首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Using association of plants, nanomaterials, and plant growth-promoting bacteria (PGPR) is a novel approach in remediation of heavy metal-contaminated soils. Co-application of nanoscale zerovalent iron (nZVI) and PGPR to promote phytoremediation of Sb-contaminated soil was investigated in this study. Seedlings of Trifolium repens were exposed to different regimes of nZVI (0, 150, 300, 500, and 1000 mg/kg) and the PGPR, separately and in combination, to investigate the effects on plant growth, Sb uptake, and accumulation and physiological response of the plant in contaminated soil. Co-application of nZVI and PGPR had positive effects on plant establishment and growth in contaminated soil. Greater accumulation of Sb in the shoots compared to the roots of T. repens was observed in all treatments. Using nZVI significantly increased accumulation capacity of T. repens for Sb with the greatest accumulation capacity of 3896.4 μg per pot gained in the “PGPR+500 mg/kg nZVI” treatment. Adverse impacts of using 1000 mg/kg nZVI were found on plant growth and phytoremediation performance. Significant beneficial effect of integrated use of nZVI and PGPR on plant photosynthesis was detected. Co-application of nZVI and PGPR could reduce the required amounts of nZVI for successful phytoremediation of metalloid polluted soils. Intelligent uses of plants in accompany with nanomaterials and PGPR have great application prospects in removal of antimony from soil.

  相似文献   

2.

Dark septate endophytes (DSE) are widely distributed in plant roots grown in stressful habitats, especially in heavy metal-polluted soils. But little is known about the physiological interactions between DSE and plants under heavy metal stress. In the present study, the growth, Cd content, and physiological response of Zea mays L. to a root-colonized DSE, Exophiala pisciphila, were analyzed under Cd stress (0, 5, 10, 20, and 40 mg/kg) in a sand culture experiment. Under high Cd (10, 20, and 40 mg/kg) stress, the DSE colonization in roots increased the maize growth, kept more Cd in roots, and decreased Cd content in shoots. The DSE colonization improved the photosynthesis and induced notable changes on phytohormones but had no significant effect on the antioxidant capability in the maize leaves. Moreover, there were significant positive correlations between the gibberellic acid (GA) content and transpiration rate, zeatin riboside (ZR) content, and photosynthetic rate in maize leaves. These results indicated that the DSE’s ability to promote plant growth was related to a decrease on Cd content and the regulation on phytohormone balance and photosynthetic activities in maize leaves.

  相似文献   

3.
Inorganic arsenic and trace elements in Ghanaian grain staples   总被引:1,自引:0,他引:1  
A total of 549 samples of rice, maize, wheat, sorghum and millet were obtained from markets in Ghana, the EU, US and Asia. Analysis of the samples, originating from 21 countries in 5 continents, helped to establish global mean trace element concentrations in grains; thus placing the Ghanaian data within a global context. Ghanaian rice was generally low in potentially toxic elements, but high in essential nutrient elements. Arsenic concentrations in rice from US (0.22 mg/kg) and Thailand (0.15 mg/kg) were higher than in Ghanaian rice (0.11 mg/kg). Percentage inorganic arsenic content of the latter (83%) was, however, higher than for US (42%) and Thai rice (67%). Total arsenic concentration in Ghanaian maize, sorghum and millet samples (0.01 mg/kg) was an order of magnitude lower than in Ghanaian rice, indicating that a shift from rice-centric to multigrain diets could help reduce health risks posed by dietary exposure to inorganic As.  相似文献   

