首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous addition of municipal biosolids to soils based on plant nitrogen (N) requirements can cause buildup of soil phosphorus (P) in excess of crop requirements; runoff from these soils can potentially contribute to nonpoint P pollution of surface waters. However, because biosolids are often produced using lime and/or metal salts, the potential for biosolids P to cause runoff P losses can vary with wastewater treatment plant (WWTP) process. This study was conducted to determine the effect of wastewater treatment process on the forms and amounts of P in biosolids, biosolids-amended soils, and in runoff from biosolids-amended soils. We amended two soil types with eight biosolids and a poultry litter (PL) at equal rates of total P (200 kg ha(-1); unamended soils were used as controls. All biosolids and amended soils were analyzed for various types of extractable P, inorganic P fractions, and the degree of P saturation (acid ammonium oxalate method). Amended soils were placed under a simulated rainfall and all runoff was collected and analyzed for dissolved reactive phosphorus (DRP), iron-oxide-coated filter paper strip-extractable phosphorus (FeO-P), and total phosphorus (EPA3050 P). Results showed that biosolids produced with a biological nutrient removal (BNR) process caused the highest increases in extractable soil P and runoff DRP. Alternatively, biosolids produced with iron only consistently had the lowest extractable P and caused the lowest increases in extractable soil P and runoff DRP when added to soils. Differences in soil and biosolids extractable P levels as well as P runoff losses were related to the inorganic P forms of the biosolids.  相似文献   

2.
Chemical immobilization is a relatively inexpensive in situ remediation method that reduces soil contaminant solubility, but the ability of this remediation treatment to reduce heavy metal bioavailability and ecotoxicity to soil invertebrates has not been evaluated. Our objectives were to (i) assess the ability of chemical immobilization amendments (municipal sewage sludge biosolids and rock phosphate) to reduce metal bioavailability and toxicity in a toxic metal-contaminated smelter soil and (ii) evaluate soil extraction methods using Ca(NO3)2 solution or ion-exchange membranes coated with diethylenetriaminepentaacetic acid (DTPA) as surrogate measures of metal bioavailability and ecotoxicity. We treated a soil contaminated by Zn and Pb milling and smelting operations and an uncontaminated control soil with lime-stabilized municipal biosolids (LSB), rock phosphate (RP), or anaerobically digested municipal biosolids (SS) and evaluated lethality of the remediated soils to earthworm (Eisenia fetida Savigny). Lime-stabilized municipal biosolids was the only remediation amendment to successfully immobilize lethal levels of Zn in the smelter soil (14-d cumulative mortality < or = 15%). Calcium nitrate-extractable Zn in the lethal Zn smelter soil-amendment combinations was 11.5 to 18.2 mmol/kg, compared with the nonlethal LSB amended soil (0.62 mmol/kg). The Ca(NO3)2-extractable Zn-based median lethal concentration (LC50) of 6.33 mmol/kg previously developed in Zn-spiked artificial soils was applicable in the remediated smelter soils despite a 14-fold difference in total Zn concentration. Chelating ion-exchange membrane uptake among the soils was highly variable (mean CV = 39%) compared with the Ca(NO3)2-extraction (mean CV = 1.9%) and not well related to earthworm toxicity.  相似文献   

3.
Detectable levels of dioxins have been reported in biosolids, but very little information is available on the effect of long-term application of biosolids on dioxins accumulation in soil and uptake by plants. We analyzed dioxins in soil and corn tissue samples from field plots after 30 continuous applications of biosolids at 0 (Control), 16.8, and 67.2 Mg biosolids ha(-1) yr(-1) resulting in 0, 504, and 2016 Mg ha(-1) cumulative loadings of biosolids, respectively. The levels of dioxins in soil were only 79.9, 115.5, and 247.5 ng toxic equivalents (TEQs) kg(-1) in the 0, 504, and 2016 Mg biosolids ha(-1) plots, respectively. Dioxins were not detected in the corn grain, and only trace levels (6.8-7.5 ng TEQs kg(-1)) were found in the corn stover; however, these values were not statistically different between control and biosolids-amended soils. These observations suggest that although long-term application of biosolids may increase the levels of dioxins in soil, it does not affect dioxins uptake by corn.  相似文献   

