首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The time frame required for post-closure care of Municipal Solid Waste (MSW) landfills is often assessed over several decades or centuries. One possibility to significantly shorten this period and, at the same time, improve the emission behavior exists with in situ aeration. Positive effects in connection with this method for biological stabilization have been investigated and published elsewhere. However, until today neither generally accepted monitoring guidelines nor completion criteria have been defined. With the paper on hand the authors propose a methodology for the assessment of both, total and remaining stabilization periods for aerated landfills. The central component of this methodology is a carbon balance. The latter is based on a detailed waste characterization in combination with online monitoring of the emissions (gas and leachate). The methodology is exemplarily demonstrated by means of data derived from a full scale project in Northern Germany. Here it could be shown that the predicted aeration period of approximately 6.4 years was sufficient to bio-stabilize the landfill.Furthermore, proposals for the completion of landfill aeration are presented. In this connection, carbon balance is of particular importance since the amount of biodegradable organic carbon mainly determines the emission potential. Additional parameters, aiming at a validation of the state of biological stabilization achieved during aeration are proposed and described.  相似文献   

2.
The influences of aeration rate and biodegradability fractionation on biodegradation kinetics during composting were studied. The first step was the design of a suitable lab-reactor that enabled the simulation of composting. The second step comprised of composting trials of six blends of sludge (originating from a food processing effluent) with wood chips using aeration rates of 1.69, 3.62, 3.25, 8.48, 11.98 and 16.63 L/h/kg DM of mixture. Biodegradation was evaluated by respiration measurements and from the analysis of the substrate (dry matter, organic matter, total carbon and chemical oxygen demand removal). Continuous measurement of oxygen consumption was coupled with the analysis of initial substrate and composted product for chemical oxygen demand (in the soluble and non-soluble fractions), which enabled an evaluation of the organic matter biodegradability. Oxygen requirements to remove both the easily and slowly biodegradable fractions were determined. Dividing the substrate into different parts according to biodegradability allowed explanation of the influence of aeration rate on stabilization kinetics. Considering that the biodegradation kinetics were of the first-order, the kinetic constants of the easily and slowly biodegradable fractions were calculated as a function of temperature. The methodology presented here allows the comparison of organic wastes in terms of their content of easily and slowly biodegradable fractions and the respective biodegradation kinetics.  相似文献   

3.
Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ13C, δ2H and δ18O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration.We found significant differences in the δ13C-value of the dissolved inorganic carbon (δ13C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ13C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ13C-DIC of ?20‰ to ?25‰. The production of methane under anaerobic conditions caused an increase in δ13C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ13C-DIC of about ?20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation–reduction status of MSW landfills.Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.  相似文献   

4.
Emissions from old landfills via leachate and the gas phase are influenced by state and stability of the organic matter in the solid waste and by environmental conditions within the landfill. Remediation of landfills by means of in-situ aeration is one possibility to reduce these emissions. By establishing aerobic conditions, biological processes in the landfill are accelerated. To investigate the effects of this remediation technology, lab-scale experiments with column tests have been carried out. The main goal of the present work is to characterize the changes of the carbon and nitrogen compounds in the aerated solid waste, the leachate and the gas phase under varying conditions. The results demonstrate a clear reduction of emissions and a stabilization of the organic matter. Furthermore, it is shown that both the intensity of aeration and the amount of water affect biological processes to a certain extent. Even when columns were operated under anaerobic conditions after a long running period of aeration, the emissions remained low.  相似文献   

5.
It is known that aeration reduces rapidly the concentration of organic matter in leachate. However, the oxygen flow rate required to attain a certain reaction rate of organic matter should be carefully estimated. In this study, using the oxygen ratio (the ratio of oxygen flow rate by aeration to oxygen consumption rate of waste layer) as a parameter, the reaction rate of organic matter in leachate from landfilled incineration ash and incombustible waste upon aeration was evaluated. Total organic carbon (TOC) in the leachate was reduced rapidly when the oxygen ratio was high. The decomposition rate exceeded the elution rate of TOC in the leachate from the waste layer for several days when the oxygen ratio was above 102. The results indicate that the oxygen ratio can be used as a parameter for the aeration operation in actual landfill sites, to rapidly stabilize organic matter in leachate.  相似文献   

6.
Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m3/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.  相似文献   

