首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
为研究生物炭添加(B0:0 t·hm-2、 B20:20 t·hm-2、 B40:40 t·hm-2)和地膜覆盖(FM:覆膜、 NM:不覆膜)对菜地N2O排放的影响,以西南大学农场内辣椒-萝卜轮作菜地为研究对象,采用静态暗箱/气相色谱法进行为期1 a的田间原位观测.共设置6个处理,分别为NMB0(CK)和FMB0、 NMB20和FMB20、 NMB40和FMB40.结果表明,FM显著提高辣椒季土壤中铵态氮和硝态氮含量(P<0.05),而对萝卜季土壤环境因子均无显著影响.与NM相比,辣椒季FM分别对B0、 B20和B40处理下的N2O排放提高了52.87%、 52.97%和52.49%(P<0.05),但萝卜季FM对N2O排放无显著影响.生物炭对辣椒和萝卜季土壤环境因子均无显著影响.萝卜季生物炭添加减少了28.76%~67.88%的N2O排放(P<0.01),辣椒季生物炭添加对N2O排放无显著影响...  相似文献   

2.
为探明在土壤环境有利于氨氧化作用发生的条件下,稻壳生物炭对酸性农田土壤N2O排放的影响,将生物炭分别按质量比0%(对照)、2%、5%和10%与土壤充分混匀,开展为期17d的室内静态土壤培养实验,研究土壤N2O排放速率的日变化以及整个培养期间的N2O累积排放量.同时,测定了培养终态土壤样品的pH值、NH4+-N、NO3--N、NO2--N和溶解性有机碳(DOC)含量,分析稻壳生物炭对土壤N2O排放影响的机理.结果表明,不同稻壳生物炭添加量均显著抑制了酸性农田土壤的N2O排放(P<0.001),且以5%和10%处理的抑制作用最明显;与对照处理相比,2%、5%和10%处理的N2O累积排放量分别减少了87.68%、94.59%和96.90%.培养前后土壤pH值、NH4+-N和NO3--N含量的变化表明,稻壳生物炭显著促进了土壤的硝化作用,尤其是5%和10%处理.线性回归分析表明,土壤N2O排放速率与NO2--N含量显著正相关(P<0.01),且NO2--N含量对N2O排放速率的解释程度为45%.由于稻壳生物炭促进了土壤的硝化作用,使NO2-更易转化为NO3-,减少了NO2-积累,进而减少了通过硝化菌反硝化作用途径产生的N2O.培养结束时,5%和10%处理的DOC含量显著高于对照处理,但培养过程中,稻壳生物炭并未显著促进土壤有机碳矿化.  相似文献   

3.
郭怡婷  罗晓琦  王锐  陈海心  冯浩 《环境科学》2022,43(5):2788-2801
为探究生物可降解地膜覆盖对冬小麦-夏玉米轮作农田生态系统温室气体排放的影响,布设了普通地膜覆盖(PM)、生物可降解地膜覆盖(BPM)和无覆盖(CK)这3个处理,采用静态暗箱-气相色谱仪法监测了2018~2019年土壤CO2、 CH4和N2O的排放通量,并用水分利用效率(WUE)、温室气体排放强度(GHGI)和净生态系统经济预算(NEEB)指标评估覆膜对作物产量、农田环境和经济效益的影响.结果表明,与CK相比,PM和BPM增加了玉米季土壤CO2的排放,PM处理下CO2排放总量高于BPM处理(P>0.05).PM和BPM处理均能够显著减少土壤对CH4的吸收,CH4的年吸收量较CK处理分别减少了42.0%和24.2%(P<0.05).与CK相比,PM和BPM增加了小麦季N2O排放总量(P>0.05),而显著降低了夏玉米季N2O排放(P<0.05).覆膜能够提高作物产量和水分...  相似文献   