4.
Little research has been conducted in the Lake States (Minnesota, Wisconsin, and Michigan) to evaluate the effects of municipal and industrial by-product applications on the early growth of short rotation woody crops such as hybrid poplar. Anticipated shortages of harvestable-age aspen in the next decade can be alleviated and rural development can be enhanced through the application of by-products to forest soils. This study was conducted to evaluate the effects of inorganic fertilizer, boiler ash, biosolids, and the co-application of ash and biosolids application on tree growth and soil properties by measuring hybrid poplar clone NM-6 (Populus nigra L. x P. maximowiczii A. Henry) yield, nutrient uptake, and select post-harvest soil properties after 15 wk of greenhouse growth. Treatments included a control of no amendment; agricultural lime; inorganic N, P, and K; three types of boiler ash; biosolids application rates equivalent to 70, 140, 210, and 280 kg available N ha(-1); and boiler ash co-applied with biosolids. All of the by-products treatments showed biomass production that was equal to or greater than inorganic fertilizer and lime treatments. A trend of increased biomass with increasing rates of biosolids was observed. Soil P concentration increased with increasing rates of biosolids application. None of the by-products treatments resulted in plant tissue metal concentrations greater than metal concentrations of plant tissue amended with inorganic amendments. Biosolids, boiler ash, and the co-application of biosolids and boiler ash together on forest soils were as beneficial to plant growth as inorganic fertilizers.  相似文献   

5.
The amendment of soil with compost may significantly influence the mobility and persistence of pesticides and thus affect their environmental fate. Factors like adsorption, kinetics, and rate of degradation of pesticides could be altered in amended soils. The aim of this study was to determine the effects of the addition of compost made from source-separated municipal waste and green waste, on the fate of triasulfuron [(2-(2-chloroethoxy)-N-[[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide], a sulfonylurea herbicide used in postemergence treatment of cereals. Two native soils with low organic matter content were used. A series of analyses was performed to evaluate the adsorption and degradation of the herbicide in soil and in solution after the addition of compost and compost-extracted organic fractions, namely humic acids (HA), fulvic acids (FA), and hydrophobic dissolved organic matter (HoDOM). Results have shown that the adsorption of triasulfuron to soil increases in the presence of compost, and that the HA and HoDOM fractions are mainly responsible for this increase. Hydrophobic dissolved organic matter applied to the soils underwent sorption reactions with the soils, and in the sorbed state, served to increase the adsorption capacity of the soil for triasulfuron. The rate of hydrolysis of triasulfuron in solution was significantly higher at acidic pH and the presence of organic matter fractions extracted from compost also slightly increased the rate of hydrolysis. The rate of degradation in amended and nonamended soils is explained by a two-stage degradation kinetics. During the initial phase, although triasulfuron degradation was rapid with a half-life of approximately 30 d, the presence of compost and HoDOM was found to slightly reduce the rate of degradation with respect to that in nonamended soil.  相似文献   

