首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
石油污染土壤中芘高效降解菌群的筛选及降解特性研究   总被引:3,自引:0,他引:3  
从长期受石油污染土壤中驯化筛选到能以芘为惟一碳源生长的混合菌群GP3,其主要由假单胞菌株GP3A(Pseudomonas sp.)和菌株GP3B(Pandoraea pnomenusa)组成.采用摇瓶振荡培养方法,研究了不同环境条件对混合菌GP3降解芘效能的影响.结果表明,在30℃,150 r/min振荡培养下,混合菌GP3对15 mg/L芘的7 d降解率为90.6%.混合菌GP3降解芘的最适宜温度为35℃,最佳pH值为6.2.加入低浓度葡萄糖(100 mg/L)或菲(10 mg/L)作为共代谢底物,均可提高GP3对芘的降解率.混合菌对芘的降解速率(PDR)与芘的初始浓度呈正相关.研究重金属离子胁迫下GP3对芘的降解时发现,10 ms/L Zn2 的存在对芘降解效能影响较小,Cu2 对芘的降解有抑制作用,Cd2 对混合菌GP3有很强的毒性.  相似文献   

2.
从克拉玛依油田附近稠油污染土壤中筛选出能以菲为唯一碳源的菲降解菌y-8,通过形态观察、生理生化特性及16SrDNA比对序列分析对该菌株进行了鉴定,确定菲降解菌y-8属于弯曲假单胞菌(Pseudomonas geniculata)。菲降解菌y-8在30℃、接种量2%(体积分数)、pH=7.0、170r/min的条件下振荡培养72h,对初始质量浓度为100mg/L菲的降解率达到93.7%,同时可耐受较高质量浓度的菲(3 000mg/L)。同时,对不同初始浓度菲降解动力学曲线进行分析,建立菌降解的指数模型,得到一级反应动力学方程:lnc=-0.045 1t+A(其中,c为菲质量浓度,mg/L;t为降解时间,h;A为常数),半减期为91.01h。  相似文献   

3.
芳香烃降解菌是石油污染土壤修复的主要生物资源。采用芘平板升华法对克拉玛依原油污染土壤样品进行驯化培养,分离得到一株芘降解菌B2,经16S rDNA基因序列比对及系统发育进化分析表明,该菌株为假单胞菌属(Pseudo-monas)。采用正交设计方法优化菌株B2对高分子量多环芳烃芘的降解条件,并构建多元非线性模型预测菌株B2对芘的最佳降解条件,结果表明:在接种量OD660 nm为0.60、降解温度为40℃、降解时间为6.0 d时,预测菌株B2对芘的降解最大达到38.214 mg/L,实际测得最大降解量为37.906 mg/L,预测准确率为99.19%。运用PCR技术克隆B2的邻苯二酚-2,3-双加氧酶基因(B2C23O)(I.2.A亚家族),核酸序列分析表明,该基因全长880 bp,具有一个完整的开放阅读框,编码246个氨基酸,与已报道的Pseudomonas putida W619同源性最高为97%;对B2C23O基因编码氨基酸序列进行分析,发现其具有邻位断裂双加氧酶模式结构,推测菌株B2通过邻位裂解途径降解芘代谢中间产物邻苯二酚。  相似文献   

4.
分别从台州和衢州某化工厂的好氧池中分离筛选得到2株苯胺降解菌TZ1和JH1,经16S rDNA测序鉴定为Comamonas sp.TZ1和Pseudomonas sp.JH1,均具有较强的苯胺降解能力,培养24 h后,可使初始浓度为800 mg/L的苯胺去除率达到96.4%~98.4%。在此基础上,按体积比1∶1将2株菌液进行混合构建了混合菌体系,进而对比考察了苯胺初始浓度、pH、盐度和重金属等环境因子对单一菌和混合菌生长量及降解苯胺效果的影响,重点探讨混合菌对不适宜生长环境的适应性及其对苯胺的降解特性。通过单一菌和混合菌对比实验发现,在适宜苯胺初始浓度、pH和盐度条件下,混合菌的生长量略高于单一菌;在不适宜生长的高浓度苯胺、pH和盐度条件下,混合菌也表现出了更强的适应性和苯胺矿化能力。Zn2+和Cr6+耐受实验则表明,对于Cr6+,混合菌表现出了更强的耐受能力,而对于Zn2+并没有表现出更强的耐受能力。  相似文献   