7.
As far as the optimal design, operation, and field application of the Aerobic–Anaerobic Landfill Method (AALM) are concerned, it is very important to understand how aeration modes (different combinations of aeration depth and air injection rate) affect the biodegradation of organic carbon and the transformation of nitrogen in landfill solid waste. Pilot-scale lysimeter experiments were carried out under different aeration modes to obtain detailed information regarding the influence of aeration modes on leachate characteristics. Results from these lysimeter experiments revealed that aeration at the bottom layer was the most effective for decomposition of organic carbon when compared with aeration at the surface or middle layers. Moreover, the air injection rate led to different nitrogen transformation patterns, unlike the lesser influence it has on organic carbon decomposition. Effective simultaneous nitrification and denitrification were observed for the aeration mode with a higher air injection rate (=1.0 L/min). On the other hand, the phenomenon of sequenced nitrification and denitrification could be observed when a low air injection rate (=0.5 L/min.) was employed. Finally, it is concluded that, for AALM, air injection with a higher air injection rate at the deepest layer near the leachate collection pipe tends to accelerate the stabilization of landfill waste as defined in terms of the enhancement of denitrification as well as organic carbon decomposition.  相似文献   

8.
The first-order decay model is the only highly recommended method for estimating landfill gas emissions from solid waste disposal sites according to 2006 IPCC (Intergovernmental Panel on Climate Change) Guidelines. It is also encouraged to collect relevant activity data over the past 50 years to apply the first-order decay model. Even though it is beneficial to facilitate the accuracy of landfill gas emissions estimation, it may not be an easy task to collect reliable data for such a long period of time. It is discussed in this study that a data collection over a shorter period of time may yield a comparable accuracy for emissions estimation depending on methane generation rate or half-life of landfill wastes. Based on the analysis of mathematical properties of the first-order decay model, the estimation accuracy with respect to the length of data collection period has been investigated. Finally, it is also proposed how to estimate the amount of landfill gas emissions and analyze the level of estimation accuracy considering the length of time period since the deposition of wastes.  相似文献   

9.
The main purpose of this research is to clarify and compare the mechanism of waste stabilization by a recirculatory semi-aerobic landfill with the aeration system. Our research is proposing the semi-aerobic landfill system for developing countries because of the simple and low-cost technology for the final disposal. Moreover, this system with leachate recirculation can be a more effective system for waste stabilization because of the improvement of leachate quality as an organic pollutant and, also, nitrogen removal. In this research, five different systems of landfill (Ae: aerobic, An: anaerobic, Se: semi-aerobic, SeR: recirculatory semi-aerobic landfill, and SeRA: recirculatory semi-aerobic landfill with aeration system) are compared with lysimeters which are 1 m high with a diameter of 0.3 m. The results of the leachate quality shows that the leachate treatment effect of the SeRA system can be observed to be as high as the Ae system. To determine the mechanism of this process, all lysimeters are dismantled after 1,100 days in the experimental period and the waste composition, the dissolution test, the mass balance of carbon and nitrogen, the determination of bacterial counts, etc., were analyzed. In this research, it was proven that the SeRA system has an optimal leachate treatment effect that is the same as the Ae system. And, from the results of the mass balance of carbon and nitrogen, the SeR and SeRA systems show higher waste stabilization effectiveness and nitrogen removal than the other systems. Moreover, the number of the aerobic bacteria can be observed to be higher in the SeR and SeRA systems. To determine these results, the waste stabilization mechanism is considered by the results of leachate quality, the mass balance of carbon and nitrogen, and, also, the bacterial numbers.  相似文献   

10.
Mathematical modelling of the composting process: a review   总被引:1,自引:0,他引:1  
In this paper mathematical models of the composting process are examined and their performance evaluated. Mathematical models of the composting process have been derived from both energy and mass balance considerations, with solutions typically derived in time, and in some cases, spatially. Both lumped and distributed parameter models have been reported, with lumped parameter models presently predominating in the literature. Biological energy production functions within the models included first-order, Monod-type or empirical expressions, and these have predicted volatile solids degradation, oxygen consumption or carbon dioxide production, with heat generation derived using heat quotient factors. Rate coefficient correction functions for temperature, moisture, oxygen and/or free air space have been incorporated in a number of the first-order and Monod-type expressions. The most successful models in predicting temperature profiles were those which incorporated either empirical kinetic expressions for volatile solids degradation or CO2 production, or which utilised a first-order model for volatile solids degradation, with empirical corrections for temperature and moisture variations. Models incorporating Monod-type kinetic expressions were less successful. No models were able to predict maximum, average and peak temperatures to within criteria of 5, 2 and 2 degrees C, respectively, or to predict the times to reach peak temperatures to within 8 h. Limitations included the modelling of forced aeration systems only and the generation of temperature validation data for relatively short time periods in relation to those used in full-scale composting practice. Moisture and solids profiles were well predicted by two models, but oxygen and carbon dioxide profiles were generally poorly modelled. Further research to obtain more extensive substrate degradation data, develop improved first-order biological heat production models, investigate mechanistically-based moisture correction factors, explore the role of moisture tension, investigate model performance over thermophilic composting time periods, provide more information on model sensitivity and incorporate natural ventilation aeration expressions into composting process models, is suggested.  相似文献   