6.
Evaluation of phosphorus transport in surface runoff from packed soil boxes   总被引:2,自引:0,他引:2  
Evaluation of phosphorus (P) management strategies to protect water quality has largely relied on research using simulated rainfall to generate runoff from either field plots or shallow boxes packed with soil. Runoff from unmanured, grassed field plots (1 m wide x 2 m long, 3-8% slope) and bare soil boxes (0.2 m wide and 1 m long, 3% slope) was compared using rainfall simulation (75 mm h(-1)) standardized by 30-min runoff duration (rainfall averaged 55 mm for field plots and 41 mm for packed boxes). Packed boxes had lower infiltration (1.2 cm) and greater runoff (2.9 cm) and erosion (542 kg ha(-1)) than field plots (3.7 cm infiltration; 1.8 cm runoff; 149 kg ha(-1) erosion), yielding greater total phosphorus (TP) losses in runoff. Despite these differences, regressions of dissolved reactive phosphorus (DRP) in runoff and Mehlich-3 soil P were consistent between field plots and packed boxes reflecting similar buffering by soils and sediments. A second experiment compared manured boxes of 5- and 25-cm depths to determine if variable hydrology based on box depth influenced P transport. Runoff properties did not differ significantly between box depths before or after broadcasting dairy, poultry, or swine manure (100 kg TP ha(-1)). Water-extractable phosphorus (WEP) from manures dominated runoff P, and translocation of manure P into soil was consistent between box types. This study reveals the practical, but limited, comparability of field plot and soil box data, highlighting soil and sediment buffering in unamended soils and manure WEP in amended soils as dominant controls of DRP transport.  相似文献   

7.
Utilization of biosolids through land application is becoming increasingly popular among wastewater managers. To minimize the potential contamination of receiving waters from biosolids-derived nitrogen (N), it is important to understand the availability of N after land application of biosolids. In this study, four secondary biosolids (two municipal and two pulp and paper industrial biosolids) were used in a laboratory incubation experiment to simulate N mineralization and transformation after land application. Municipal biosolids were from either aerobically or anaerobically digested sources, while pulp and paper industrial biosolids were from aerated wastewater stabilization lagoons. These biosolids were mixed with two New Zealand forest soils (top 100 mm of a volcanic soil and a brown soil) and incubated at two temperatures (10 and 20 degrees C) for 26 wk. During incubation, mineralized N was periodically leached from the soil-biosolids mixture with 0.01 M CaCl2 solution and concentrations of NH4 and NO3 in leachate were determined. Mineralization of N from aerobically digested municipal biosolids (32.1%) was significantly more than that from anaerobically digested biosolids (15.2%). Among the two pulp and paper industrial biosolids, little N leached from one, while as much as 18.0% of total organic N was leached from the other. As expected, mineralization of N was significantly greater at 20 degrees C (average 22.8%) than at 10 degrees C (average 9.7%). It was observed that more N in municipal biosolids was mineralized in the brown soil, whereas more N in pulp and paper industrial biosolids mineralized in the volcanic soil. Transformation of NH4 to NO3 was affected by soil type and temperature.  相似文献   

8.
The effect of the addition of spent mushroom substrate (SMS) to the soil as an amendment on the distribution and/or fate of copper from a copper-based fungicide applied to a vineyard soil in La Rioja (N. Spain) was studied. The study was carried out on experimental plots amended or not with SMS at rates of 40 and 100 t ha(-1). The variation in total Cu content in the topsoil (0-10 cm) and in the soil profile (0-50 cm), and the distribution of Cu in different fractions of the topsoil were studied as a function of the dose of Cu added (5 and 10 kg ha(-1)) and of the time elapsed since application (0-12 months). In addition, the changes in the chemical properties (solid organic carbon (OC), dissolved organic carbon (DOC) and pH) of the soils were studied. A greater capacity for Cu retention by the amended soils than by the unamended one was observed only when the fungicide was applied at the high dose. No effect of the amendment rate was noted on this retention capacity. The metal content in the topsoil decreased over time in step with the disappearance of the OC in the amended soil due to its oxidation, mineralization and/or leaching. This decrease in total Cu content was possibly due to the formation of soluble Cu complexes with the DOC, which facilitated its transport through the soil. A re-distribution of Cu in the different soil fractions was also observed over time, mainly from the organic to the residual fraction. The results obtained indicate that the increase in OC due to the application of SMS at the rates used does not lead to any significant increase in the persistence of Cu in the soil over time. Of greater interest would be the assessment of the risk for groundwater quality, owing to possible leaching of the fungicide enhanced by the SMS when SMS and Cu-based fungicides are jointly applied to vineyard soils.  相似文献   