4.
开展了连续2 a(2019~2020年)的田间试验,通过设置不施肥(CK)、农户习惯施肥(CF)、二次追肥(TT)和有机肥替代20%化肥(OF)这4个处理,用静态箱-气相色谱法研究施肥对稻田CH4和N2O排放的影响,并综合水稻产量和综合温室效应(GWP)对单位水稻产量温室气体排放强度(GHGI)进行分析,探讨长江中下游典型水稻种植区增产减排的施肥方式.结果表明:(1)与CK相比,两年间各施肥处理均降低了CH4排放,降幅为14.6%~25.1%;增加了N2O排放,增幅为610%~1 836%;(2)与CF相比,TT和OF处理均呈现增加CH4排放和降低N2O排放的趋势,TT和OF处理两年CH4累积排放量年均值的增幅分别为1.8%(P>0.05)和14.0%(P<0.05); TT和OF处理两年N2O累积排放量年均值的降幅分别为63.3%(P<0.05)和49.2%(P<0.05);(3)与CK...  相似文献   

5.
为探究不同pH值农田土壤对猪粪中典型重金属(Cu, Zn)残留的响应,采用酸(pH值为5.81),中(pH值为7.18),碱(pH值为8.00)3种菜地土壤,分别设置不添加猪粪(CK),等氮添加有机猪粪(M)以及集约化养殖业产出的高Cu, Zn残留猪粪(MP)3种处理,干湿交替预培养至猪粪中易利用底物基本耗尽后追加尿素,以进一步分析MP中残留有效Cu、Zn对N2O排放及其相关因子的影响.结果表明,不同pH值土壤N2O排放对添加MP响应不同,MP在酸性和碱性土壤中显著抑制N2O排放,在中性土壤中则显著促进N2O排放(P<0.05).与有效Cu, Zn显著相关的产N2O底物和微生物因子在不同土壤中存在一定差异.逐步回归分析表明酸性土壤N2O排放的主要驱动因子为NH4+-N转化量,有效Zn含量和18SrRNA丰度,碱性土壤N2O排放仅受NO3--N...  相似文献   

6.
谢军  王子芳  王蓥燕  熊子怡  高明 《环境科学》2023,44(8):4565-4574
为明确化肥和有机肥配施生物炭对根际土壤反硝化细菌和反硝化势的影响,以柠檬根际土为研究对象,设置不施肥(CK)、化肥(CF)、有机肥(M)、化肥配施生物炭(CFBC)和有机肥配施生物炭(MBC)等5个处理,通过测定根际nirS型、nirK型和nosZ型反硝化菌群落特征、反硝化势和土壤环境因子,明确化肥和有机肥配施生物炭对根际反硝化作用的影响.结果表明,与CK相比,CF处理显著降低根际土壤反硝化势47.7%,M和MBC处理分别显著增加反硝化势的2 192.7%和1 989.9%; M和MBC处理显著增加nirS型和nosZ型反硝化菌的基因拷贝数,CF和CFBC处理显著降低nirS型和nosZ型反硝化菌基因拷贝数,而4个施肥处理均显著增加nirK型反硝化菌基因拷贝数.逐步回归分析结果表明:pH是nirS型反硝化菌丰度的主要影响因子,有机质(SOM)和铵态氮(NH+4-N)是nirK型反硝化菌的主要影响因子,pH、硝态氮(NO-3-N)和氮磷比(N/P)则是nosZ型反硝化菌的主要影响因子.偏最小二乘法分析...  相似文献   

7.
陈诗  彭来  徐一峰  梁川州  倪丙杰 《环境工程》2022,40(6):97-106+122
氧化亚氮(N2O)的温室效应比CO2强265倍,可从废水生物脱氮过程中产生并直接排放,如果不对其加以控制,会显著增加污水处理厂的碳足迹。N2O排放的数学建模对于深入解析N2O产生机制、量化N2O排放、优化生物脱氮工艺和制定N2O减排策略具有重要意义。结合当前国内外研究现状,阐述了废水生物脱氮过程中N2O产生机制;归纳了基于不同机制建立的N2O数学模型,包括氨氧化细菌(ammonia-oxidizing bacteria,AOB)经过羟胺氧化途径和AOB反硝化途径产生N2O模型、异养反硝化途径产生N2O模型以及耦合AOB和异养反硝化细菌产生N2O模型;总结了新型生物脱氮系统N2O模型,实际工程应用情况及校准N2O数学模型中存在的问题;并对今后N2O数学模型的研究方向进行了展望。  相似文献   