4.
Abstract

[Carbonyl‐ C]methabenzthiazuron (MBT) was applied to growing winter wheat in an outdoor lysimeter. The amount applied corresponded to 4 kg Tribunil/ha. 140 days after application the 0–2,5 cm soil layer was removed from the lysimeter. This soil contained about 40 % of the applied radioactivity. Using 0,01 M CaCl2 solution or organic solvents, the extractable residues were removed from the soil. The bioavailability of the non‐extractable as well as aged residues remaining in the soil was investigated in standardized microecosystems containing 1.5 kg of dry soil. During a 4 weeks period the total uptake (4 maize plants/pot) amounted up to 3,6; 2,2; and 0,9 % of the radioactivity from soils containing aged MBT residues, MBT residues non‐extractable‐with 0,01 MCaCl2 or MBT residues non‐extractable with organic solvents, respectively. About 20 % of the radioactivity found in maize leaves represented chromatographically characterized parent compound. At the end of the plant experiment the soil was extracted again with 0,01 M CaCl2 and with organic solvents. The soil extracts and also the organic phases obtained from the aqueous fulvic acid solution contained unchanged parent compound.  相似文献   

5.

The farmland irrigation with the sewage is a common and better pathway to save the resource of groundwater in Northern China. The investigation was conducted in the farmland along the Fuhe River to explore characteristics of heavy metals in soils and grains of wheat and maize from a long-term sewage-irrigated area of Baoding region. The results showed that the topsoil with long-term sewage irrigation accumulated more Cd, Pb, and Hg compared with that of soil irrigated with groundwater and their corresponding natural background values. Cd concentrations in 48% of sewage-irrigated soil samples exceeded the Chinese safety limitation at 0.6 mg/kg, but less Cd accumulated in crop grains and did not pose the potential health risk. On the contrary, Pb levels in soils irrigated with sewage were lower than the safety limitation but Pb concentrations in 24% of wheat grain samples exceeded the Chinese national safety limit. Long-term sewage irrigation did not increase As, Cr, and Ni concentrations in soils or crop grains. The target hazard quotient (THQ) of heavy metals in edible grains of crops was selected to assess their risk to human health. Total THQ values were higher than 1.0 for the wheat samples from sewage-irrigated area and both sewage-irrigated and smelter-impacted areas, and As is the main contributor to the total THQ and posed the potential risk to human health. Therefore, the accumulation of Cd, Pb, Hg, and As in soils and crops in sewage-irrigated area should be monitored continuously to ensure food safety and security.

  相似文献   

6.

Considering its richness in organic and inorganic mineral nutrients, the recycling of sewage sludge (SS) is highly considered as a soil supplement in agriculture. However, the fate of hazardous heavy metal accumulation in the crops cultivated in SS amended soils is always a source of concern. Since nanoparticles are widely recognized to reduce heavy metal uptake by crop plants; thus, the present experiment deals with okra (Abelmoschus esculentus L. Moench) cultivation under the combined application of SS and TiO2-nanoparticles (NPs). Triplicated pot experiments were conducted using different doses of SS and TiO2-NPs such as 0 g/kg SS (control), 50 g/kg SS, 50 g/kg SS?+?TiO2, 100 g/kg SS, and 100 g/kg SS?+?TiO2, respectively. The findings of this study indicated that among the doses of treatment combinations investigated, 100 g/kg SS?+?TiO2 showed a significant (p?<?0.05) increase in the okra plant yield (287.87?±?4.06 g/plant) and other biochemical parameters such as fruit length (13.97?±?0.54 cm), plant height (75.05?±?3.18 cm), superoxide dismutase (SOD: 110.68?±?3.11 μ/mg), catalase (CAT: 81.32?±?3.52 μ/mg), and chlorophyll content (3.12?±?0.05 mg/g fwt.). Also, the maximum contents of six heavy metals in the soil and cultivated okra plant tissues (fruit, stem, and root regions) followed the order of Fe?>?Mn?>?Cu?>?Zn?>?Cr?>?Cd using the same treatment. Bioaccumulation and health risk assessment indicated that foliar application of TiO2-NPs significantly reduced the fate of heavy metal accumulation under higher doses of SS application. Therefore, the findings of this study suggested that the combined use of SS and TiO2-NPs may be useful in ameliorating the negative consequences of heavy metal accumulation in cultivated okra crops.

  相似文献   

7.