9.
Debate exists over the biosolid phase (organic or inorganic) responsible for the reduction in phytoavailable Cd in soils amended with biosolids as compared with soils amended with inorganic salts. To test the importance of these two phases, adsorption isotherms were developed for soil samples (nine biosolids-amended soils and their five companion controls) and two biosolids samples from five experimental sites with documented histories of biosolids application. Subsamples were treated with 0.7 M NaClO to remove organic carbon. Cadmium nitrate was added to both moist soil samples and their soil inorganic fractions (SIF) in a 0.01 M Ca(NO3)2 solution at three pH levels (6.5, 5.5, and 4.5), and equilibrated at 22 +/- 1 degrees C for at least 48 h. Isotherms of Cd adsorption for biosolids-amended soil were intermediate to the control soil and biosolids. Decreasing pH did not remove the difference between these isotherms, although adsorption of Cd decreased with decreasing pH level. Organic matter removal reduced Cd adsorption on all soils but had little influence on the observed difference between biosolids-amended and control soils. Thus, increased adsorption associated with biosolids application was not limited to the organic matter addition from biosolids; rather, the biosolids application also altered the adsorptive properties of the SIF. The greater affinity of the inorganic fraction of biosolids-amended soils to adsorb Cd suggests that the increased retention of Cd on biosolids-amended soils is independent of the added organic matter and of a persistent nature.  相似文献   

10.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   

11.
Soil organic carbon (SOC) and dissolved organic carbon (DOC) affect long-term heavy metal solubility in biosolids-amended soils, but their role needs to be further studied under Mediterranean climatic conditions. We investigated Zn solubility, as assessed by water extraction, in two typical Greek soils amended with biosolids at 0, 20, and 100 Mg ha(-1) during a 310-d incubation period. It was found that SOC decreased by nearly 30% over time in the 100 Mg ha(-1) treatment. There was evidence that DOC affected Zn solubility, because DOC increased significantly on Day 23, probably due to a flush in microbial activity, and water-extractable Zn followed the same trend. After that, both DOC and water-extractable Zn decreased back to values similar to those of the unamended soils. Although Zn solubility did not increase overall even at high biosolids application rates, this study shows that time-limited fluctuations in Zn solubility due to sudden DOC flushes, can be significant, and need to be further investigated.  相似文献   

12.
The behavior of the herbicide terbuthylazine (TA) was studied in a clay loam soil after the addition of different organic amendments (OAs). Addition of poultry compost (PC) and urban sewage sludge (USS) retarded degradation of TA with half-life values of 60.3 and 73.7 d, respectively. In contrast, addition of corn straw (CS) did not significantly alter the degradation of TA (half-life 55.5 d) compared with its degradation in nonamended soils (half-life 57.3 d). Sterilization of amended and nonamended soils resulted in a partial inhibition of TA degradation, indicating that biotic and abiotic processes are involved in TA degradation in soil. Degradation of TA led to the formation of desethyl-terbuthylazine, which was detected in low amounts (<8% of the initially applied TA) in all soils. Adsorption of TA was relatively low, with Kd values ranging from 2.31 L kg(-1) in the nonamended soil to 3.93 L kg(-1) in the soil amended with USS. In general, Kd values increased with increasing soil organic carbon content. The dissolved organic matter extracted from the OAs did not appear to interact with the pesticide or the soil surfaces, suggesting that it would not probably facilitate herbicide transport. Desorption studies indicated a slight hysteresis of TA desorption in the amended soils compared with TA desorption in the nonamended soil, which was entirely reversible. These findings might have practical implications for the environmental fate of TA in agricultural soils, where the studied OAs are commonly used.  相似文献   

