首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
为了解盐城市不同功能区地表灰尘中重金属污染特征,以工业区、交通区、居民区、商业区、学校区、公园区的地表灰尘作为研究对象,分析地表灰尘中重金属的含量分布及氮磷、有机质的含量变化,并以此为基础,对重金属的生态风险进行评价,探索重金属污染的成因与来源,为城市的地表灰尘污染防治提供理论依据。结果表明:(1)工业区地表灰尘中总氮、总磷最低;公园区和学校区地表灰尘中总氮最高,分别达到2.03、2.43g/kg,公园区地表灰尘中总磷最高,达到1.59g/kg。(2)地表灰尘中有机质呈现出和总氮、总磷一致的趋势,同样是工业区地表灰尘中有机质最低,公园区地表灰尘中有机质最高(34.0g/kg)。(3)地表灰尘中重金属和总氮、总磷、有机质总体呈现负相关关系,公园区地表灰尘中重金属最低,工业区地表灰尘中重金属最高。各个功能区地表灰尘中重金属全部高于土壤背景值。(4)地表灰尘中不同重金属元素的单因子污染指数依次为CdCuPb;不同功能区地表灰尘中重金属综合污染指数依次为工业区交通区居民区学校区商业区公园区,呈中污染(除公园区、商业区呈轻污染外)。  相似文献   

2.
土壤中Pb、Cd的稳定化修复技术研究进展   总被引:2,自引:0,他引:2  
在众多重金属修复技术当中,稳定化技术具有花费少、环境损失小等诸多优势。综述了国内外土壤中Pb、Cd稳定化修复的研究进展;分析了稳定剂的作用机制、土壤中Pb、Cd的赋存形态;探讨了土壤中Pb、Cd稳定化修复的主要影响因素。最后,还提出了稳定化修复技术在土壤中Pb、Cd污染治理应用中尚存在的问题。  相似文献   

3.
参考2017年美国环境保护署(USEPA)推荐的Method 202和中国《固定污染源废气低浓度颗粒物的测定重量法》(HJ 836—2017),对中国华北、华东地区正常稳定运行的燃煤电厂、燃煤供热锅炉、垃圾焚烧发电厂、建筑陶瓷厂、焦化厂、石化厂等涉气重点行业企业排放的固定源可凝结颗粒物(CPM)及其中的金属元素进行了测试。结果表明,不同行业企业废气CPM中金属元素的种类和排放水平不同,主要与燃烧源、原(辅)材料、生产工艺、废气治理设施的CPM治理效果等因素有关。CPM中Zn、Al是主要金属组分,多数企业Fe、Ba占比也较高。燃煤电厂中As、Pb,燃煤供热锅炉中Pb、Cr、As,石化厂中Hg、Pb,建筑陶瓷厂中Cr,垃圾焚烧发电厂和焦化厂中As,分别是CPM中值得关注的有毒有害重金属元素。  相似文献   

4.
为研究典型绿洲城市地表灰尘中微量元素的污染及来源,在新疆乌鲁木齐市采集83个地表灰尘样品,测定As、Cd、Cr、Cu、Hg、Mn、Ni、Pb与Zn等9种微量元素含量,采用地质累积指数法评价地表灰尘中微量元素污染水平,基于地理信息系统(GIS)技术与地统计法分析微量元素空间分布格局,并利用多元统计分析法分析地表灰尘中微量元素的主要来源。结果表明,乌鲁木齐市地表灰尘中Cd、Cr、Cu、Hg、Ni、Pb和Zn分别为新疆土壤背景值的2.00、1.35、1.38、8.24、1.28、2.09、3.26倍。地表灰尘中Hg呈现中度污染,Cd、Pb和Zn呈现轻微污染,As、Cr、Cu、Mn和Ni呈现无污染。研究区地表灰尘中各微量元素的空间分布格局各不相同。从污染来源来看,研究区地表灰尘中As、Cd、Cr、Cu、Hg、Ni、Pb与Zn来源主要受到人为污染源的影响,Mn来源主要受到土壤地球化学特征的控制。  相似文献   

5.
复合纳米材料对土壤重金属离子吸持固化的模拟研究   总被引:1,自引:0,他引:1  
土壤中过量重金属离子可通过食物链和地表水系统危害人群健康。通过土柱淋溶模拟实验,研究了SiO2-Al2O3-Fe2O3等复合纳米材料对土壤溶液中Cu2+、Cd2+、Pb2+、Zn2+和Ni2+的吸持与固化特征。分别向重金属含量4倍于土壤二级标准(GB15618-1995)的土壤中添加0%、4%、6%和10%的复合纳米材料,分析不同深度土壤渗滤液以及土柱上栽培植物不同部位中重金属的含量。结果表明,碱性壤质土壤中重金属向下的迁移量很少;在含4%复合纳米材料土柱中,其吸持固化土壤溶液中63%的Cu、79%的Cd、68%的Pb、89%的Zn和76%的Ni;在含6%复合纳米材料土柱中,其吸持固化土壤溶液中82%的Cu、92%的Cd、76%的Pb、91%的Zn和88%的Ni;再增加土柱中复合纳米材料的含量,其吸持固化效果并不再显著增加。  相似文献   