5.
在温室盆栽条件下,通过单独种植紫茉莉、单独接种多环芳烃(PAHs)模式化合物芘的专性降解菌ZQ5和两者的联合修复的3种处理,对芘污染土壤的修复效果进行了研究。结果表明,经90 d修复后,植物-微生物联合修复可将人工污染土壤中的芘降解81.1%,将石油污染土壤中的芘降解50.3%,其修复效率明显高于其他2种处理,是紫茉莉修复的1.98倍,是降解菌ZQ5修复的1.39倍。ZQ5的不同接菌量对于修复60 d后的降解率影响不大。外源生物修复条件下,10~20 cm土壤的修复效率要高于5 cm土壤;自然降解条件下,5 cm土层降解率略高于其他土层。  相似文献   

6.
二氧化钛纳米管被用于光催化氧化水体中的百草枯,对光催化反应条件、常见Fe3+离子的干扰情况和百草枯光催化降解动力学规律进行了研究。结果表明,浓度为25 mg/L的百草枯溶液,在二氧化钛纳米管(TNT)1.0 g/L,H2O20.5 mL/50 mL,pH=5.0的最优光催化氧化条件下,经过30 min反应可以被100%从水体中去除,表现出非常高的光催化降解效率;动力学方程拟合表明,百草枯光催化氧化反应符合拟一级动力学规律,动力学方程为ln(C0/C)=1.0267t-0.1282,反应速率常数K为1.0267 h-1;双氧水存在时常见的Fe3+能够进一步提高百草枯光催化降解率;该光催化反应体系对低浓度百草枯废水有很好的处理效果,预示着光催化氧化技术适合地表或地下水体中百草枯的去除。  相似文献   

7.
以从我国最大的石油污水灌区之一——沈抚灌区污染土壤分离到的以芘为惟一碳源、能源生长的高效降解菌株ZQ5为实验材料,通过对菌株ZQ5培养条件的优化,以及采用摇瓶振荡培养方法测定菌株ZQ5对不同浓度芘的降解率,表明:菌株ZQ5在30℃振荡培养16 d后对150 mg/L芘的降解率为90.31%。通过模拟稻田施用N、P和K肥等的土壤环境,探索了无机营养元素对降解菌ZQ5降解能力的影响,发现土壤中混合加入N、P和K无机营养元素的降解率能达到82%以上,比单加某种营养元素对降解菌ZQ5的降解效果好。本研究结果可以指导稻田PAHs的原位生物修复。  相似文献   

8.
以从我国最大的石油污水灌区之一——沈抚灌区污染土壤分离到的以芘为惟一碳源、能源生长的高效降解菌株ZQ5为实验材料,通过对菌株ZQ5培养条件的优化,以及采用摇瓶振荡培养方法测定菌株ZQ5对不同浓度芘的降解率,表明:菌株ZQ5在30℃振荡培养16 d后对150 mg/L芘的降解率为90.31%。通过模拟稻田施用N、P和K肥等的土壤环境,探索了无机营养元素对降解菌ZQ5降解能力的影响,发现土壤中混合加入N、P和K无机营养元素的降解率能达到82%以上,比单加某种营养元素对降解菌ZQ5的降解效果好。本研究结果可以指导稻田PAHs的原位生物修复。  相似文献   

9.
水溶液中萘普生的光催化降解及产物的毒性评价   总被引:2,自引:0,他引:2  
以紫外光为光源,采用photo-Fenton方法降解低浓度的萘普生(NPX)水溶液,确定了最佳降解条件为:pH=3,H2O2质量浓度为500 mg/L,Fe2+质量浓度为15 mg/L.NPX的光催化降解过程符合一级动力学方程.在最佳降解条件下,NPX降解反应速率常数为0.136 0 min-1.NPX溶液对普通小球藻的生长有一定的抑制作用,降解前抑制率为50.54%,降解75min后,抑制率下降至1.99%.photo-Fenton可以降低NPX溶液的生物毒性,适用于处理含低浓度NPX水溶液.  相似文献   

10.
高效降解菌的筛选对利用生物修复技术有效去除环境中的多环芳烃具有重要意义。分别以石油污染土壤和焦化废水活性污泥为菌源,分离出芘降解菌和混合PAHs(菲、荧蒽和芘)降解菌共14株并对其降解性能进行对比研究。结果表明,筛选得到的菌株分别属于9个菌属,其中2种菌源共有的菌属为Mycobacterium sp.、Ralstonia sp.和Shinella sp.。芘和PAHs的高效降解菌(CP16和CM32)均属于分支杆菌属(Mycobacterium),来源于焦化废水活性污泥;菌株CP16对芘(50mg/L)的7 d降解率为74.99%,CM32对PAHs(菲50 mg/L、荧蒽和芘各10 mg/L)的7 d降解率为100%。因此,以焦化废水活性污泥为菌源更有利于获得高效的多环芳烃降解菌。  相似文献   