13.
Bioavailability of biosolids molybdenum to soybean grain   总被引:2,自引:0,他引:2  
Legumes grown in biosolids-amended soils and then fed to ruminants can represent problematic sources of molybdenum (Mo), but few field data are available to quantify the risk. We used a set of fields amended to high cumulative biosolids Mo loads (>18 kg ha(-1)) over 27 yr to generate additional data. Soybean [Glycine max (L.) Merr.] was grown on 29 fields (pH values>6.8) amended to a wide range of soil Mo loads. Soybean grain harvested from each field was analyzed for Mo and the concentrations regressed against soil Mo loads estimated from actual soil Mo concentrations in the 0- to 15-cm depth. Slopes of such linear regressions represent uptake coefficients (UC values) used by the USEPA to assess risk of biosolids Mo to ruminants fed forage grown on biosolids-amended land. The UC value for all 29 fields was estimated as 1.66, which agrees with the few soybean grain data in the literature. The UC value, however, is well below a conservative UC value of 4, recently recommended for all fresh legume materials fed to cattle. Soybean grain can contain high concentrations of Mo (>10 mg kg(-1)) and have low (<2:1) Cu to Mo ratios, which can exacerbate molybdenosis problems in cattle. However, soybean grain normally constitutes only -10% of dairy cattle diet, and other constituents (e.g., corn grain, stover, mineral supplements) are sufficient, or can be manipulated, to control molybdenosis.  相似文献   

14.
In December 2003, the USEPA released an amended list of 15 "candidate pollutants for exposure and hazard screening" with regard to biosolids land application, including Ba. Therefore, we decided to monitor soil Ba concentrations from a dryland wheat (Triticum aestivum L.)-fallow agroecosystem experiment. This experiment received 10 biennial biosolids applications (1982-2003) at rates from 0 to 26.8 dry Mg ha(-1) per application year. The study was conducted on a Platner loam (Aridic Paleustoll), approximately 30 km east of Brighton, CO. Total soil Ba, as measured by 4 M HNO(3), increased with increasing biosolids application rate. In the soil-extraction data from 1988 to 2003, however, we observed significant (P < 0.10) linear or exponential declines in ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA) extractable Ba concentrations as a function of increasing biosolids application rates. This was observed in 6 of 7 and 3 of 7 yr for the 0- to 20- and 20- to 60-cm soil depths, respectively. Results suggest that while total soil Ba increased as a result of biosolids application with time, the mineral form of Ba was present in forms not extractable with AB-DTPA. Scanning electron microscopy using energy dispersive spectroscopy verified soil Ba-S compounds in the soil surface, probably BaSO(4). Wet chemistry sequential extraction suggested BaCO(3) precipitation was increasing in the soil subsurface. Our research showed that biosolids application may increase total soil Ba, but soil Ba precipitates are insoluble and should not be an environmental concern in similar soils under similar climatic and management conditions.  相似文献   

15.
Natural and synthetic steroidal hormones can be carried to agricultural soil through fertilization with municipal biosolids, livestock manure, or poultry manure. The persistence and pathways of dissipation of [4-(14)C]-testosterone and of [4-(14)C]-17beta-estradiol in organic-amended soils were investigated using laboratory microcosms. Testosterone dissipation was investigated over a range of amendment concentrations, temperatures, and soil types. Under all conditions the parent compound and transformation products were dissipated within a few days. Addition of swine manure slurry to soil hastened the transformation of testosterone and 17beta-estradiol to the corresponding less hormonally active ketones, 4-androstene-3,17-dione and estrone. Two other testosterone transformation products, 5alpha-androstan-3,17-dione and 1,4-androstadiene-3,17-dione, were also detected. Experiments with sterilized soil and sterilized swine manure slurry suggested that the transformation of (14)C-labeled hormonal parent compounds was mainly caused by microorganisms in manure slurry, while mineralization of the hormones to (14)CO(2) required viable soil microorganisms. Organic amendments transiently inhibited the mineralization of [4-(14)C]-testosterone, perhaps by inhibiting soil microorganisms, or by enhancing sorption and reducing the bioavailability of testosterone or transformation products. Overall, organic amendments influenced the pathways and kinetics of testosterone and estradiol dissipation, but did not increase their persistence.  相似文献   