6.
采集广东某大型城市生活垃圾焚烧厂一期(WI-A)和二期(WI-B)的进厂垃圾、渗滤液、飞灰、底渣和烟气样品,分析了各样品中砷、镉、钴、铬、铜、汞、镍、铅、锌共9种重金属含量,研究重金属的迁移特征。结果显示,9种重金属呈现4类不同的迁移特征,钴、铜、镍、铬主要迁移至底渣中,锌、砷、铅主要迁移至底渣和飞灰中,镉主要迁移至飞灰中,汞主要迁移至飞灰和烟气中。活性炭吸附和布袋除尘器的组合对除汞以外的重金属治理效果明显。WI-A和WI-B垃圾中的汞分别约有28%、37%随烟气排到环境中。  相似文献   

7.
食品添加剂是为改善食品品质和色、香、味,以及为防腐和加工工艺的需要而加入食品中的化学合成物,或者天然物质。目前中国国内食品添加剂的功能有23类的2000多个品种,在人们每天吃的主食和副食中,几乎都含有食品添加剂,尤其是副食品的加工生产中,更离不开食品添加剂这一环节。如在加工小麦面粉中所加入的面粉处理剂、油脂中加入的抗氧化剂、豆制品中加入的消泡剂和凝固剂、酱油中加入的防腐剂(有时还加色素)、糖果和饮料中加入的着色剂和甜味剂等。  相似文献   

8.
钝化剂在烟草植物修复铅镉污染土壤中的作用   总被引:1,自引:0,他引:1  
重金属钝化剂可以改变土壤中重金属的形态,降低其在土壤中的有效浓度、植物毒性及生物有效性,影响污染土壤中植物的生长及其对重金属的吸收。在温室盆栽条件下研究了施加羟基磷灰石(HA)、纳米羟基磷灰石(nHA)、纳米零价铁(nFe0)和纳米TiO2(nTiO2)对烟草植物修复铅镉污染土壤的作用。结果表明,HA降低土壤中Ph、cd的有效性、促进烟草生长、增加了烟草叶、茎、根中cd的吸收量和根系中Pb的吸收量,有利于Ph、cd的钝化和植物修复。nHA也可以降低土壤中Pb、cd的有效性,增加了烟草叶中cd的吸收量,有利于Pb、cd的钝化和cd的植物提取。nFe0和nTiO2:对于土壤Pb和cd的钝化作用和植物修复均没有显著影响。综合来看,HA最适合应用于烟草植物修复铅镉污染土壤。  相似文献   

9.
文中综述了多氯联苯的分析技术及其研究进展。介绍了样品前处理技术如索氏萃取法、超声萃取法、微波辅助萃取、超临界流体萃取、加速溶剂萃取等在土壤样品中多氯联苯分析中的应用;阐述了气相色谱、液相色谱、气质联用技术在土壤样品中多氯联苯的检测,并对土壤中未来多氯联苯检测技术的发展提出了展望。  相似文献   

10.
光催化氧化降解垃圾渗滤液中溶解性有机物   总被引:3,自引:0,他引:3  
研究了UV-TiO2光催化氧化降解垃圾渗滤液过程中溶解性有机物(DOM)的变化特征。结果表明:在适宜条件下,UV-TiO2光催化氧化降解垃圾渗滤液的色度、COD和DOC的去除率分别可达97%、72%和60%;紫外光谱分析说明渗滤液DOM中包括多种含有共轭双键、羰基的大分子有机物及多环芳香类化合物,不同光催化处理液中DOM具有基本一致的结构单元和官能团;红外光谱分析说明渗滤液DOM中含有大量包括羟基、羧基、氨基和苯环的芳香族化合物,在光催化处理液中这几种官能团都能被有效降解;GC/MS分析结果表明,渗滤液DOM中含有72种有机污染物,醇类、羧酸和酮类分别为25、14和12种;在光催化72 h处理液中,有机物减少为44种;酯类和醇类较多,分别为12种和16种;酮类8种,羧酸没有检出。  相似文献   

11.
Mercury is a well-known toxic element, and flue gas streams emitted from coal-fired utilities are one of the largest anthropogenic sources of this element. This study briefly reviews the proposed technologies for reducing mercury emissions from coal combustion, focusing on an emerging process which involves the use of regenerable sorbents and especially those loaded with noble metals. Among the mercury species formed during coal combustion, elemental mercury is the most difficult to remove from the flue gases due to its low reactivity and insolubility in water. The widespread interest in using regenerable sorbents with metals is due to their ability to retain elemental mercury. With this technology, not only can efficiencies of 100 % be reached in the retention of elemental mercury but also a way to avoid the generation of new wastes loaded with mercury. This study considers the main aspects that must be taken into account when developing effective regenerable sorbents for mercury capture, with special attention to sorbents containing noble metals. The characteristics of this process are compared with those of other processes in a more advanced state of development.  相似文献   

12.

