首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以炼制生物质油过程中产生的木屑炭为原料,CO2为活化气体,通过物理活化法制备活性炭。考察了活化温度、活化时间及CO2流量对活性炭亚甲基蓝吸附值的影响。采用中心组合实验,运用响应曲面进行工艺参数优化,得出最佳的工艺参数为活化温度850℃,活化时间3.91h,活化气体流量30ml/min,此时由软件预测的亚甲基蓝吸附值为10.66ml/0.1g,得率42.66%,经验证,与实际相符。并对模型进行了检验,验证了其有效性。并选择不同温度下制备活性炭进行N2吸附脱附等温线实验,得到所制备活性炭BET最大可达948m2/g,由BJH理论分可知其中孔比表面积为296m2/g,平均孔径为3.76nm。  相似文献   

2.
水蒸气法制备污泥质活性炭的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以污泥和木屑为原料,采用管式炉水蒸气活化法,对流化床热解炉制得的热解炭进行制备活性炭的研究,分析了活化因素对活化效果的影响、亚甲基蓝在活性炭上的吸附平衡和动力学、污泥活性炭浸出液中重金属的含量及其孔结构等性能.实验结果表明:随着活化温度的升高、活化时间的延长和水蒸气流量的增加,活性炭的得率不断降低,亚甲基蓝的吸附值先升高后降低;污泥中添加20%木屑时制得的活性炭的吸附性能是纯污泥质活性炭的一倍多; Langmuir吸附等温线模型、准二级反应模型能够比较准确地描述亚甲基蓝在污泥活性炭上的吸附相平衡及吸附过程,平衡时活性炭对亚甲基蓝单层最大吸附量为71.43mg/g;污泥质活性炭的孔结构以过渡孔为主;浸出液中只有少量的重金属.  相似文献   

3.
以花生壳为原料通过微波辐照制备了具有高比表面积并含有大量中孔的活性炭。讨论了活化剂类型、浸渍时间、浸渍比、活化剂浓度、微波功率和辐照时间对花生壳活性炭制备的影响。结果表明:相较磷酸和氢氧化钠,采用氯化锌活化剂制备的花生壳活性炭有更好的碘吸附性能;在浸渍浓度为40%,浸渍比为1∶6,浸渍时间为48 h,微波功率为500 W,辐照时间为6 min的条件下,制备的花生壳活性炭碘吸附值和亚甲基蓝吸附值分别为(898.6±12.8)mg/g和(46.2±3.8)mg/g;微波辐照工艺制备的活性炭,其碘吸附与亚甲基蓝吸附能力均优于马弗炉工艺;花生壳活性炭的碘吸附与亚甲基蓝吸附能力均优于市售活性炭。  相似文献   

4.
农作物残体制备的生物质炭对水中亚甲基蓝的吸附作用   总被引:19,自引:6,他引:13  
将稻草、稻壳、大豆秸秆和花生秸秆低温热解制备生物质炭,用平衡吸附实验和淋溶实验研究了制备的生物质炭对阳离子染料亚甲基蓝的吸附及对水体中亚甲基蓝的去除效果.结果表明,生物质炭对亚甲基蓝有很高的吸附能力,但不同生物质炭之间存在较大差异,4种生物质炭吸附亚甲基蓝能力的大小顺序为:稻草炭>大豆秸秆炭>花生秸秆炭>稻壳炭,这一顺序与生物质炭表面负电荷数量和生物质炭比表面的大小顺序基本一致.但亚甲基蓝在生物质炭表面主要发生专性吸附,因为亚甲基蓝的吸附量随介质离子强度的增加而增加,而且亚甲基蓝吸附使生物质炭颗粒的Zeta电位向正值方向位移.Langmuir方程对吸附等温线的拟合效果较好,可以用Langmuir方程描述生物质炭对亚甲基蓝的吸附.由Langmuir方程预测的亚甲基蓝在稻草炭、大豆秸秆炭、花生秸秆炭和稻壳炭表面的最大吸附量分别为196.1、169.5、129.9和89.3 mmol.kg-1.淋溶实验表明,156 g稻壳炭可以将30 L水中亚甲基蓝浓度为0.3 mmol.L-1的染料几乎全部除去,累积吸附量达57.7 mmol.kg-1.生物质炭可以用作高效吸附剂去除染料废水中的亚甲基蓝.  相似文献   

5.
磷酸活化纺织固体废弃物制备活性炭及表征   总被引:2,自引:0,他引:2  
以纺织固体废弃物为原料,磷酸为活化剂,采用一步活化法制备活性炭。采用正交实验研究了磷酸浓度、浸渍时间、活化温度和活化时间对活性炭吸附性能的影响,得到最佳工艺条件,借助氮吸附等温线、BET方程、BJH方程、SEM和FTIR分析了活性炭孔结构和表面化学性质。结果表明:最佳工艺条件为磷酸浓度40%(质量分数)、浸渍时间24h、活化温度500℃、活化时间30min。最佳条件下活性炭碘值为967mg/g,亚甲基蓝值为112mL/g,BET比表面积为1107.51m2/g,总孔容积为1.239cm3/g,中孔容积为1.024cm3/g,中孔占82.65%。活性炭表面具有羟基、羰基、内酯基和多种含磷官能团。  相似文献   