8.
生物炭对华北农田土壤N2O通量及相关功能基因丰度的影响   总被引:2,自引:0,他引:2  
为了探寻施用生物炭对农田土壤氧化亚氮(N_2O)的减排效果和机制,于2015年3月27日至6月5日,利用盆栽实验研究了施用生物炭(CK,C1:5%,C2:10%,C3:15%,C4:30%)(质量分数)对华北农田土壤N_2O通量、氨单加氧酶(amo A)、亚硝酸盐还原酶(nir S、nir K)以及氧化亚氮还原酶(nos Z)基因丰度的影响.结果表明:(1)施用低量生物炭(5%)能够促进N_2O排放,施用中、高量生物炭可以起到抑制N_2O排放的效果,且生物炭用量为15%时减排效果最佳.(2)实验初期,施用生物炭对土壤硝化反硝化基因丰度影响较大,AOA和nir S基因丰度与生物炭施用量呈极显著正相关关系,nir K基因丰度与生物炭施用量呈显著正相关关系,AOB和nos Z基因丰度与生物炭施用量呈显著负相关关系;实验末期,AOA丰度与生物炭施用量表现为显著负相关关系,AOB丰度与生物炭施用量表现为显著正相关关系.(3)实验初期,N_2O排放通量与AOA、nir S基因呈现极显著的负相关关系,说明在土壤含水量较高的条件下,N_2O的产生受AOA、nir S基因丰度控制调节;实验末期,N_2O排放通量与nos Z基因呈现极显著正相关关系,说明在土壤含水量较低的条件下,N_2O的产生受nos Z基因丰度控制调节.本研究结果表明施用生物炭能够增加硝化反硝化功能基因丰度,并降低N_2O的排放,为华北农田合理施用生物炭提供了一定的理论依据.  相似文献   

9.
为了明确曝气灌溉下土壤N2O排放特征及主要影响因子,实验设置了2个灌水量(70%和90%田间持水量)和2个增氧水平(5,40mg/L),采用静态箱法和qPCR技术对土壤N2O通量及土壤关键功能基因进行测定,研究不同灌水量和增氧水平对土壤充水孔隙度、溶解氧、氧化还原电位(Eh)、矿质氮及氨氧化古菌(AOA)、氨氧化细菌(AOB)和反硝化基因(narG和nosZ)的影响.结果表明:培养过程中,各处理N2O排放通量均呈现先增加后降低的趋势,于灌溉后1d达到峰值;曝气量和灌水量的增加可显著增加土壤N2O的排放通量和排放峰值.灌溉造成土壤含水量增加的同时,降低了土壤溶解氧和Eh;曝气可提高土壤溶解氧和Eh,改善土壤通气性(P<0.05),而对土壤充水孔隙度无显著影响.土壤充水孔隙度、Eh、NO3--N含量是曝气灌溉下驱动土壤N2O排放的主要理化因子.曝气显著增加了AOA的基因拷贝数,且N2O排放与AOA的基因拷贝数呈显著正相关关系(P<0.05).研究结果为进一步明确曝气灌溉对土壤N2O排放的影响机制和曝气灌溉模式下农田N2O排放管理提供支撑.  相似文献   

10.
蒋越  周楫  杨雨浛  陈宏  张成 《中国环境科学》2018,38(10):3788-3794
采用田间试验,施用2种城市污泥堆肥(含生物质炭和不含生物质炭),通过静态暗箱-气相色谱法研究污泥堆肥土地利用过程温室气体排放特征,探讨施用污泥堆肥的短期影响作用.结果表明,在观测时间内,N2O排放主要集中在前3周,约占总排放量的87.9%~95.6%.N2O排放量均随污泥堆肥施用量的增加而增加(P<0.05),裸地N2O排放量高于种植作物处理.施用含生物质炭污泥堆肥能减少土壤N2O排放,且随着施用量的增加,N2O减少量越大(P<0.05).CH4排放量较低,在试验前期和后期主要为负,总体表现为吸收CH4.各处理吸收CH4主要集中在第18d以后,其CH4吸收量占总吸收量的52.1%~66.7%.施用含生物质炭污泥堆肥处理CH4吸收量比不含生物质炭污泥堆肥处理低35.2%~62.2%,同时,裸地CH4吸收量明显高于种植作物处理(P<0.05).CO2排放也主要集中在18d以后,约占排放总量的50.5%~61.8%.种植作物能促进CO2的排放,种植作物处理是裸地的1.34~1.57倍.在观测时间内,污泥堆肥土地利用是CH4的弱吸收汇,是N2O和CO2的排放源,施加污泥堆肥能显著增加土壤N2O和CO2的排放.施用生物质炭污泥堆肥短期内能够减少温室气体总排放量,温室气体减排量达到20.41%~62.51%.  相似文献   