Due to its adverse impact on health, as well as its global distribution, long atmospheric lifetime and propensity for deposition in the aquatic environment and in living tissue, the US Environmental Protection Agency (US EPA) has classified mercury and its compounds as a severe air quality threat. Such widespread presence of mercury in the environment originates from both natural and anthropogenic sources. Global anthropogenic emission of mercury is evaluated at 2000 Mg year−1. According to the National Centre for Emissions Management (Pol. KOBiZE) report for 2014, Polish annual mercury emissions amount to approximately 10 Mg. Over 90% of mercury emissions in Poland originate from combustion of coal.

The purpose of this paper was to understand mercury behaviour during sub-bituminous coal and lignite combustion for flue gas purification in terms of reduction of emissions by active methods. The average mercury content in Polish sub-bituminous coal and lignite was 103.7 and 443.5 μg kg−1. The concentration of mercury in flue gases emitted into the atmosphere was 5.3 μg m−3 for sub-bituminous coal and 17.5 μg m−3 for lignite. The study analysed six low-cost sorbents with the average achieved efficiency of mercury removal from 30.6 to 92.9% for sub-bituminous coal and 22.8 to 80.3% for lignite combustion. Also, the effect of coke dust grain size was examined for mercury sorptive properties. The fine fraction of coke dust (CD) adsorbed within 243–277 μg Hg kg−1, while the largest fraction at only 95 μg Hg kg−1. The CD fraction < 0.063 mm removed almost 92% of mercury during coal combustion, so the concentration of mercury in flue gas decreased from 5.3 to 0.4 μg Hg m−3. The same fraction of CD had removed 93% of mercury from lignite flue gas by reducing the concentration of mercury in the flow from 17.6 to 1.2 μg Hg m−3. The publication also presents the impact of photochemical oxidation of mercury on the effectiveness of Hg vapour removal during combustion of lignite. After physical oxidation of Hg in the flue gas, its effectiveness has increased twofold.

  相似文献   

13.
The utilization of coal gangue in power plants has become a new anthropogenic discharge source of mercury and attracted much concern in China. It is crucial to obtain the information about the mercury release during thermal treatment of coal gangue. In this study, the mercury release behavior of two coal gangues selected from two power plants were studied under different thermal treatment conditions of heating rate, residence time, and atmosphere. The results of mercury release profile show that the specified release temperature ranges for the different modes of occurrence of Hg are scarcely affected by the heating rate of 10, 20, and 40 °C/min. A higher heating rate could promote the Hg release to some extent. The mercury release ratio gradually increases with the extension of residence time for both coal gangues. The oxidizing environment has a positive effect on mercury release < 600 °C and has a minor effect > 600 °C. Mercury in coal gangue is more volatile than coal gangue matrix and the mercury in GD coal gangue is more easily released out than that in ED coal gangue.  相似文献   

14.
Zhang MQ  Zhu YC  Deng RW 《Ambio》2002,31(6):482-484
Mercury emissions from the coal smoke is the main source of anthropogenic discharge and mercury pollution in atmosphere. The calculated total amount of mercury emissions of China in 1995 is approximately 213.8 tonnes, which accounts for c. 5% of estimated total global discharge of 4000 tonnes in the same period. From 1978 to 1995, total coal consumption increased fourfold. Based on these data it is estimated that the mercury emissions will increase at a rate of 5% a year, and the predicted emissions will be 273 tonnes in China in 2000. Controlling and solving mercury emissions from coal combustion are among the most important environmental tasks facing China.  相似文献   

15.
讨论了近年来国内外电厂煤燃烧过程中汞的形态分布以及迁移转化规律研究的最新成果 ,并在此基础上评价了现有电站污染控制系统的脱汞性能 ,考虑到汞的排放控制 ,提出了对现有设备的可能优化措施。在分析中 ,注意到汞的易挥发性 ,认为汞排放控制应该充分考虑烟气中汞形态的迁移转化。由于氧化态汞在汞控制中有着重要作用 ,其研究将是控制电厂汞排放的关键。先进的汞排放控制技术的开发应以增强汞的氧化态为优先发展方向。  相似文献   

