖期有机碳、高分子有机物和左旋葡聚糖占比明显高于非采暖期,元素碳、矿物质和重金属反之.③ 停暖前后首要的两类污染源为燃煤和机动车尾气,二者贡献率之和分别高达70.1%和67.4%,可见本地主要受这两类源的影响.燃煤在采暖期为首要污染源,并且贡献比例高于非采暖期,而机动车尾气在非采暖期为首要污染源,且比例明显高于采暖期.研究显示,采暖和非采暖期虽然首要污染源有所差异,但在污染过程中,机动车尾气源的贡献比例均高于优良时段,说明无论是采暖期还是非采暖期,除燃煤排放的影响外,机动车尾气的影响也需得到重视,建议加强机动车燃油品质的升级,使用清洁煤,并在重污染时段采取相应的管控措施.   相似文献   

13.
为了对西安市冬季重污染过程中的细颗粒物进行动态源解析,于2016年12月5-22日,利用SPAMS(单颗粒气溶胶质谱仪)在西安市城市运动公园开展连续观测.将观测期分为4个阶段,结合气象条件对不同阶段细颗粒物的污染特征进行分析比较.依据质谱特征,将所采集到的颗粒分为EC(元素碳)、OC(有机碳)、ECOC(混合碳)、HM(重金属)、LEV(左旋葡聚糖)、SiO3(矿尘)、K(钾)、Na(钠)、HOC(有机大分子)及Other(其他)类.结果表明:观测期间所采集到的OC类颗粒物数量最多,在重污染阶段OC、K和EC类颗粒物占颗粒总数的70%以上,是重污染天气的主要组成颗粒.在雾霾消散期,OC、LEV和SiO3类颗粒是主要类型颗粒物.根据颗粒物的化学类型及离子特征,利用PMF(正交矩阵因子分解)模型法得到6种污染源贡献率分别为27.7%(燃煤源)、22.3%(二次污染源)、20.4%(交通源)、10.4%(生物质燃烧源)、9.7%(工艺过程源)、6.5%(扬尘源)及3.0%(其他未知源).研究显示:在重污染阶段,燃煤源与交通源占比大幅上升,与二次污染源共同造成了此次重污染天气;在雾霾消散期,扬尘源及生物质燃烧源成为大气细颗粒物的主要污染源.   相似文献   

14.
Atmospheric particles(total suspended particles(TSPs); particulate matter(PM) with particle size below 10 μm, PM10; particulate matter with particle size below 2.5 μm, PM2.5)were collected and analyzed during heating and non-heating periods in Harbin. The sources of PM10 and PM2.5were identified by the chemical mass balance(CMB) receptor model.Results indicated that PM2.5/TSP was the most prevalent and PM2.5was the main component of PM210, while the presence of PM10–100was relatively weak. SO-4and NO-3concentrations were more significant than other ions during the heating period. As compared with the non-heating period, Mn, Ni, Pb, S, Si, Ti, Zn, As, Ba, Cd, Cr, Fe and K were relatively higher during the heating period. In particular, Mn, Ni, S, Si, Ti, Zn and As in PM2.5were obviously higher during the heating period. Organic carbon(OC) in the heating period was 2–5 times higher than in the non-heating period. Elemental carbon(EC) did not change much. OC/EC ratios were 8–11 during the heating period, which was much higher than in other Chinese cities(OC/EC: 4–6). Results from the CMB indicated that 11 pollution sources were identified, of which traffic, coal combustion, secondary sulfate, secondary nitrate, and secondary organic carbon made the greatest contribution. Before the heating period, dust and petrochemical industry made a larger contribution. In the heating period, coal combustion and secondary sulfate were higher. After the heating period, dust and petrochemical industry were higher. Some hazardous components in PM2.5were higher than in PM10, because PM2.5has a higher ability to absorb toxic substances. Thus PM2.5pollution is more significant regarding human health effects in the heating period.  相似文献   