Roxarsone (ROX), a widely used feed organoarsenic additive, occurs as itself and its metabolites in animal manure that is commonly land used as fertilizer. Soil property impacts arsenic (As) speciation and bioavailability. Fourteen soils across China were used to conduct culture experiments to investigate As uptake by garland chrysanthemum (ChrysanthemumL coronarium), with the soils fertilized with chicken manure bearing ROX and its metabolites. The results show As(III) was the sole As form in garland chrysanthemum shoots, and As(III) and As(V) occurred in roots. Only inorganic As was detected in all soils when the plants were harvested. Stepwise regression analysis shows soil-exchangeable Ca predominated shoot As(III) concentration (shoot As(III) = 1.60030 soil Ca, R 2 = 0.8832***). Therefore, ROX is transferred into the human food chain finally as inorganic As in plants. Application of animal manure bearing ROX and its metabolites is not recommended in Ca-rich soils to avoid excess inorganic As dietary exposure.

  相似文献   

8.

Regulatory limits on cadmium (Cd) content in food products are tending to become stricter, especially in cereals, which are a major contributor to dietary intake of Cd by humans. This is of particular importance for durum wheat, which accumulates more Cd than bread wheat. The contamination of durum wheat grain by Cd depends not only on the genotype but also to a large extent on soil Cd availability. Assessing the phytoavailability of Cd for durum wheat is thus crucial, and appropriate methods are required. For this purpose, we propose a statistical model to predict Cd accumulation in durum wheat grain based on soil geochemical properties related to Cd availability in French agricultural soils with low Cd contents and neutral to alkaline pH (soils commonly used to grow durum wheat). The best model is based on the concentration of total Cd in the soil solution, the pH of a soil CaCl2 extract, the cation exchange capacity (CEC), and the content of manganese oxides (Tamm’s extraction) in the soil. The model variables suggest a major influence of cadmium buffering power of the soil and of Cd speciation in solution. The model successfully explains 88% of Cd variability in grains with, generally, below 0.02 mg Cd kg?1 prediction error in wheat grain. Monte Carlo cross-validation indicated that model accuracy will suffice for the European Community project to reduce the regulatory limit from 0.2 to 0.15 mg Cd kg?1 grain, but not for the intermediate step at 0.175 mg Cd kg?1. The model will help farmers assess the risk that the Cd content of their durum wheat grain will exceed regulatory limits, and help food safety authorities test different regulatory thresholds to find a trade-off between food safety and the negative impact a too strict regulation could have on farmers.

  相似文献   

9.

Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0 ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100 ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2 = 0.793, 0.807 and 0.739) and leaves (R 2 = 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2 = 0.668, 0.694 and 0.673) and leaves (R 2 = 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline.

  相似文献   

10.
Reducing the transfer of contaminants from soils to plants is a promising approach to produce safe agricultural products grown on contaminated soils. In this study, 0-400 mg/kg cetyltrimethylammonium bromide (CTMAB) and dodecylpyridinium bromide (DDPB) were separately utilized to enhance the sorption of PAHs onto soils, thereby reducing the transfer of PAHs from soil to soil solution and subsequently to plants. Concentrations of phenanthrene and pyrene in vegetables grown in contaminated soils treated with the cationic surfactants were lower than those grown in the surfactant-free control. The maximum reductions of phenanthrene and pyrene were 66% and 51% for chrysanthemum (Chrysanthemum coronarium L.), 62% and 71% for cabbage (Brassica campestris L.), and 34% and 53% for lettuce (Lactuca sativa L.), respectively. Considering the impacts of cationic surfactants on plant growth and soil microbial activity, CTMAB was more appropriate to employ, and the most effective dose was 100-200 mg/kg.  相似文献   

11.