16.
The paper reviews the current state of knowledge regarding sources of mercury emission in Poland. Due to the large quantities of coal burned at present, as well as taking into account existing reserves, coal remains the main energy source of energy in Poland. The data on coal consumption in Poland in the past, at present and in the future are discussed in the paper. Information on the content of mercury in Polish coals is presented.Coal combustion processes for electricity and heat production are the main source of anthropogenic mercury emission in Poland. It is expected that the current emissions will decrease in the future due to implementation of efficient control measures. These measures for emission reduction are described in the paper. Results of estimated mercury emission from coal-fired power station situated in the Upper Silesia Region, Poland are investigated. A relationship between mercury emission to the air and the mercury content in the consumed coal in power station equipped with the electrostatic precipitators (ESPs) is discussed.  相似文献   

17.
The UN Global Mercury Assessment (GMA) estimates that atmospheric emissions of mercury from Australian stationary combustion sources were 97.0 tonnes for the year of 1995. This is more than 90% of the estimated emissions from stationary combustion for the whole of North America, and seems abnormally high for a country with a population of around 20 million, in spite of the fact that most of Australia's stationary energy supply is provided by coal. It is also significantly larger than previous estimates of mercury emissions from Australian sources. New estimates of Australian mercury emissions from stationary energy sources, based on both a top down and bottom up approach, are presented. These estimates can be reconciled for black coal fired power stations, but suggest that the bottom up approach (the Australian National Pollutant Inventory) significantly under-estimates emissions from brown coal fired plant, if mercury capture efficiencies in these plants are low, as observed for lignite-fired plant. The major uncertainties in these estimates are the coal mercury content in coals burnt in Australian power stations, and the mercury capture efficiency in particulate control devices used at these stations. Based on these estimates, Australian emissions of mercury from stationary energy are currently 2–8 tonnes/year, significantly lower than the GMA estimate.  相似文献   

18.
The history of mercury emissions from fuel combustion in Maritime Canada   总被引:1,自引:0,他引:1  
In this study, we present an inventory of historical emissions of mercury resulting from combustion of wood, coal and refined petroleum products in Maritime Canada. The pattern of emissions illustrates the strong influences of population growth, industrial development and prevailing fuel preferences in the region. According to our calculations, anthropogenic mercury releases from fuel combustion in Maritime Canada have cumulatively totaled more than 50 tonnes since 1800. We have compiled both high and low estimates of annual mercury releases in this region. Mercury emissions from fuel combustion in Maritime Canada reached a maximum level in the 1940s. At this time, emissions were between 778 (low) and 1494 (high) kg per year, coinciding with the period of most intensive coal use in Maritime Canada. In 1995, emissions were approximately 54% of the level reached in 1940, at 427 (low)-800 (high) kg per year. In presenting this emissions inventory, we hope to refine past estimates with current information on the mercury content of different fuel types, and create a comprehensive database on how mercury emissions from various sources have changed over time.  相似文献   

19.
GOAL, SCOPE AND BACKGROUND: Mercury (Hg) emission from combustion flue gas is a significant environmental concern due to its toxicity and high volatility. A number of the research efforts have been carried out in the past decade exploiting mercury emission, monitoring and control from combustion flue gases. Most recently, increasing activities are focused on evaluating the behavior of mercury in coal combustion systems and developing novel Hg control technologies. This is partly due to the new regulatory requirement on mercury emissions from coal-fired combustors to be enacted under the U.S. Title III of the 1990 Clean Air Act Amendments. The aim of this review work is to better understand the state-of-the-art technologies of flue gas mercury control and identify the gaps of knowledge hence areas for further opportunities in research and development. MAIN FEATURES: This paper examines mercury behaviors in combustion systems through a comprehensive review of the available literature. About 70 published papers and reports were cited and studied. RESULTS AND DISCUSSION: This paper summarizes the mechanisms of formation of mercury containing compounds during combustion, its speciation and reaction in flue gas, as well as subsequent mobilization in the environment. It also provides a review of the current techniques designed for real-time, continuous emission monitoring (CEM) for mercury. Most importantly, current flue gas mercury control technologies are reviewed while activated carbon adsorption, a technology that offers the greatest potential for the control of gas-phase mercury emissions, is highlighted. CONCLUSIONS AND RECOMMENDATIONS: Although much progress has been achieved in the last decade, techniques developed for the monitoring and control of mercury from combustion flue gases are not yet mature and gaps in knowledge exist for further advancement. More R&D efforts are required for the effective control of Hg emissions and the main focuses are identified.  相似文献   

20.
Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of its Brunauer–Emmett–Teller (BET) surface area. Two simulated flue gas conditions, (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, that is, more than 87%, regardless of their BET surface area.

Implications: We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had mercury adsorption efficiency comparable to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号