首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
以原子吸收法测定土壤中铅为例,本文分析了测试过程中不确定度的来源。对各不确定度分量进行评定及合成,并计算得出合成不确定度和扩展不确定度。结果表明,标准储备液配制过程引入的不确定度可以忽略不计。对本测试方法影响较大的不确定度分量是标准溶液稀释使用移液管的精度和微量进样器进样体积以及样品前处理和测定过程中的随机因素引起的相...  相似文献   

2.
测量不确定度(uncertainty of measurement)是表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。不确定度一词指可疑程度,广义而言,测量不确定度是对测量结果正确性的可疑程度。标准溶液作为一种标准物质,有许多优点,比如使用方便、溶液均匀、量值准确等。在环境监测分析中经常要使用标准溶液,在配制过程产生不确定度,而标准溶液的不确定度直接影响检测结果的不确定度,因此,对自配标准溶液的测量不确定度进行合理评定,显得尤为重要。配制标准溶液时的合成不确定度与称量的溶质质量、物质的纯度、配制体积、环境温度的不确定度等有关,充分分析不确定度的来源上,得出其扩展不确定度。并以亚硝酸盐标准溶液为例,全面分析了影响标准溶液不确定度的因素,给出了不确定度评定的具体过程和方法。  相似文献   

3.
目的对硝酸银滴定法测定水中氯化物含量的不确定度的来源及其对测量不确定度的影响进行分析。方法根据《测量不确定度评定与表示》JJF1059-1999对《生活饮用水标准检验方法》(GB/T 5750-2006)中氯化物测定的硝酸银滴定法的测量不确定度进行分析评定。结果按数学模型计算水样中氯化物浓度为25.2mg/L,水样中氯化物测定结果的扩展不确定度为0.6mg/L,结果表达为(25.2±0.6)mg/L。结论水样中氯化物含量测定的测量不确定度影响中,以分析滴定中消耗硝酸银标准溶液的体积引入的不确定度最大,其次为配制NaC l标准使用溶液引入的不确定度。  相似文献   

4.
运用测量不确定度评定与表示的理论,以配制氯化铵标准溶液为例,分析了影响标准溶液不确定度的因素,得出配制标准溶液最好选用优级纯或基准试剂,试剂称重量大于0.5000g及使用1000mL容量瓶配制储备液。  相似文献   

5.
摘要:运用测量不确定度评定的方法和程序,分析了快速消解分光光度法(HJ/T399—2007)测量水质化学需氧量测试过程中不确定度的来源,主要是标准溶液配制、标准曲线拟合、样品重复测定、分光光度计、取水样体积这五部分引入的不确定度。本次测量相对合成不确定度为0.027;最大的相对不确定度分量是标准曲线拟合引起的,相对不确定度为0.015;最小的相对不确定度分量是取水样体积引起的,相对不确定度为0.0032;本次测量结果为:56.0mg/L±3.04mg/L,k=2。  相似文献   

6.
检验检测实验室应对测量结果的不确定度进行分析,本文以离子色谱法测定水中亚硝酸盐为例,通过建立数学模型,找出影响不确定度因素,确定不确定度分量,并合成计算出扩展不确定度。结果表明,标准溶液系列配制过程和校准曲线拟合引入的不确定度是不确定度的主要来源。当置信水平为95%时,亚硝酸盐的扩展不确定度为0.042 mg/L。  相似文献   

7.
依据《化妆品安全技术规范》(2015年版)测定化妆品中乙苯含量。取置信概率P=95%,k=2,乙苯含量为19.47 mg/kg±3.18 mg/kg。测量结果的不确定度评定表明在样品溶液浓度测量过程中标准溶液配制和标准曲线拟合引入的不确定度所占比例较大。因此,在日常检测中可优化溶液配制的方法、选择合适的体积量取仪器,不断提高操作人员的熟练程度,以减小测量不确定度,提高测量结果的质量。  相似文献   

8.
根据石墨炉原子吸收分光光度法(GFAAS)测定土壤中铍的过程,建立相应的数学模型并对模型中各个参数进行了不确定度来源分析.依据测量不确定度的评定理论,对样品称量、定容体积、标准溶液的配制、曲线拟合、仪器测量重复性、干物质含量等影响不确定度的分量进行计算,给出了合成标准不确定度和扩展不确定度,结果表明,测定结果的不确定性主要来源于标准拟合引入的不确定度,其次为仪器重复测定引入的不确定度,该评定方法为石墨炉原子吸收分光光度法测定土壤中重金属元素的不确定度评定提供参考依据.  相似文献   

9.
还原—偶氮光度法分析工业废水中硝基苯类化合物时,用天平称量硝基苯配制标准使用液。由于称量时所用乙醇易挥发,探讨改用甲醇中的硝基苯标准溶液配制标准使用液,在保证分析结果准确性的同时可以提高分析过程的可操作性及可溯源性。  相似文献   

