首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plastic wastes have an especially high potential for use as alternative fuels, considering their high heating value and their large and stable availability. They could be used in electricity production based on gasification technologies, wherein electricity is produced in engines by means of the conversion of plastic wastes into a valuable gas. However, there are still some technical barriers to overcome before this technology can access the commercial stage, and further scientific research is needed to gain deeper understanding of the process and to be able to control and optimize it. This research presents the design and first experimental results of a bubbling fluidized bed gasifier conceived for the gasification of actual plastic residues. The experimental tests revealed that the selection and design of the reactor were adequate and proved some of the advantages of using plastic as a fuel, related in part to the absence of ashes and char. A valuable syngas over 5 MJ/m3 was generated, which contained a considerable fraction of methane as well as hydrogen and carbon monoxide as main combustible gases. The highest efficiency was achieved when the equivalence ratio was increased to 0.35, reaching 61 % in terms of cold gas efficiency and 66 % carbon conversion.  相似文献   

2.
This paper compares the syngas produced from methane with the syngas obtained from the gasification, in a two-stage reactor, of various waste feedstocks. The syngas composition and the gasification conditions were simulated using a simple thermodynamic model. The waste feedstocks considered are: landfill gas, waste oil, municipal solid waste (MSW) typical of a low-income country, the same MSW blended with landfill gas, refuse derived fuel (RDF) made from the same MSW, the same RDF blended with waste oil and a MSW typical of a high-income country. Energy content, the sum of H2 and CO gas percentages, and the ratio of H2 to CO are considered as measures of syngas quality. The simulation shows that landfill gas gives the best results in terms of both H2+CO and H2/CO, and that the MSW of low-income countries can be expected to provide inferior syngas on all three quality measures. Co-gasification of the MSW from low-income countries with landfill gas, and the mixture of waste oil with RDF from low-income MSW are considered as options to improve gas quality.  相似文献   

3.
This paper reports the main outcome of research to compare and assess the merits of alternative strategies for energy recovery from municipal solid waste downstream of material recovery for an Italian province. Strategies analysed are based on well-established combustion technologies available at the commercial scale in the Italian market in comparison with an innovative but not yet proven option of refuse derived fuel gasification and subsequent co-combustion of syngas in a combined cycle power plant. The comparison is made using mass and energy balances, environmental assessment and economic analysis. From an energetic point of view, the best strategy is the one based on the refuse derived fuel gasification, which, on the contrary, does not show interesting environmental results. In this perspective, the best results are from strategies based on a dedicated plant, particularly when unsorted residual waste collected downstream of material recovery is used. Finally, from an economic point of view, the strategy with gasification allows the highest revenues from the sale of energy.  相似文献   

4.
Plasma gasification is an innovative technology for transforming high calorific waste streams into a valuable synthesis gas and a vitrified slag by means of a thermal plasma. A test program has been set up to evaluate the feasibility of plasma gasification and the impact of this process on the environment. RDF (refuse derived fuel) from carpet and textile waste was selected as feed material for semi-pilot gasification tests. The aim of the tests was: (1) to evaluate the technical feasibility of making a stable synthesis gas; (2) to characterize the composition of this synthesis gas; (3) to define a suitable after-treatment configuration for purification of the syngas and (4) to characterize the stability of the slag, i.e., its resistance to leaching for use as a secondary building material. The tests illustrate that plasma gasification can result in a suitable syngas quality and a slag, characterized by an acceptable leachability. Based on the test results, a further scale-up of this technology will be prepared and validation tests run.  相似文献   

5.
Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size <45 mm increased by around 2× after bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property.  相似文献   

6.
Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngas produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H2S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H2S is significantly affected by the concentration of CO2 in the syngas. When only a small percentage of CO2 is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H2S removal can be maintained at a high level.To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford good gas-cleaning performance.  相似文献   