11.
生物质炭对双季稻田土壤反硝化功能微生物的影响   总被引:10,自引:6,他引:4  
目前,基于田间条件下生物质炭添加对稻田反硝化微生物的调控效应还不甚明确.为此,本研究采用小区试验,通过在双季稻田添加不同量的小麦秸秆生物质炭(0、24和48 t·hm-2,分别用CK、LC和HC代表),结合实时荧光定量PCR(q PCR)和末端限制性片段长度多态性(T-RFLP)分析技术,研究了生物质炭添加对双季稻田休闲季和水稻季土壤反硝化微生物相关功能基因(调控硝酸还原酶的nar G基因,亚硝酸还原酶的nir K基因和氧化亚氮还原酶的nos Z基因)的影响.由于生物质炭呈碱性,添加到土壤后,可提高稻田休闲季土壤p H 0. 2~0. 8个单位.生物质炭本身含有部分可溶性N,因此,添加生物质炭可增加休闲季土壤铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)含量,增幅分别达21. 1%~32. 5%和63. 0%~176. 0%,但由于其吸附作用,降低了水稻季NH_4~+-N含量48. 8%~60. 1%.生物质炭添加增加了休闲季微生物生物量氮(MBN)含量,这可能是由于生物质炭较大的比表面积为微生物生存提供了适宜的环境,可利用养分的增加促进了微生物的生长.与对照相比,休闲季生物质炭引起的NH_4~+-N和NO_3~--N含量增加,促进NH_4~+-N向NO_3~--N的转化,进而增加nar G和nos Z的基因丰度(P0. 05),同时,生物质炭处理p H的提高促进了nos Z的基因丰度的增加,显著改变了反硝化功能基因nar G和nos Z的群落结构,并以此对反硝化作用产生影响,但未对休闲季氧化亚氮(N_2O)排放产生影响.而在水稻季,生物质炭增加了土壤nos Z的基因丰度(P 0. 05),HC处理增加了nir K基因丰度(P 0. 05),这也是导致水稻季HC处理N_2O排放增加的重要原因.生物质炭通过降低水稻季土壤NH_4~+-N含量,改变了nir K和nos Z基因的群落结构,而nar G基因群落结构的变化影响了土壤N_2O排放.综上所述,生物质炭可通过改变双季稻田土壤性质,来影响参与土壤反硝化作用的相关微生物,进而影响土壤N_2O排放及NO_3~--N的淋失.  相似文献   