16.
Continuous N-based application of biosolids contributes to a gradual increase of trace elements and P in soils. The objectives of this study were to assess the accumulation and vertical transport of Cu, Zn, C, N, and P within the profile of two coastal plain soils. Liquid (6-8% total solids) biosolids were applied to an Acredale silt loam (fine silty, mixed, thermic typic Ochraqualfs) and Bojac loamy sand (coarse loamy, mixed, thermic typic Hapludult) annually from 1984 to 1998. The repeated applications supplied 70, 204, and 3823 kg ha(-1) of Cu, Zn, and P, respectively, to the Acredale and 81, 225, and 4265 kg ha(-1) of Cu, Zn, and P, respectively, to the Bojac. The total C and N contents were not different than background levels in the Bojac soil and were slightly higher in the Acredale soil 7 years after cessation of biosolids application. Phosphorus, Cu and Zn are still concentrated in the top 0.25 m of the Acredale soil. Enrichment of P, Cu, and Zn were detected to the deepest soil increment in the coarse-textured Bojac soil. Approximately 20 to 40% of the Cu and Zn applied in the biosolids could not be accounted, which was likely due to a combination of leaching and incomplete extraction. Excessive Mehlich 1-P concentrations and a high degree of P saturation were found in amended soil, raising the potential for P release to runoff or leaching water.  相似文献   

17.
This research combines laboratory and field studies with computer simulation to characterize the amount of plant-available nitrogen (PAN) released when municipal biosolids are land-applied to agronomic crops. In the laboratory studies, biosolids were incubated in or on soil from the land application sites. Mean biosolids total C, organic N, and C to N ratio were 292 g kg(-1), 41.7 g kg(-1), and 7.5, respectively. Based on CO2 evolution at 25 degrees C and optimum soil moisture, 27 of the 37 biosolids-soil combinations had two decomposition phases. The mean rapid and slow fraction rate constants were 0.021 and 0.0015 d(-1), respectively, and the rapid fraction contained 23% of the total C assuming sequential decomposition. Where only one decomposition phase existed, the mean first order rate constant was 0.0046 d(-1). The mean rate constant for biosolids stored in lagoons for an extended time was 0.00097 d(-1). The only treatment process that was related to biosolids treatment was stabilization by storage in a lagoon. Biosolids addition rates (dry basis) ranged from 1.3 to 33.8 Mg ha(-1) with a mean value of 10.6 Mg ha(-1). A relationship between fertilizer N rate and crop response was used to estimate observed PAN at each site. Mean observed PAN during the growing season was 18.9 kg N Mg(-1) or 37% of the biosolids total N. Observed PAN was linearly related to biosolids total N. Predicted PAN using the computer model Decomposition, actual growing-season weather, actual analytical data, and laboratory decomposition kinetics compared well with observed PAN. The mean computer model prediction of growing-season PAN was 19.2 kg N Mg(-1) and the slope of the regression between predicted and observed PAN was not significantly different from unity. Predicted PAN obtained using mean decomposition kinetics was related to predicted PAN using actual decomposition kinetics suggesting that mean rate constants, actual weather, and actual analytical data could be used in estimation of PAN. There was a linear relationship between predicted N mineralization for the growing season and for the first year. For this study, the mean values for the growing season and year were 27 and 37% of the organic N, respectively.  相似文献   