7.
Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.  相似文献   

8.
A continuous system (feeding rate >1 kg/h) consisting of thermal dechlorination pre-treatment and catalytic pyrolysis with Fe-restructured clay (Fe-RC) catalyst was developed for feedstock recycling of PVC-containing mixed plastic waste. The vented screw conveyor which was specially designed for continuous dechlorination was able to achieve dechlorination efficiency of over 90 % with a feedstock retention time longer than 35.5 min. The chlorine content of the pyrolytic oil obtained after dechlorination was in the range of 6.08–39.50 ppm, which meet the specification for reclamation pyrolytic oil in Japan. Fe-RC was found to significantly improve the yield of pyrolytic oil (achieved to 83.73 wt%) at the optimized pyrolysis temperature of 450 °C and catalyst dosage of 60 g. With the optimized parameters, Fe-RC showed high selectivity for the C9–C12 and C13–C19 oil fraction, which are the major constituents of kerosene and diesel fuel, demonstrating that this catalyst can be applied in the pyrolysis of mixed plastic wastes for the production of kerosene and diesel fuel. Overall, the continuous process exhibited high stability and consistently high-oil yield upon reaching steady state, indicating its potential up-scaling application in the industry.  相似文献   

9.
This paper presents a study on the effect of hydrothermal treatment (HTT) on municipal solid waste (MSW) and mechanical property of fuel pellet. The lab-scale HTT was conducted at the condition of 180–240 °C and 30–90 min. Results showed that the HTT could improve fuel property of MSW including heating value, dewatering and drying performance. The fuel pellet was produced at three different diameters (4, 6, and 8 mm). Tests of mechanical property and water adsorption were performed. Results showed that the fuel pellet was able to withstand the axial load of 19–54 N and the radial load of 72–130 N. The 8-mm pellet exhibited lowest Young’s modulus (18.26 MPa) indicating flexibility and ductility. Durability of the fuel pellet was high (91–94%) while the Hardgrove Grindability Index (HGI) was (57–76) higher than that of the biomass pellet (18–22) and the subbituminous coal (46–49) indicating the ease of grinding. The equilibrium moisture content of the fuel pellet was 5–6%. The small fuel pellet reached adsorption equilibrium faster than the large one. In sum, the fuel pellet produced from HTT showed good fuel property as well as mechanical property for transportation and utilization.  相似文献   

10.
This work reports the effect of pressure on the steam/oxygen gasification at 1000 °C of the char derived from low temperature-pressure distillation of granulated scrap tyres (GST). The study was based on the analysis of gas production, carbon conversion, cold gas efficiency and the high heating value (HHV) of the product. For comparison, similar analyses were carried out for the gasification of coals with different rank.In spite of the relatively high ash (≈12 wt.%) and sulphur (≈3 wt.%) contents, the char produced in GST distillation can be regarded as a reasonable solid fuel with a calorific value of 34 MJ kg−1. The combustion properties of the char (EA ≈ 50 kJ mol−1), its temperature of self-heating (≈264 °C), ignition temperature (≈459 °C) and burn-out temperature (≈676 °C) were found to be similar to those of a semi-anthracite.It is observed that the yield, H2 and CO contents and HHV of the syngas produced from char gasification increase with pressure. At 0.1 MPa, 4.6 Nm3 kgchar−1 of syngas was produced, containing 28% v/v of H2 and CO and with a HHV around 3.7 MJ Nm−3. At 1.5 MPa, the syngas yield achieved 4.9 Nm3 kgchar−1 with 30% v/v of H2-CO and HHV of 4.1 MJ Nm−3. Carbon conversion significantly increased from 87% at 0.1 MPa to 98% at 1.5 MPa.It is shown that the char derived from distillation of granulated scrap tyres can be further gasified to render a gas of considerable heating value, especially when gasification proceeds at high pressure.  相似文献   

11.
Biomass such as woody waste and food waste can be converted to a renewable energy source by means of carbonization processes. The basic characteristics of woody waste and food waste, such as proximate analysis and heating value, were evaluated before carrying out carbonization tests. Carbonization tests were carried out to obtain the basic characteristics of carbonization residue on changing the proportion of food waste from 0% to 30% in the mixture of woody waste and food waste. The effect of the food waste was estimated by basic characteristics of the residue such as the heating value, yield, and fuel ratio. As increased the food waste content, the bulk density, yield and chlorine content of the carbonization residue increased, but fuel ratio, the carbon content and heating value of the residue decreased. From the results of the basic characteristics of the residue, the optimum food waste content in carbonization tests was found to be 20%. Even if food waste is combined with woody waste at levels up to 30%, the sulfur and chlorine concentrations in the residue were much lower than the regulatory standard levels. From the results for the fuel ratio and heating value of the residue, the carbonization residue is suitable for use as a renewable energy source and can be categorized by the second grade level of solid fuel products.  相似文献   