12.
吴杰  李志琳  徐佳迎  王珏  蒋静艳 《环境科学》2019,40(6):2847-2857
为研究磺胺类兽用抗生素对稻田N_2O排放的影响及其微生物机制,采用田间原位观测试验,对比分析不同浓度磺胺二甲嘧啶(sulfamethazine,SMZ)对稻田N_2O排放及硝化反硝化过程底物和相关功能基因丰度的影响.本试验共设5个处理,分别为:无肥料无抗生素(CK);猪粪为基肥,尿素为追肥,分别添加0、5、15和30 mg·kg~(-1)的SMZ处理(SMZ0、SMZ5、SMZ15和SMZ30),在整个水稻生长季定期采集和分析土壤和气体样品.结果表明,不同浓度SMZ均未改变稻田N_2O排放的季节性规律,整个观测期N_2O排放通量,与SMZ0处理相比,SMZ15有显著差异(P 0. 05),SMZ30和SMZ5无显著差异(P 0. 05).中、高浓度处理SMZ15和SMZ30在均值水平上增加了N_2O累积排放量,分别是SMZ0处理的3. 47和4. 67倍,且增加了土壤NO_3~--N含量.与SMZ0处理相比,中、高浓度处理对土壤总细菌16S rRNA基因丰度、硝化过程中氨氧化古菌AOA amoA和氨氧化细菌AOB amoA基因丰度以及反硝化过程中的nirK、nirS和nosZ基因丰度均有明显的激活作用(P 0. 05),低浓度处理SMZ5对各基因丰度则有轻微抑制作用.具体表现为SMZ30、SMZ15与SMZ0处理的16S rRNA、AOA amoA、AOB amoA以及nirK、nirS、nosZ基因丰度比值的平均值分别为:1. 58、1. 77、2. 15、1. 38、1. 33、1. 42和1. 24、1. 37、1. 08、1. 65、1. 11、1. 64,而SMZ5与SMZ0处理的6个上述基因丰度比值均小于1,仅分别为0. 80、0. 99、0. 92、0. 76、0. 76和0. 77. N_2O排放通量与nir K基因丰度呈极显著正相关(P 0. 01),表明SMZ通过影响反硝化菌活性进而对N_2O排放产生作用.因此,兽用抗生素对农田的污染不可忽视,应从源头上合理控制使用,以减少其环境生态风险.  相似文献   

13.
淡水资源短缺是干旱区农业可持续发展所面临的严峻问题,合理利用咸水灌溉是缓解淡水资源不足的重要手段.长期咸水灌溉会导致土壤盐分积累,进而影响氮素的转化和N_2O的排放.本研究通过10 a咸水灌溉试验,探究咸水灌溉对棉田土壤N_2O排放、反硝化细菌丰度和群落结构组成的影响.试验采用灌溉水盐度和施氮量两因子2×2随机区组设计,其中灌溉水盐度(以电导率表示)设置2个水平:0.35 dS·m~(-1)和8.04 dS·m~(-1),施氮量设2个水平:0 kg·hm~(-2)和360 kg·hm~(-2)(分别用SFN0、SHN0、SFN360和SHN360表示).结果表明,长期咸水滴灌棉田土壤盐分、含水量和NH~+_4-N含量显著增加,pH值、NO~-_3-N、有机质和全氮含量显著降低.咸水灌溉处理显著抑制N_2O排放,不施氮肥和施氮肥处理下分别较淡水灌溉降低45.19%和43.50%.氮肥施用显著增加N_2O排放,施肥处理N_2O排放较不施肥处理增加161%.不施肥条件下,咸水灌溉显著降低反硝化酶活性、nirK、nirS和nosZ基因丰度,α多样性.施肥条件下,咸水灌溉对nosZ型反硝化细菌的丰度无显著影响,但显著降低反硝化酶活性和nirK、nirS基因丰度.咸水灌溉和氮肥施用共同改变nirK、nirS和nosZ型反硝化细菌群落结构,灌溉水盐度对于反硝化细菌群落结构的影响要大于施肥.Lefse分析显示nirK、nirS和nsoZ型反硝化细菌差异物种随着灌溉水盐度的增加而增加,咸水灌溉显著改变反硝化细菌群落结构,导致优势种群数量增加.上述结果表明,长期咸水灌溉降低土壤N_2O排放,但会导致土壤盐分的持续上升,nosZ、nirK和nirS丰度的增加会促进N_2O排放.  相似文献   