15.
基于重庆本地碳成分谱的PM2.5碳组分来源分析   总被引:13,自引:10,他引:3  
为了解重庆主城PM2.5中碳组分特征和来源,2012-05-02~2012-05-10日在商业区、工业区和居民区进行了PM2.5采样.利用TOR方法分析了8种碳组分,对3个不同功能区大气环境PM2.5以及燃煤尘、尾气尘(机动车尾气、船舶尾气、施工机械尾气)、生物质燃烧尘、餐饮油烟尘这6类源PM2.5中的8种碳组分进行了特征分析.在源的碳成分谱基础上,利用化学质量平衡(CMB)模型得到重庆本地PM2.5的碳来源指示组分,利用因子分析法解析出各类源对不同功能区内PM2.5碳组分的贡献率.结果表明,重庆地区燃煤尘、机动车尾气尘、船舶尾气尘、施工机械尾气尘、生物质燃烧尘、餐饮油烟尘的OC/EC值分别为6.3、3.0、1.9、1.4、12.7和31.3.EC2、EC3的高载荷指示柴油车尾气排放,OC2、OC3、OC4、OPC的高载荷指示燃煤排放,OC1、OC2、OC3、OC4、EC1指示汽油车尾气排放,OC3指示餐饮业排放,OPC指示生物质燃烧排放.商业区OC/PM2.5为17.4%,EC/PM2.5为6.9%,估算得到,二次有机碳(SOC)/OC为40.0%;工业区OC/PM2.5为15.5%,EC/PM2.5为6.6%,SOC/OC为37.4%;居民区OC/PM2.5为14.6%,EC/PM2.5为5.6%,SOC/OC为42.8%.工业区PM2.5中碳组分的主要来源为燃煤和汽油车尾气、柴油车尾气;商业区PM2.5中碳组分的主要来源为汽油车尾气、柴油车尾气和餐饮业油烟;居住区PM2.5中碳组分的主要来源为汽油车尾气、餐饮业油烟、柴油车尾气.  相似文献   

16.
为研究西安市城市降尘和土壤尘PM10和PM2.5中碳组分污染特征,丰富大气降尘的成分谱库,于2015年4~5月收集了西安市城区5个点位的城市降尘和周边16个点位的土壤尘样品,通过ZDA-CY01颗粒物再悬浮采样器获得PM10和PM2.5的滤膜样品,使用Model5L-NDIR型OC和EC分析仪测定了样品中的有机碳(OC)和元素碳(EC),定量分析了西安市城市降尘和土壤尘PM10和PM2.5中碳组分特征及其主要来源.结果表明,不同站点降尘PM10和PM2.5中OC的占比差异较大,分别为6.0%~19.4%和7.6%~29.8%.不同站点降尘PM10和PM2.5中EC的占比较小,在城市站点的占比分别为0.6%~2.2%和0.2%~3.6%,而在多数外围土壤尘中几乎检测不到EC的存在.PM10中含碳组分的占比为:城市降尘>外部对照>河滩土>土壤尘,PM2.5中含碳组分的占比为:城市降尘>土壤尘>外部对照>河滩土.不同站点降尘含碳气溶胶均以OC为主,在城市降尘中相对较低,在PM10和PM2.5中OC占总碳(TC)的比值分别为85.2%~95.3%和87.9%~98.9%;在土壤尘中OC的占比较高,均超过99%.含碳物质主要集中在细颗粒物中.不同城市站点降尘中碳组分的分布具有一致性,不同土壤尘中碳组分的差异较大.城市和土壤降尘中碳组分主要受生物质燃烧、燃煤、汽油车和柴油车尾气等污染源的影响,PM10和PM2.5中含碳气溶胶的来源贡献率存在差异.  相似文献   