In order to investigate the distribution, transfer, and human health risks of polycyclic aromatic hydrocarbons (PAHs) in the soil-wheat systems, soil samples from 20 farmlands and corresponding wheat tissues were collected from selected regions of Henan Province in June 2013 and were analyzed to estimate the concentration of PAHs. The total concentrations of 15 PAHs (∑15 PAHs) in soils from Henan Province varied from 6.91 to 72.4 ng/g. Moreover, two-ring to three-ring PAHs (1.59–29.1 ng/g) were the major species in soils, occupying 56.2% of total PAHs. Principal component analysis (PCA)-multiple linear regression (MLR) revealed that fossil fuel burning dominated the input of PAHs in agricultural soils of Henan Province. The range of ∑15 PAHs concentrations in wheat tissues was 13.9–50.9 ng/g, which decreased along the root-straw-grain. Positive correlation among PAHs of soil and wheat tissues showed that PAHs in wheat mainly came from soil and then migrated along root-straw-grain. Moreover, PAHs were accumulated highest in root and lowest in grain. Two-ring to three-ring PAHs were easier to transfer from soil to wheat than five-ring to six-ring PAHs. Consumption of wheat grain created potential risk of cancer in Henan Province.

  相似文献   

12.
Eutrophication of Lake Tasaul,Romania—proposals for rehabilitation   总被引:1,自引:0,他引:1  
Background, aim, and scope  The reclamation of nonferrous metal-polluted soil by phytoremediation requires an overall and permanent plant cover. To select the most suitable plant species, it is necessary to study metal effects on plants over the time, thereby checking that metals remain stored in root systems and not transferred to aerial parts. In this purpose, the seasonal and annual variations of metal bioaccumulation, transfer, and phytotoxicity in Trifolium repens and Lolium perenne grown in a Cd-, Pb-, and Zn-contaminated soil were also studied. Materials and methods  The experimental site was located near a closed smelter. In spring 2004, two areas were sown with T. repens and L. perenne, respectively. Thereafter, the samplings of plant roots and shoots and surrounding soils were realized in autumn 2004 and spring and autumn 2005. The soil agronomic characteristics, the Cd, Pb, and Zn concentrations in the surrounded soils and plant organs, as well as the oxidative alterations (superoxide dismutase [SOD], malondialdehyde [MDA], and 8-hydroxy-2′-deoxyguanosine [8-OHdG]) in plant organs were carried out. Results  Whatever the sampling period, metal concentrations in soils and plants were higher than background values. Contrary to the soils, the fluctuations of metal concentrations were observed in plant organs over the time. Bioaccumulation and transfer factors confirmed that metals were preferentially accumulated in the roots as follows: Cd>Zn>Pb, and their transfer to shoots was limited. Foliar metal deposition was also observed. The results showed that there were seasonal and annual variations of metal accumulation in the two studied plant species. These variations differed according to the organs and followed nearly the same pattern for the two species. Oxidative alterations were observed in plant organs with regard to SOD antioxidant activities, MDA, and 8-OHdG concentrations. These alterations vary according to the temporal variations of metal concentrations. Discussion  Metal concentrations in surrounded soils and plant organs showed the effective contamination by industrial dust emissions. Metals absorbed by plants were mainly stored in the roots. With regard to this storage, the plants seemed to limit the metal transfer to their aerial parts over the time, thereby indicating their availability for metal phytostabilization. Aerial deposition was another source of plant exposure to nonferrous metals. Despite the occurrence of metal-induced oxidative alterations in plant organs, both plant species seemed to tolerate a high metal concentration in soils. Conclusions  Taken together, these results indicated that T. repens and L. perenne were able to form a plant cover on highly Cd-, Pb-, and Zn-polluted soils, to limit the metal transfer to their aerial parts and were relatively metal-tolerant. All these characteristics made them suitable for phytostabilization on metal-contaminated soils. These findings also highlighted the necessity to take into account seasonal and annual variations for a future phytomanagement. Recommendations and perspectives  In this work, the behavior of plant species grown in metal-polluted soil has been studied during 2 years. Obviously, this time is too short to ensure that metals remain accumulated in the root system and few are transferred in aerial parts over the time. It is why regular monitoring should be achieved during more than a decade after the settlement of the plant cover. This work will be completed by the study of the T. repens and L. perenne effects on mobility of metals in order to evaluate the quantities of pollutants which could be absorbed by the biota and transferred to groundwater. Bioaccessibility tests could be also realized on polluted soils in order to evaluate the phytostabilization impacts on the exposition risks for humans.  相似文献   