12.
Source-separated collection system of household food waste has been implemented national wide in South Korea. Food waste recycling rate that means conversion rate to recycle is over 90 % in present. However, over the value of 90 %, we need to enhance the efficiency of food waste recycling process. We analyzed material flow of 24 food waste recycling facilities and calculated solid recovery rate to key-process. We found that 3–13 % of the solids from food waste outflows with foreign materials and 27–33 % of the solids outflow with wastewater. As a result, solid recovery rates are 65.3, 60.9, and 56.3 % in wet feed facility, dry feed facility, and composting facility, respectively. Alternative ways to recovery solid from wastewater or collection tools to exclude plastic bags, salt, and moisture content are required to make food waste recycling more efficient.  相似文献   

13.
The incineration of food waste water in conjunction with the domestic waste is getting attention as a food waste water treatment method, due to its low treatment cost and high efficiency. Many studies verified that the ammonia in the food waste water served as a reducing agent to suppress the generation of NOx when the food waste water was injected and incinerated. However, they have not revealed the correlation between the change in the concentration of the CO and NOx by the influence of the solid matters contained in the food waste water on the incineration of the wastes. The purpose of this study is to determine the optimum amount of the food waste water injected through four nozzles in the primary and secondary incineration chambers and to assess the correlation between the concentration of CO and NOx in accordance with the food waste water injection in each chamber of the incinerator. For the study, four food waste water injection nozzles were installed; two (A and B) at the top of the primary incineration chamber and the other two (C and D) in the secondary incineration chamber. The correlation between the change in the concentration of CO and NOx was studied adjusting the amount of the food waste water injected through the nozzles. From the result, Case II showed the concentration of CO and NOx as 1.8–10 and 14–26 ppm, respectively, while Case I showed that of CO and NOx as 15–30 and 9–18 ppm, respectively. Those levels are well below the Korean emission criteria, 50 ppm for CO and 80 ppm for NOx. Based on the results, it is evident there is a certain trade-off between emission of CO and NOx, and Case II which has relatively low concentration of CO is easier and cheaper to control.  相似文献   

14.
In this study, experimental conditions were optimized to maximize the production of hydrogen gas from refuse plastic fuel (RPF) by pyrolysis and steam gasification processes conducted in a laboratory-scale reactor. We carried out gasification using 10-g RPF samples at different temperatures (700°-1000°C) with and without steam. The effect of the amount of steam (0–0.25 g/min) for RPF steam gasification was also studied. The effect of K2CO3 as a catalyst on these processes was also investigated. Experimental results showed that the hydrogen gas yield increased with temperature; with respect to the gas composition, the hydrogen content increased mainly at the expense of other gaseous compounds, which highlights the major extension of secondary cracking reactions in the gaseous fraction at higher temperatures.  相似文献   

15.
The management of greenhouse gases (GHGs) emissions is currently a very important environmental issue. Mega-event organizers and host cities have attached great importance to GHGs emissions associated with event-related activities. However, GHGs emissions from event solid waste have never been thoroughly discussed. This study investigated GHGs emissions of major event’s solid waste using life cycle assessment, based on Shanghai Expo case. The results showed that GHGs from collecting and sorting, transportation and landfill treatment amount to 9790 t CO2e. And the emission intensity is estimated to be 134 g CO2e per event service. GHGs reduction from recycling amounts to 48 kt CO2e, with 78 % of these the result of construction waste recycle. It illustrates that waste recycle plays a vital role in GHGs mitigation. Finally, the study suggests that the concept of waste avoidance, waste reuse and waste recycle is an effective waste management to mitigate climate change and should be implemented in major event to achieve the goal of green event.  相似文献   

16.
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products.The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500 °C but the polycyclic aromatic hydrocarbons became the major compounds at 900 °C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700 °C under steam gasification condition.For WBC, both char utilization by pyrolysis at low temperature (500 °C) and syngas recovery by steam gasification at higher temperature (900 °C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500 °C) might be one of viable options. Steam gasification at 900 °C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered.  相似文献   