17.
为探究四川盆地典型城市PM2.5污染特征和来源,利用成都市、绵阳市、自贡市超站数据分析2020年冬季典型污染过程PM2.5组分特征,并采用CMB模型模拟获得研究期间PM2.5来源及演变特征.结果表明,不同城市PM2.5组分变化特征不尽相同,成都市污染过程整体呈现NO3-主导特征,但重度污染由OC主导.绵阳市污染期间呈现OC主导特征,是污染加重时增长最快的组分.EC是自贡市轻度污染增长最快的组分,NO3-、SO42-、NH4+是中度污染增长较快的组分,OC、EC是重度污染增长较快的组分.3个城市均是二次硝酸盐对PM2.5贡献率最高.比较而言,成都市机动车、扬尘源贡献率均最高;绵阳市二次有机碳贡献率最高,是成都市的2倍;自贡市燃煤源和二次硫酸盐贡献率分别比成都市和绵阳市高出4%~6%和7%~9%.成都市由优良天气到中度污染,二次硝酸盐贡献率随着污染程度的加重而增加,轻度污染较优良天气上升6%,中度污染较轻度污染天气上升3%.中度到重度污染,二次有机碳、机动车贡献率分别上升2%和1%.绵阳市由轻度到重度污染,二次有机碳对PM2.5的贡献率上升3%,机动车贡献率上升2%,是其污染加重的主要原因.自贡市由轻度到重度污染,各污染源贡献率变化幅度较小.  相似文献   

18.
Haze phenomena were found to have an increasing tendency in recent years in Yong'an, a mountainous industrial city located in the center part of Fujian Province, China. Atmospheric fine particles (PM2.5) in the urban area during haze periods in three seasons (spring, autumn and winter) from 2007 to 2008 were collected, and the mass concentrations and chemical compositions (seventeen elements, water soluble inorganic ions (WSIIs) and carbonaceous species) of PM2.5 were determined. PM2.5 mass concentrations did not show a distinct difference among the three seasons. The carbonaceous species organic carbon (OC) and elemental carbon (EC) constituted up to 19.2%-30.4% of the PM2.5 mass during sampling periods, while WSIIs made up 25.3%-52.5% of the PM2.5 mass. The major ions in PM2.5 were SO42-, NO3- and NH4+, while the major elements were Si, K, Pb, Zn, Ca and Al. The experimental results (from data based on three haze periods with a 10-day sampling length for each period) showed that the crustal element species was the most abundant component of PM2.5 in spring, and the secondary ions species (SO42-, NO3-, NH4+, etc.) was the most abundant component in PM2.5 in autumn and winter. This indicated that dust was the primary pollution source for PM2.5 in spring and combustion and traffic emissions could be the main pollution sources for PM2.5 in autumn and winter. Generally, coal combustion and traffic emissions were considered to be the most prominent pollution sources for this city on haze days.  相似文献   

19.
王成  闫雨龙  谢凯  李如梅  徐扬  彭林 《环境科学》2020,41(3):1036-1044
采集了阳泉市城区2017年10月15日~2018年1月23日PM_(2.5)样品,分析了优良天和污染天PM_(2.5)及其化学组分特征,并利用富集因子分析法(EF)和正定矩阵因子分析法(PMF)对PM_(2.5)进行来源分析.结果表明,采样期间污染天二次无机离子(SO_4~(2-)、 NO~-_3和NH~+_4)在PM_(2.5)中的比例为23.83%,是优良天的2.43倍,污染天二次无机污染严重,污染天人为源相关的元素Cd、 Sb、 Sn、 Cu、 Pb、 Zn和As富集程度大于优良天;主要的污染源对PM_(2.5)的贡献分别是燃煤29.26%、扬尘23.83%、机动车19.34%、二次源16.01%和工业源11.57%,其中,污染天机动车排放对PM_(2.5)的贡献20.57%,高于优良天时17.82%,而燃煤源的贡献23.04%明显低于优良天时33.75%,静稳天气时机动车排放对PM_(2.5)贡献较优良天上升,燃煤源对PM_(2.5)贡献有下降.因此,阳泉市在秋冬季应加强对燃煤、扬尘源的控制,同时进一步加强对机动车的控制,以减少污染期间机动车的贡献.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号