14.
NUA-DAS生态滤池脱氮效果与反硝化菌特征研究   总被引:1,自引:1,他引:0  
构建小型酸中和残渣(neutralized-used acid residue,NUA)和脱水铝污泥(dewatered alum sludge,DAS)联合生态滤池,研究了NUA-DAS生态滤池的脱氮效果和反硝化菌特征.系统运行稳定后,装置总出水中COD、TN、NO_3~--N的平均去除率达到60%、70%和95%,出水中NO_3~--N的浓度范围只有0.02~0.55 mg·L~(-1).采用PCR-DGGE分子生物学技术检测系统运行30d和60d各滤料层中含3类基因(nirS、nirK和nosZ)的反硝化菌群落特征,包括丰富度及相似度.结果表明,系统运行30 d和60 d里,nirS、nirK和nosZ基因反硝化菌丰富度均有明显增加,且处在各个滤料层中的反硝化菌丰富度基本相同.NUA和DAS滤料中检测出3类基因丰富度指数大小均为nosZnirKnirS.运行时间对反硝化菌的群落结构影响并不明显,但空间位置有一定影响.反硝化菌在NUA中的适应能力优于DAS,3类基因中nirK基因对滤料环境的适应能力最强.  相似文献   

15.
椰糠生物炭对热区双季稻田N2O和CH4排放的影响   总被引:3,自引:1,他引:2  
基于稻菜轮作模式,选择海南双季稻田为对象进行氧化亚氮(N2O)和甲烷(CH4)排放的原位监测,探究椰糠生物炭对该系统稻田温室气体排放的影响.试验设当地常规施肥对照(CON)、氮肥配施20 t·hm-2生物炭(B1)、氮肥配施40 t·hm-2生物炭(B2)及不施氮对照(CK)4个处理,采用静态箱-气相色谱法监测整个水稻种植季稻田N2O和CH4排放,并估算增温潜势(GWP)和温室气体排放强度(GHGI).结果表明,早稻季N2O排放动态与土壤矿质氮含量密切相关,排放集中在水稻苗期与分蘖期施肥后,各处理早稻季N2O累积排放量为0.18~0.76 kg·hm-2,相较于CON处理,生物炭处理减排18%~43%,其中B2处理达显著水平;生物炭可能通过促进N2O的还原减少早稻苗期N2O排放;提高土壤硝态氮含量而增加了早稻分蘖期N2O排放.晚稻季N2O排放集中在抽穗期和成熟期,累积排放量为0.17~0.34 kg·hm-2,B1处理减排37%,B2增加3%,差异均不显著.稻田CH4排放高峰出现在早稻季后期与晚稻季前期.各处理早稻季CH4累积排放量为3.11~14.87 kg·hm-2,CK较CON处理增排39%,生物炭处理可能提高土壤通气性限制早稻季产CH4能力,B1和B2处理分别较CON减排28%和71%;晚稻季CH4累积排放量为53.1~146.3 kg·hm-2,排放动态与NH4+-N含量极显著正相关,CK和B1分别较CON处理增加52%和99%,B2处理显著增加176% CH4排放.早稻季B1和B2处理较CON分别增产12.0%和14.3%,晚稻季分别增产7.6%和0.4%.由于晚稻季甲烷排放的增加,施用生物炭增加了双季稻田总增温潜势(GWP),其中高量生物炭达显著水平;不同施用量生物炭对双季稻田温室气体排放强度(GHGI)无显著影响.椰糠生物炭在热区稻田温室气体减排方面的应用仍需进一步研究.  相似文献   

16.
为了减少稻田温室气体排放通量,本研究对稻田土壤进行炉渣和生物炭单一施加和混合施加处理,并测定了早、晚稻拔节期和乳熟期CO_2、CH_4和N_2O排放通量及相关微生物(细菌、真菌、硝化细菌、反硝化细菌)的数量.结果表明,稻田施加废弃物可以减少温室气体的排放通量.在早、晚稻的拔节期,施加生物炭显著降低了CO_2和N_2O的排放通量(p0.05),混合施加显著降低了CO_2和CH_4的排放通量(p0.05),施加炉渣条件下3种温室气体的排放通量与对照组相比没有差异.施加炉渣或生物炭都显著降低硝化细菌的数量(p0.05),混施处理显著降低细菌、硝化细菌、反硝化细菌数量(p0.05),但显著提高了稻田土壤真菌/细菌比值(p0.05).在早、晚稻的乳熟期,炉渣、生物炭、混施处理能显著降低CH_4排放通量(p0.05),而生物炭处理显著降低N_2O排放通量(p0.05).炉渣处理显著降低细菌、硝化细菌、反硝化细菌数量(p0.05),生物炭处理显著降低细菌、反硝化细菌数量(p0.05),混施处理显著降低细菌、硝化细菌数量,并显著提高真菌/细菌比值(p0.05).温室气体排放与微生物数量之间的相关性分析结果表明,CO_2、CH_4排放通量与细菌数量呈显著正相关,与真菌/细菌比值呈显著负相关;而N_2O排放通量则与硝化细菌、反硝化细菌数量呈显著正相关.  相似文献   