11.
Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum–substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH4 yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH4 yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH4 production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities.  相似文献   

12.
The potential for aeration of MSW landfills to accelerate completion   总被引:4,自引:0,他引:4  
Landfilling is a popular waste disposal method, but, as it is practised currently, it is fundamentally unsustainable. The low short-term financial costs belie the potential long-term environmental costs, and traditional landfill sites require long-term management in order to mitigate any possible environmental damage. Old landfill sites might require aftercare for decades or even centuries, and in some cases remediation may be necessary. Biological stabilisation of a landfill is the key issue; completion criteria provide a yardstick by which the success of any new technology may be measured. In order for a site to achieve completion it must pose no risk to human health or the environment, meaning that attenuation of any emissions from the site must occur within the local environment without causing harm. Remediation of old landfill sites by aerating the waste has been undertaken in Germany, the United States, Italy and The Netherlands, with considerable success. At a pilot scale, aeration has also been used in newly emplaced waste to accelerate stabilisation. This paper reviews the use of aerobic landfill worldwide, and assesses the ways in which the use of aerobic landfill techniques can decrease the risks associated with current landfill practices, making landfill a more sustainable waste disposal option. It focuses on assessing ways to utilise aeration to enhance stabilisation. The results demonstrated that aeration of old landfill sites may be an efficient and cost-effective method of remediation and allow the date of completion to be brought forward by decades. Similarly, aeration of newly emplaced waste can be effective in enhancing degradation, assisting with completion and reducing environmental risks. However, further research is required to establish what procedure for adding air to a landfill would be most suitable for the UK and to investigate new risks that may arise, such as the possible emission of non-methane organic compounds.  相似文献   

13.
The present study is an application of Computational Fluid Dynamics (CFD) to the numerical simulation of landfill aeration systems. Specifically, the CFD algorithms provided by the commercial solver ANSYS Fluent 14.0, combined with an in-house source code developed to modify the main solver, were used. The unsaturated multiphase flow of air and liquid phases and the biochemical processes for aerobic biodegradation of the organic fraction of municipal solid waste were simulated taking into consideration their temporal and spatial evolution, as well as complex effects, such as oxygen mass transfer across phases, unsaturated flow effects (capillary suction and unsaturated hydraulic conductivity), temperature variations due to biochemical processes and environmental correction factors for the applied kinetics (Monod and 1st order kinetics). The developed model results were compared with literature experimental data. Also, pilot scale simulations and sensitivity analysis were implemented. Moreover, simulation results of a hypothetical single aeration well were shown, while its zone of influence was estimated using both the pressure and oxygen distribution. Finally, a case study was simulated for a hypothetical landfill aeration system. Both a static (steadily positive or negative relative pressure with time) and a hybrid (following a square wave pattern of positive and negative values of relative pressure with time) scenarios for the aeration wells were examined. The results showed that the present model is capable of simulating landfill aeration and the obtained results were in good agreement with corresponding previous experimental and numerical investigations.  相似文献   