13.
Rapid chemical degradation of toxic RDX explosive in soil can be accomplished using zerovalent nanoiron suspension stabilized in dilute carboxymethyl cellulose solution (CMC-ZVINs). The effect of operating conditions (redox-potential, Fe/RDX molar ratio) was studied on batchwise removal of RDX in contaminated soil. While anaerobic conditions resulted in 98% RDX removal in 3 h, only slightly over 60% RDX removal could be attained under aerobic conditions. The molar ratio did not have any influence on the intermediate and final RDX degradation products (methylenedinitramine, nitroso derivative, N2, N2O, NO2?), however, their distribution changed. Dynamic studies were conducted using a flow-through short column packed with RDX-contaminated soil and fed with CMC-ZVINs. The column was operated at two interstitial velocities (2.2 and 1.6 cm min?1), resulting in the 76.6% and 95% removal of the initial RDX soil contamination load (60 mg kg?1), respectively. While the column operating conditions could be further optimized, 95% of the RDX initially present in the contaminated soil packed in the column was degraded when flushed with a CMC-ZVINs suspension in this work.  相似文献   

14.
Abstract

Cadmium (Cd) has no known essential biological function, but it is toxic to plants, animals, and humans. A promising approach to prevent Cd from entering the food chain would be to select and/or create Cd‐accumulating plants to remediate contaminated soils or to develop Cd‐excluding plants to reduce Cd flow from soils into foods. The present study was undertaken to examine the differences in Cd influx, transport, and accumulation among five plant species in relation to plant tolerance to Cd toxicity. Ryegrass (Lolium perenne L.) had the least reduction in dry matter which may be due to its lowest Cd transport rate (TR) to shoots at all Cd levels among the plant species tested. White‐clover (Trifolium repens L.) was the most sensitive species to Cd toxicity, likely because of its highest Cd influx rate (IR) and high TR when plants were grown at low Cd2+ activity (≤8 μM). The high tolerance of cabbage (Brassica oleracea var. capitata L.) to moderate Cd toxicity (≤14 μM) appeared to be mainly due to the detoxification of Cd inside plant tissue since it recorded the highest TR and relatively high IR for Cd among the tested species. At Cd2+ activities up to 28 uM, the Cd uptake ratios of shoot/root for ryegrass were, on average, about 50‐fold and 27‐fold lower than that for cabbage and maize (Zea mays L.), respectively. These results showed that Cd could be easily transported into shoots of cabbage and maize, but was mainly confined to roots of ryegrass. We suggest that influx and transport rates, especially transport rate, could be used as plant physiological parameters for screening Cd‐excluding genotypes among monocotyledonous plants.  相似文献   

15.
Soil amendments previously shown to be effective in reducing metal bioavailability and/or mobility in calcareous metal-polluted soils were tested on a calcareous dredged sediment-derived soil with 26 mg Cd/kg dry soil, 2200 mg Cr/kg dry soil, 220 mg Pb/kg dry soil, and 3000 mg Zn/kg dry soil. The amendments were 5% modified aluminosilicate (AS), 10% w/w lignin, 1% w/w diammonium phosphate (DAP, (NH4)2HPO4), 1% w/w MnO, and 5% w/w CaSO4. In an additional treatment, the contaminated soil was submerged. Endpoints were metal uptake in Salix cinerea and Lumbricus terrestris, and effect on oxidation-reduction potential (ORP) in submerged soils. Results illustrated that the selected soil amendments were not effective in reducing ecological risk to vegetation or soil inhabiting invertebrates, as metal uptake in willows and earthworms did not significantly decrease following their application. Flooding the polluted soil resulted in metal uptake in S. cinerea comparable with concentrations for an uncontaminated soil.  相似文献   