6.
高比表面生物质炭的制备、表征及吸附性能   总被引:9,自引:4,他引:5  
李坤权  李烨  郑正  桑大志 《环境科学》2013,34(1):328-335
以废弃生物质互花米草与棉秆为原料,采用KOH活化制备了高比表面积微孔生物质活性炭.研究了原料类别、浸渍比、炭化温度及保温时间对炭组成与吸附性能的影响,利用氮气吸附、X-射线衍射、红外光谱FT-IR、扫描电子显微镜SEM等技术对活性炭表面物化性质进行了分析,并通过BET方程、DFT密度函数理论及Horvath-Kawazoe方程对比表面积与孔分布进行了表征测定.结果表明,氢氧化钾活化制备互花米草与棉秆活性炭的适宜条件为浸渍比3:1、活化温度800℃、活化时间1.5 h.在此条件下制得的互花米草活性炭与棉秆活性炭的得率为16.36%和11.22%,BET比表面积高达2 825 m2.g-1和2 135 m2·g-1,孔容积分别为1.374 mg·g-1和1.038 cm3·g-1;孔径分布狭窄,95%的孔集中在3 nm以内.该条件下制备的互花米草与棉秆活性炭吸附性能好,对碘的吸附值分别为1 797 mg·g-1和1 251 mg·g-1,亚甲基蓝吸附值为495 mg·g-1和478mg·g-1,均超过了国家水处理用活性炭一级品标准;2种生物质炭样品对水中2,4-二硝基苯酚的Langmuir最大吸附量分别为932 mg.g-1、747 mg·g-1,均优于普通活性炭与活性炭纤维.  相似文献   

7.
实验利用提取茶多酚后的废茶以微波磷酸活化法制备活性炭,研究磷酸活化剂浓度、微波功率、微波辐照时间、浸渍比等因素对制备的活性炭亚甲基蓝吸附值的影响。分别通过单一因素分析及正交实验,找到制备活性炭的最佳条件:微波功率700W、辐照时间8min、磷酸浓度20%、磷酸/样品浸渍(质量)比3:1。利用该最佳条件制备的活性炭,验证实验表明:亚甲基蓝吸附值均〉75.12mg/g,活性炭平均回收率达到65.28%。  相似文献   

8.
以污水厂剩余污泥为原料,采用微波辐照硫酸活化的方法制备污泥活性炭。微波功率、辐照时间和硫酸浓度对污泥活性炭吸附性能具有显著影响,在最佳工艺条件微波功率500W、微波辐照时间240s、硫酸浓度25%~30%条件下制得的活性炭碘值为476.25mg/g,亚甲基蓝吸附量为12.20mg/g。  相似文献   

9.
表面改性秸秆生物质环境材料对水中PAHs的吸附性能   总被引:4,自引:1,他引:3       下载免费PDF全文
300~700℃下热解炭化芝麻秸秆8h后,再用H3PO4溶液进行表面改性,制备了芝麻秸秆生物质环境材料.测定了生物质环境材料比表面积及其对亚甲基蓝和碘的吸附能力,并以多环芳烃(PAHs)为目标污染物,探讨了生物质环境材料对水中不同固液比(0.01g/32ml和0.02g/32mL)下单一PAHs菲以及复合PAHs萘、苊、菲的吸附性能.结果表明,随热解温度升高,秸秆生物质环境材料比表面积增大,对碘和亚甲基蓝的吸附能力也增强,700°C时比表面积、碘值和亚甲基蓝吸附值的最大值分别为269.95m2/g、434mg/g和150mg/g.生物质环境材料吸附水中PAHs的能力强,700℃时0.01g材料对32mL水中萘、苊、菲的去除率分别高达94.44%、95.47%和100%,均比相同条件下未经H3PO4改性的秸秆生物质环境材料高.  相似文献   

10.
采用泥炭为原料,氢氧化钾为活化剂制备了粉末活性炭,并研究其对水中亚甲基蓝的吸附性能。选取泥炭秸秆比、活化时间、活化温度和碱炭比为因素,通过正交试验确定了最佳工艺条件,即泥炭秸秆比为2∶1,活化时间为1 h,活化温度700℃,碱炭比为1∶3。吸附实验结果表明,该泥炭复配玉米秸秆为原料制备的粉末活性炭对水中亚甲基蓝的吸附效率高,最大吸附量为898.2 mg/g,Freundlich吸附等温式的拟合效果优于Langmuir吸附等温式,表明主要吸附为多层吸附。准二级动力学模型比准一级动力学模型能更好地拟合活性炭吸附亚甲基蓝的动力学规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号