14.
The influence of a new aeration system on the biopile performance was investigated. The purpose was to increase biodegradation efficiency by optimising airflow through the pile. During a 1-month field trial, the performance of a new system using two perforated vertical pipes with wind-driven turbines was compared with that of a standard pile configuration with two horizontal perforated pipes. Both piles were composed of a similar mix of diesel-contaminated soils, woodchips, compost and NPK fertiliser. Hydrocarbons were recovered using solvent extraction, and determined both gravimetrically and by gas chromatography. Total heterotrophs, pH and moisture content were also assessed. Air pressure measurements were made to compare the efficiency of suction in the pipes. Results at the end of the experiment showed that there was no significant difference between the two piles in the total amount of hydrocarbon biodegradation. The normalised degradation rate was, however, considerably higher in the new system than in the standard one, suggesting that the vertical venting method may have improved the efficiency of the biological reactions in the pile. The pressure measurements showed a significant improvement in the suction produced by the new aeration system. However, many factors other than the airflow (oxygen supply) may influence and limit the biodegradation rates, including moisture content, age of contaminants and the climatic conditions. Additional experiments and modelling need to be carried out to explore further the new aeration method and to develop criteria and guidelines for engineering design of optimal aeration schemes in order to achieve maximum biodegradation in biopiles.  相似文献   

15.
This research concentrates the design, construction and evaluation of simulated pilot scale landfill lysimeter at KUET campus, Khulna, Bangladesh. Both the aerobic and anaerobic conditions having a base liner and two different types of cap liner were simulated. After the design of a reference cell, the construction of landfill lysimeter was started in January 2008 and completed in July 2008. In all construction process locally available civil construction materials were used. The municipal solid waste (MSW) of 2800–2985 kg having the total volume of 2.80 m3 (height 1.6 m) and moisture content of 65% was deposited in each lysimeter by applying required compaction energy. In contrast, both the composition in terms of methane (CH4), carbon dioxide (CO2) and oxygen (O2) as well as the flow rate of landfill gas (LFG) generated from MSW in landfill lysimeter were measured and varied significantly in relation to the variation of lysimeter operational condition. Moreover, anaerobic lysimeter-C shows the highest composition of LFG in compare to the anaerobic lysimeter-B due to the providing of lower compaction of cap liner in anaerobic lysimeter-C. Here, it is interesting to note that in absence of compacted clay liner (CCL) and hence percolation of rainwater that facilitates rapid degradation of MSW in aerobic lysimeter-A has resulted in the highest settlement than that of anaerobic landfill lysimeter-B and C. Moreover, in case of anaerobic lysimeter-B and C, the leachate generation was lower than that of aerobic lysimeter-A due to the providing of cap liner in anaerobic lysimeter-B and C, played an important role to reduce the percolation of rainwater. The study also reveals that the leachate pollution index (LPI) has decreased in relation to the increasing of elapsed period as well as the LPI for collection system of aerobic lysimeter-A was higher than that of the collection system of anaerobic lysimeter-B and C. Finally, it can be depicted that LPI for lysimeter was significantly high and proper treatment will be necessary before discharging the lysimeter leachate into the water bodies.  相似文献   

16.
Batch leaching tests and simulated landfill lysimeter tests were performed to evaluate the contents of heavy metals leached from spent batteries in the municipal solid waste. The toxicity characteristic leaching procedure was utilized to perform the batch leaching tests of 36 spent batteries. Four lysimeters were prepared with battery contents ranging from 0% to 100% by weight for column tests, and the experiments were performed at ambient temperature. The age of all the batteries used in the study ranged from freshly disposed up to approximately 3 years old. The results from the batch tests showed that the type of battery influenced the heavy metal concentrations in the leached solutions. The lysimeter experiment results illustrated that at lower pH levels more metals are leached than at higher pH levels. The increasing amount of batteries disposed in landfills can contribute to the leaching of more metals, especially Mn and Zn, into the environment. These results indicate that the direct disposal of spent household batteries into a MSW landfill can increase the heavy metal contents in the landfill leachate.  相似文献   

17.
Recently, roofed landfills have been gaining popularity in Japan. Roofed landfills have several advantages over non-roofed landfills such as eliminating the visibility of waste and reducing the spread of offensive odours. This study examined the moisture balance and aeration conditions, which promote waste stabilisation, in a roofed landfill that included organic waste such as food waste. Moisture balance was estimated using waste characterization and the total amount of landfilled waste. Internal conditions were estimated based on the composition, flux, and temperature of the landfill gas. Finally, in situ aeration was performed to determine the integrity of the semi-aerobic structure of the landfill.With the effects of rainfall excluded, only 15% of the moisture held by the waste was discharged as leachate. The majority of the moisture remained in the waste layer, but was less than the optimal moisture level for biodegradation, indicating that an appropriate water spray should be administered. To assess waste degradation in this semi-aerobic landfill, the concentration and flow rate of landfill gas were measured and an in situ aeration test was performed. The results revealed that aerobic biodegradation had not occurred because of the unsatisfactory design and operation of the landfill.  相似文献   