17.
In this study, refuse plastic fuel (RPF) was copyrolyzed with low-quality coal and was gasified in the presence of a metal catalyst and steam. Some metal catalysts, such as Ni, NiO, and Mg, and mixtures of these with base promoters such as Al2O3 and Fe2O3 were employed in the pyrolysis and gasification processes to convert the synthesis gas into more valuable fuel gas. The operating temperatures for the pyrolysis and gasification were between 700° and 1000°C. The experimental parameters were the operating temperature, catalyst type, basic promoter type, and steam injection amount. Solid fuel samples (5 g) were fed into a semibatch-type quartz tube reactor when the reactor reached the designated temperature. The synthesis gas was analyzed by gas chromatography. The use of low-quality coal as fuel in co-pyrolysis with RPF was explored. For the co-pyrolysis of RPF and low-quality coal, the effectiveness of the catalysts for fuel gas production followed the order Mg > NiO > Ni. In catalytic gasification of RPF, the addition of Al2O3 seemed to reduce the activity of the corresponding catalysts Ni and Mg. The maximum fuel gas yield (92.6%) was attained when Mg/Fe2O3 was used in steam gasification at 1000°C.  相似文献   

18.
A beautiful and clean environment is the desire of every society. Malaysia is facing an uncontrolled increase in municipal solid waste (MSW) generation due to population growth, economic advancement, and industrialization, but the current, most common waste disposal practice of landfilling is not sustainable. The increasing standard of living also saps more energy from the power generation systems in which fossil fuels are the major source of fuel for the plants. Malaysia generates about 0.5–1.9 kg/capita/day of MSW; a total of about 25,000 tonnes/day of MSW is currently generated and is estimated to exceed 30,000 tonnes/day by 2020. Malaysian MSW is mainly composed of 45 % food waste, 24 % plastic, 7 % paper materials, 6 % metal, 4 % wood and 3 % glass, which are commingled, and is thus characterised by 52–66 % moisture content. Currently, 80–95 % of collected MSW is landfilled and 5 % is recycled, while composting and energy recovery are rarely practiced. This paper reviews the solid waste practice in Malaysia and looks into alternative management options for sustainability. Malaysia MSW represents recyclable power and energy potential if properly sorted. This study considered the practice of sorting at the source and the use of combustible MSW components as fuel to generate heat for a hybrid solar, flue gas, chimney power plant.  相似文献   

19.
Statistics showed that approximately 1,195,000 refrigerator units (116,094 metric tons) were recycled annually in Korea’s formal sector. Although the recycling level for these was satisfactory, collecting and processing polyurethane at recycling centers (RCs) posed several problems, including the risk of fire from the incinerator, the generation of fugitive dust, and the high cost of disposal. The objective of our study is to provide an overview of refrigerator recycling and to introduce polyurethane solid refuse fuel (SRF) manufacturing facilities. These facilities, installed at four regional RCs in Korea, have a capacity of 800 kg/h, a motor of 476 kWh, and cost $664,300 (USD) to construct (criteria two facilities). According to our examination of the physico-chemical properties of SRF product, all results in categories have been satisfied with the quality standards. In terms of finances, RCs can reduce the total disposal cost from $160–175 to $60 by installing facilities, which results in savings of (on average) $180,546 annually. The Metropolitan Electronics Recycling Center, for example, has reduced its costs by $180,880 each year. Their return on investment was calculated to be about 3 years and 8 months (assuming no operating expenses) or 7 years and 4 months (including operating expenses).  相似文献   

20.
Steam gasification of two different refuse derived fuels (RDFs), differing slightly in composition as well as thermal stability, was carried out in a fixed-bed reactor at atmospheric pressure. The proximate and ultimate analyses reveal that carbon and hydrogen are the major components in RDFs. The thermal analysis indicates the presence of cellulose and plastic based materials in RDFs. H2 and CO are found to be the major products, along with CO2 and hydrocarbons resulting from gasification of RDFs. The effect of gasification temperature on H2 and CO selectivities was studied, and the optimum temperature for better H2 and CO selectivity was determined to be 725 degrees C. The calorific value of product gas produced at lower gasification temperature is significantly higher than that of gas produced at higher process temperature. Also, the composition of RDF plays an important role in distribution of products gas. The RDF with more C and H content is found to produce more amounts of CO and H2 under similar experimental conditions. The steam/waste ratio showed a notable effect on the selectivity of syngas as well as calorific value of the resulting product gas. The flow rate of carrier gas did not show any significant effect on products yield or their distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号