18.
Addition of anaerobically digested sewage sludge (biosolids) to soil may improve conditions for phytoremediation of petroleum hydrocarbons (PHCs) through improved soil chemical, biological, and physical properties. A 32-wk greenhouse study investigated three rates of biosolids addition (0, 13.34, and 26.68 g oven-dry biosolids kg(-1) oven-dry soil) and the presence or absence of smooth brome (Bromus inermis Leyss. cv. Carlton) plants on the removal of diesel (3.5 g kg(-1) oven-dry soil) in an industrial, sandy loam soil. Diesel PHCs were divided into two fractions based on equivalent normal straight-chain boiling point ranges (F2: nC10-nC16; F3: nC16-nC34). The addition of biosolids did not increase the extent of PHC degradation but did result in significantly greater first-order decay constants compared to unamended controls. Overall, the presence of plants did not increase the rate or extent of PHC degradation, relative to that observed in unamended, non-vegetated soils. Vegetation was, however, an important factor within the biosolids-amended soils as was observed by a greater extent of PHC degradation. Some of this decrease was attributed to plant-induced removal of biosolids components that were contributing to the F3 fraction. Overall, the low-amendment rate (13.34 g oven-dry biosolids kg(-1) oven-dry soil) was considered to be the most effective treatment because it produced the greatest overall PHC degradation rate (0.226 wk(-1) for total PHCs) and resulted in the greatest recovery of biosolids-derived N by smooth brome (26.6%).  相似文献   

19.
Effect of biosolids processing on lead bioavailability in an urban soil   总被引:3,自引:0,他引:3  
The potential for biosolids products to reduce Pb availability in soil was tested on a high Pb urban soil with biosolids from a treatment plant that used different processing technologies. High Fe biosolids compost and high Fe + lime biosolids compost from other treatment plants were also tested. Amendments were added to a Pb-contaminated soil (2000 mg kg(-1) Pb) at 100 g kg(-1) soil and incubated for 30 d. Reductions in Pb bioavailability were evaluated with both in vivo and in vitro procedures. The in vivo study entailed feeding a mixture of the Pb-contaminated soil and AIN93G Basal Mix to weanling rats. Three variations of an in vitro procedure were performed as well as conventional soil extracts [diethylenetriaminepentaacetic acid (DTPA) and Ca(NO3)2] and sequential extraction. Addition of the high Fe compost reduced the bioavailability of soil Pb (in both in vivo and in vitro studies) by 37 and 43%, respectively. Three of the four compost materials tested reduced Pb bioavailability more than 20%. The rapid in vitro (pH 2.3) data had the best correlation with the in vivo bone results (R = 0.9). In the sequential extract, changes in partitioning of Pb to Fe and Mn oxide fractions appeared to reflect the changes in in vivo Pb bioavailability. Conventional extracts showed no changes in metal availability. These results indicate that addition of 100 g kg(-1) of high Fe and Mn biosolids composts effectively reduced Pb availability in a high Pb urban soil.  相似文献   

20.
Vegetated buffers strips typically have limited ability to reduce delivery of dissolved phosphorus (DP) from agricultural fields to surface waters. A field study was conducted to evaluate the ability of buffer strips enhanced with drinking water treatment residuals (WTRs) to control runoff P losses from surface-applied biosolids characterized by high water-extractable P (4 g kg(-)(1)). Simulated rainfall (62.4 mm h(-1)) was applied to grassed plots (3 m x 10.7 m including a 2.67 m downslope buffer) surface-amended with biosolids at 102 kg P ha(-1) until 30 min of runoff was collected. With buffer strips top-dressed with WTR (20 Mg ha(-1)), runoff total P (TP = 2.5 mg L(-1)) and total DP (TDP = 1.9 mg L(-1)) were not statistically lower (alpha = 0.05) compared to plots with unamended grass buffers (TP = 2.7 mg L(-1); TDP = 2.6 mg L(-1)). Although the applied WTR had excess capacity (Langmuir P maxima of 25 g P kg(-1)) to sorb all runoff P, kinetic experiments suggest that sheet flow travel time across the buffers ( approximately 30 s) was insufficient for significant P reduction. Effective interception of dissolved P in runoff water by WTR-enhanced buffer strips requires rapid P sorption kinetics and hydrologic flow behavior ensuring sufficient runoff residence time and WTR contact in the buffer. Substantial phosphate-adsorbent contact opportunity may be more easily achieved by incorporating WTRs into P-enriched soils or blending WTRs with applied P sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号