18.
Results of investigations from many old landfills in Germany and Europe indicate that significant emissions occur under conventional landfill operating conditions (i.e., anaerobic conditions). Significant emissions via the gas phase are predicted to last at least three decades after landfill closure, while leachate emissions are predicted to continue for many decades, potentially even lasting for centuries. When considering the specific type and quality, and quite often lack of, protection barriers associated with old landfills, these leachate and gas emissions may result in a significant negative impact on the environment. However, complete sealing of the landfill only temporarily reduces emissions because dry-conservation of the biodegradable waste fraction results, thus not allowing any severe reduction in the emission and hazardous potential of the landfill to occur. If noticeable damage of the surface capping system occurred in these landfills, infiltrating water would restart the interrupted emission formation. In contrast, aerobic in situ stabilization by means of low pressure aeration attempts to stabilize and modify the inventory of organic matter inside the landfill, acting to reduce the emission potential in a more sustainable manner. By enabling faster and more extensive aerobic degradation processes in the landfill (compared with anaerobic processes), the organics (e.g., hydrocarbons) are degraded significantly faster, resulting in an increased carbon discharge via the gas phase, as well as reduced leachate concentrations. Because carbon dioxide (CO(2)) is the main compound in the extracted off-gas (instead of methane (CH(4)), which dominated under anaerobic landfill conditions), the negative impact of diffuse LFG emissions towards an increased global warming effect may be significantly lowered. With respect to leachate quality, a reduction of organic compounds as well as ammonia-nitrogen can be expected. In addition to these positive ecological effects, aerobic in situ stabilization is associated with significant cost savings potential due to both quantitative and qualitative reductions in the aftercare period. This paper describes the fundamental processes and implications of in situ landfill aeration. Additionally, possible criteria for defining an endpoint of the active aeration process are presented and discussed.  相似文献   

19.
To evaluate carbonization as a thermal pretreatment method for landfilling, the releasing characteristics of organic and inorganic constituents from carbonization residue derived from shredded residue of bulky waste was investigated by means of batch and column leaching tests. Shredded residue of bulky waste itself and its incineration ash were tested together to compare pretreatment methods. In batch leaching tests at a liquid/solid ratio of 10, the release of organic carbon from carbonization residue was at a remarkably low level. Besides, carbonization contributed to immobilize heavy metals such as chromium, cadmium, and lead within its residue. In column tests, the discharges of organic constituents were lowest from carbonization residue under aerobic conditions due to microbial activity. The leaching of Cd, Cr, Pb, and Cu from carbonization residue was suppressed under anaerobic conditions; however, this suppression effect tended to be weaker under aerobic conditions. From the results showing that the total releasing amounts of organic and inorganic constituents from carbonization residue are so low as to be comparable to that of incineration ash, carbonization can be considered as one of the thermal pretreatment methods of organic wastes.  相似文献   

20.
The paper focused on the modelling of the heat transfers during composting in a pilot-scale reactor under forced aeration. The model took into account the heat production and the transfers by evaporation, convection between material and gas crossing the material, conduction and surface convection between gas and material in bottom and upper parts of the reactor. The model was adjusted thanks to the measurements practised during fifteen composting experiments in which five organic wastes were, each, composted under three constant aeration rates. Heat production was considered proportional to oxygen consumption rate and the enthalpy per mole oxygen consumed was assumed constant. The convective heat transfer coefficients were determined on basis of the continuous measurements of the temperatures of both the lid and the bottom part of the reactor. The model allowed a satisfying prediction of the temperature of the composting material. In most cases, the mean absolute discard between the experimental and the simulated temperatures was inferior to 2.5°C and the peaks of temperature occurred with less than 8h delay. For the half of the experiments the temperature discard between the simulated peak and the experimental one was inferior to 5°C. On basis of the calculation of a stoichiometric production of water through oxidation of the biodegradable organic matter, the simulation of water going out from material as vapour also allowed a rather satisfying prediction of the mass of water in final mixture. The influence of the aeration rate on every type of heat loss was characterized. Finally, the model was used to evaluate the impacts on material temperature caused by the change of the insulation thickness, the ambient temperature, take the lid away, the increase or the decrease of the mass of waste to compost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号