10.
根据《测量不确定度评定与表示》(JJF 1059.1-2012),建立了实验室氨氮自动分析仪测定水中氨氮不确定度数学模型,分析了整个过程各种不确定度的影响因素,量化各不确定度分量,计算合成不确定度和扩展不确定度。本次测量结果为(2.06±0.0972)mg/L,合成相对不确定度值为0.0972,扩展不确定度为0.0972mg/L。氨氮自动分析仪测定氨氮的不确定度主要来源是样品重复测定和标准溶液配制。  相似文献   

11.
水质五日生化需氧量测量的关键是用碘量法测水中溶解氧的含量,经过分析碘量法测定水中溶解氧含量测量不确定度的影响因素,认为测量的重复性的不确定度分量最大,其次是样品中溶液的体积,滴定溶液的体积和滴定溶液的浓度等不确定度分量.计算得到水中五日生化需氧量的测定结果的合成不确定度为6.4mg/L,扩展不确定度为12.8mg/L.  相似文献   

12.
分析了应用亚甲基蓝分光光度(GB/T16489-1996)测定废水硫化物测试过程中不确定度影响因素,主要来源为硫化物标准溶液、标准曲线拟合、随机效应、分光光度计和取样体积这五部分。本测量合成相对标准不确定度0.025 9;其中由测定样品质量引入的不确定度为0.024 7;由样品体积引入的不确定度为0.007 7。本次废水中硫化物测量结果为:0.110±0.006 mg/L,k=2(包含概率约为95%)。  相似文献   

13.
通过实例对原子荧光法测定海水中硒的不确定度进行评定。根据(JJF 1059-1999)《测量不确定度评定与表示》中对测量和评定不确定度的要求评估了不确定度。测量不确定度的产生包括标准溶液的逐级稀释、工作曲线的非线性和原子荧光光度计的测量性能及取样体积。结果表明取样体积是导致该方法不确定度产生的主要影响因素,在测定时应加强这方面的控制,从而提高测量结果的准确性。当海水中硒的含量为1.99μg/L时,硒含量的扩展不确定度为0.40μg/L,置信水平为95%。  相似文献   

14.
合理评定测量结果的不确定度是分析实验室必须重视的问题。通过酸性高锰酸钾氧化法测定水中高锰酸盐指数的实例,确立高锰酸盐指数测量的不确定度数学模型。讨论了高锰酸盐指数测定值不确定度的各种因素,对各不确定度分量进行分析和量化,求得其扩展不确定度。结果表明,影响其测量不确定度的主要因素是测量熏复性。在高锰酸盐指数值为4.17 mg/L的水样测定中,扩展不确定度为0.08 mg/L。  相似文献   

15.
根据《测量不确定度评定与表示》(JJF 1059.1-2012),建立了实验室电位滴定仪测定水中氯化物不确定度数学模型,分析了整个过程各种不确定度的影响因素,量化各不确定度分量,计算合成不确定度和扩展不确定度.本次测量结果为(110±6.18) mg/L,合成相对不确定度值为0.028 1,扩展不确定度为6.18 mg/L.电位滴定仪测定氯化物的不确定度主要来源是样品重复测定和滴定终点体积读数.  相似文献   

16.
赵红叶 《环境科学与管理》2007,32(7):147-148,151
根据火焰原子吸收分光光度法测定水中的铜含量,分析主要的测量不确定度来源,即标准曲线不确定度、标准溶液不确定度、测量重复性不确定度.计算得到水中铜的测定结果的合成不确定度为0.098mg/L,扩展不确定度为0.196mg/L.  相似文献   

17.
在水样锑的含量测定中,锑含量为12.69mg/L,其扩展不确定度为0.30mg/L(置信度95%,k=2)。火焰原子吸收法测定样品中锑的不确定度分量来源主要是标准溶液配制的相对不确定度、工作曲线拟合产生的相对不确定度及仪器引入的相对不确定度。  相似文献   

18.
根据检测步骤和测量模型,以及测量不确定度评定与表示方法,分析了石墨炉原子吸收法测定环境空气PM10中铅不确定度的主要来源,量化了采气体积、切割粒径、标准溶液浓度与校准曲线拟合、量器容积误差、测量重复性等不确定度分量.考察得出采样流量是不确定度主要因素.用合成标准不确定度和扩展不确定度对测量结果进行表述.研究内容为该方法测量不确定度的评定提供参考.  相似文献   

19.
由于测量不确定度便于使用、易于掌握,已被普遍认可作为表征测量结果质量的表达方式。运用红外分光测油仪测量标准样品石油类含量,对所有不确定度分量进行了量化,并找出测量不确定度的来源,从而计算其测量合成相对标准不确定度和扩展不确定度。结果表明:标准样品中石油类的测量结果为20.03 mg/L,扩展不确定度为0.42 mg/L(k=2);扩展不确定度贡献较大的主要分量有:加标回收率、样品重复测定和稀释过程引入的标准不确定度分量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号