16.
Phytoremediation is an emerging strategy to remediate soils contaminated with pollutants like explosives in which plants will uptake, degrade and/or accumulate pollutants. To implement this technology on a site contaminated with RDX, we chose rice, which is able to grow in lagoons, and we tested its ability to grow in soils with high levels of RDX and to decrease RDX concentrations in soil. Rice was grown for 40 days in soil contaminated with increasing [14C]RDX concentrations. Emergence and growth were not affected by RDX. Total chlorophyll content decreased with RDX concentrations of over 500 mg kg(-1). Amounts of chlorophyll were correlated with the appearance of necrosis in leaf extremities. After 40 days, rice translocated 89% of uptaken radioactivity to leaves with 90% in leaf extremities. Analyzes of leaf extracts showed that 95% of radioactivity was RDX in its parent form. Necrosis appears to be a phytotoxic symptom of RDX accumulation.  相似文献   

17.
The aim of this study was to assess thallium (Tl) uptake into the aerial parts of selected crop species grown on French soils with high Tl content of pedogeochemical origin (0.3-40 mg Tl kg(-1) on a dry wt (DW) basis). Husked wheat and maize grains contained less than 4 microg Tl kg(-1) DW, but rape shoots accumulated Tl with a shoot-soil partition coefficient (PC) > 1, and rape seeds had PC > 3. Tl content of rape seed reached 33 mg Tl kg(-1) DW and higher concentrations in soil corresponded to increased concentrations in rape seeds. It is argued that parent material of the soil and pedogenesis have a considerable effect on Tl accumulation in rape seeds. These results show enhanced phytoavailability of Tl of pedogeochemical origin and prompt questions on the potential for food chain contamination by Tl in rape cattle cakes.  相似文献   

18.
The effect of ammunition-like compounds and armament waste on the mortality and reproduction of terrestrial invertebrates was assayed by using two biotests: the enchytraeid-biotest withEnchytraeus crypticus and the collembola-biotest withFolsomia Candida. Toxicity was investigated by using standard soil (Lufa 2.2) spiked with 2,4,6-trinitrotoluene (TNT), hexahydro-l,3,5-trinitro-l,3,5-triazine (hexogen, RDX), octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine (octogen, HMX) and 2,4,6-triaminotoluene (TAT). Ecotoxicity was investigated with ammunition-contaminated soil material from the former ammunition plant “Tanne” at Clausthal-Zellerfeld (CTNTla) and the Brandplatz (incineration site) in Torgau-Elsnig (TETNT1a), Germany. TNT increased mortality and reduced reproduction of both test organisms corresponding to the concentrations used, whereas hexogen, octogen and TAT had no effect in the tested concentrations (1000-2000 mg/kg). From the two soil materials, TETNT1a was much more toxic than CTNT1a. The LC50(7d) in the enchytraeid-biotest was 570 mg TNT/kg and the EC50(28d) 369 mg TNT/kg soil material (dw). In the collembola-biotest the LC50(7d) was 185 mg TNT/kg and the EC50(28d) 110 mg TNT/kg soil matter (dw).  相似文献   