17.
随着全球气候变化的不断加剧,大气CO2浓度呈明显增加趋势,这将间接影响土壤-植物-微生物系统的氮循环过程.为研究典型水稻土壤反硝化细菌对CO2浓度升高的响应规律和机制,借助水稻密闭培养箱,运用实时荧光定量聚合酶链式反应(Real-Time qPCR)分子技术,设置不施氮(0 mg/kg)和常规施氮(100 mg/kg)2个处理,研究CO2倍增对水稻不同生长期土壤关键反硝化功能细菌(narG、nirK和nirS型)丰度的影响.结果表明:①在2种施氮水平,CO2倍增显著促进了水稻分蘖期、孕穗期、扬花期和成熟期水稻根系生长(增幅为2.96%~28.4%)、地上部生物量增加(增幅为7.1%~107.3%)以及成熟期籽粒干质量的增加(增幅为19.5%和38.0%),具有显著的增产效应.②反硝化细菌丰度对CO2倍增的响应与生育期及施氮水平有关,CO2倍增在2个施氮水平均抑制分蘖期反硝化细菌的繁殖,显著增加孕穗期反硝化细菌数量;在水稻扬花期,CO2倍增促进了施氮处理narG和nirS型反硝化细菌数量的增加,在成熟期抑制未施氮处理下narG、nirK和nirS型反硝化细菌的生长.另外,narG、nirK、nirS型反硝化细菌丰度整体表现为narG > nirS > nirK,且随水稻的生长,其在成熟期的丰度均呈降低趋势.nirK和nirS基因同属亚硝酸还原酶,但nirS基因丰度高于nirK,且对CO2倍增和施氮的响应有所差异.研究显示,CO2倍增可显著增加水稻生长和产量,不同施氮水平对稻田土壤反硝化细菌丰度的影响存在差异.   相似文献   

18.
不同施肥模式对热区晚稻水田CH4和N2O排放的影响   总被引:10,自引:8,他引:2  
由于农田温室气体排放的原位观测主要集中于温带和亚热带地区,热带地区农田土壤温室气体的排放往往被忽视.研究不同施肥模式下海南稻田温室气体排放特征对于准确评估我国农田土壤CH_4和N_2O排放及制定相应的减排措施有重要意义.本研究设置5个处理:空白对照(CK)、常规施肥(CON)、优化施肥(YH)、优化施肥与缓控释肥配施(ZYH1)、优化施肥、缓控释肥和有机肥三者配施(ZYH2),采用静态箱-气相色谱法,通过田间小区试验研究晚稻生长季CH_4和N_2O排放动态特征,并估算全球增温潜势(GWP)以及温室气体排放强度(GHGI).结果表明,CK、CON、YH、ZYH1和ZYH2处理的CH_4晚稻生长季累计排放量分别为175. 70、60. 30、63. 00、62. 80和56. 60 kg·hm~(-2),相应处理的N2O晚稻生长季累积排放量分别为0. 78、3. 40、1. 03、1. 44和0. 44 kg·hm~(-2). ZYH2的产量较CK、CON、YH和ZYH1分别提高了29. 69%、11. 81%、6. 74%和10. 36%,GWP较CK、CON、YH和ZYH1分别降低了64. 80%、43. 23%、12. 93%和15. 15%,同时,GHGI分别降低了76. 49%、52. 52%、20. 54%和23. 87%.相关分析结果表明:土壤温度和Eh是驱动CH_4排放变化的主要因素.综合产量及温室气体减排效果而言,优化施肥+羊粪有机肥+缓控释肥处理(ZYH2)是当地值得推广的减肥模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号