19.
Background, Aims and Scope Research and development has its own benefits and inconveniences. One of the inconveniences is the generation of enormous quantity of diverse toxic and hazardous wastes and its eventual contamination to soil and groundwater resources. Ethidium bromide (EtBr) is one of the commonly used substances in molecular biology experiments. It is highly mutagenic and moderately toxic substance used in DNA-staining during electrophoresis. Interest in phytoremediation as a method to solve chemical contamination has been growing rapidly in recent years. The technology has been utilized to clean up soil and groundwater from heavy metals and other toxic organic compounds in many countries like the United States, Russia, and most of European countries. Phytoremediation requires somewhat limited resources and very useful in treating wide variety of environmental contaminants. This study aimed to assess the potential of selected tropical plants as phytoremediators of EtBr. Materials and Methods This study used tomato (Solanum lycopersicum), mustard (Brassica alba), vetivergrass (Vetiveria zizanioedes), cogongrass (Imperata cylindrica), carabaograss (Paspalum conjugatum), and talahib (Saccharum spontaneum) to remove EtBr from laboratory wastes. The six tropical plants were planted in individual plastic bags containing soil and 10% EtBr-stained agarose gel. The plants were allowed to establish and grow in soil for 30 days. Ethidium bromide content of the test plants and the soil were analyzed before and after soil treatment. Ethidium bromide contents of the plants and soils were analyzed using an UV VIS spectrophotometer. Results Results showed a highly significant (p≤0.001) difference in the ability of the tropical plants to absorb EtBr from soils. Mustard registered the highest absorption of EtBr (1.4±0.12 μg kg−1) followed by tomato and vetivergrass with average uptake of 1.0±0.23 and 0.7±0.17 μg kg−1 EtBr, respectively. Cogongrass, talahib, and carabaograss had the least amount of EtBr absorbed (0.2±0.6 μg kg−1). Ethidium bromide content of soil planted to mustard was reduced by 10.7%. This was followed by tomato with an average reduction of 8.1%. Only 5.6% reduction was obtained from soils planted to vetivergrass. Soils planted to cogongrass, talahib, and carabaograss had the least reduction of 1.52% from its initial EtBr content. Discussion In this study, mustard, tomato, and vetivergrass have shown their ability to absorb EtBr from contaminated soil keeping them from expanding their reach into the environment and preventing further contamination. Its downside, however, is that living creatures including humans, fish, and birds, must be prevented from eating the plants that utilized these substances. Nonetheless, it is still easier to isolate, cut down, and remove plants growing on the surface of the contaminated matrices, than to use strong acids and permanganates to chemically neutralize a dangerous process that can further contaminate the environment and pose additional risks to humans. Though this alternative method does not totally eliminate eventual environmental contamination, it is by far produces extremely insignificant amount of by-products compared with the existing processes and technologies. Conclusions Mustard had the highest potential as phytoremediator of EtBr in soil. However, the absorption capabilities of the other test plants may also be considered in terms of period of maturity and productivity. Recommendations and Perspectives It is recommended that a more detailed and complete investigation of the phytoremediation properties of the different plants tested should be conducted in actual field experiments. Plants should be exposed until they reach maturity to establish their maximum response to the toxicity and mutagenecity of EtBr and their maximum absorbing capabilities. Different plant parts should be analyzed individually to determine the movement and translocation of EtBr from soil to the tissues of plants. Since this study has established that some plants can thrive and dwell in EtBr-treated soil, an increased amount of EtBr application should be explored in future studies. It is suggested therefore that a larger, more comprehensive exploration of phytoremediation application in the management of toxic and hazardous wastes emanating from biotechnology research activities should be considered especially on the use of vetivergrass, a very promising tropical perennial grass. ESS-Submission Editor: Professor Zhihong Xu (zhihong.xu@griffith.edu.au: www.griffith.edu.au/centre/cfhr)  相似文献   

20.
Here, we present one of the first studies investigating the mobility, solubility and the speciation-dependent in-situ bioaccumulation of antimony (Sb) in an active Sb mining area (Xikuangshan, China). Total Sb concentrations in soils are high (527-11,798 mg kg−1), and all soils, including those taken from a paddy field and a vegetable garden, show a high bioavailable Sb fraction (6.3-748 mg kg−1), dominated by Sb(V). Elevated concentrations in native plant species (109-4029 mg kg−1) underpin this. Both chemical equilibrium studies and XANES data suggest the presence of Ca[Sb(OH)6]2, controlling Sb solubility. A very close relationship was found between the citric acid extractable Sb in plants and water or sulfate extractable Sb in soil, indicating that citric acid extractable Sb content in plants may be a better predictor for bioavailable Sb in soil than total acid digestible Sb plant content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号