11.
研究了非离子型表面活性剂Triton X-100(TX-100)和Tween80(TW-80)对苯并[a]芘的增溶特性及对苯并[a]芘高效降解菌Bacillus pumilus strain Bap9生长的影响,结果表明,2种表面活性剂对苯并[a]芘均有良好的增溶效果,均能作为碳源和能源被菌株Bap9所利用,TX-100增溶能力和增殖能力相对更强;不同浓度的TX-100对菌株降解苯并[a]芘的影响不同,当浓度为1 000 mg/L时,对降解的促进作用最强,可将苯并[a]芘降解率提高20.8%;在苯并[a]芘降解过程中,TX-100亦能作为碳源被菌株Bap9利用,不产生二次污染,因此可用于苯并[a]芘污染环境的生物修复。  相似文献   

12.
采用电晕放电等离子体降解水中的邻苯二甲酸二甲酯,研究了放电输出功率、溶液初始浓度、空气流量、初始p H、Fe2+和羟基自由基清除剂对邻苯二甲酸二甲酯去除效率的影响,并对其降解动力学进行了初步模拟。结果表明,电晕放电等离子体对水中邻苯二甲酸二甲酯有较好的去除效果。在放电功率45 W、初始浓度50 mg·L~(-1)、空气流速2 L·h-1、初始p H 6.31、初始电导率4.05μS·cm-1的条件下,反应30 min,邻苯二甲酸二甲酯的去除率可达到95%。酸性条件下有利于邻苯二甲酸二甲酯的降解。添加Fe2+,在反应初期可显著提高邻苯二甲酸二甲酯的降解率。羟基自由基清除剂的加入在一定程度上抑制了邻苯二甲酸二甲酯的降解。电晕放电等离子体降解邻苯二甲酸二甲酯的过程基本符合一级反应动力学。  相似文献   

13.
从集约化养猪废水生物处理SBR的活性污泥中分离到3株高效降解17β-雌二醇(E2)的菌株,分别命名为ha、chs和hc。研究表明,这3株菌以E2为惟一碳源,在4 d内对初始浓度为1 mg/L E2的降解率为70%~95%。25℃条件下菌ha、chs和hc的一级反应动力学常数分别为0.0086、0.072和0.013。在温度为37℃时,3株菌的降解效率最高,在高浓度的氨氮和碱性pH的条件下,这3株菌均存在降解作用。其中,pH 9.05时,一级动力学常数菌ha降至0.0066,菌chs升至0.076,菌hc降至0.012。同时,在添加C源后,对降解有促进作用,并且C/N比在15∶1时降解效果较好。3株菌的一级反应动力学常数分别升到0.027、0.73和0.021。经16S rRNA基因序列分析鉴定为枯草芽孢肝菌(Bacillus subtilis)。  相似文献   

14.
三乙胺降解菌SYA-1的分离、降解性能与动力学   总被引:1,自引:0,他引:1  
从农药废水处理池的活性污泥中分离筛选得到1株高效三乙胺降解菌株SYA-1,根据菌株SYA-1的形态特征、生理生化特性和16S rRNA基因序列同源性分析,此菌株鉴定为Achromobacter sp.。菌株SYA-1能以三乙胺为惟一碳、氮源生长,并在24 h内完全降解200 mg/L的三乙胺。环境因素影响实验表明,在温度30℃,初始pH 7.0,NaCl浓度≤10 g/L条件下,菌株SYA-1生长良好且对三乙胺的降解效率最佳;金属离子对菌株生长和三乙胺降解的抑制程度表现为:Cu2+Co2+Ag+Cd2+Fe3+Pb2+。菌株SYA-1降解三乙胺的动力学过程可用Haldane模型模拟,其参数为μmax=0.123h-1;K s=82 mg/L;K i=215 mg/L。为含三乙胺废水的生物降解提供了理论依据和菌株资源。  相似文献   

15.
比较研究了Fe~(2+)、Co~(2+)和Ag~+活化Na_2S_2O_8及KHSO_5对土壤中芘的氧化降解效果,并对上述反应过程进行动力学研究及芘降解产物成分分析。在土水质量比为1∶5,氧化剂和过渡金属离子添加摩尔比为10∶1,30℃恒温水浴磁力搅拌及反应时间5~120 min条件下开展了系列实验。结果表明,3种离子中Fe~(2+)活化Na_2S_2O_8氧化降解芘的去除效果最优,反应120 min后芘去除率为93.4%;Co~(2+)是活化KHSO_5的最佳过渡金属离子,反应5 min后芘去除率达94.5%,在反应120 min后芘去除率增高至97.0%。此外,降解动力学拟合结果表明Fe~(2+)、Co~(2+)和Ag~+活化Na_2S_2O_8和KHSO_5降解芘的过程符合准一级反应动力学,且土壤中绝大部分芘可被活化过硫酸盐体系氧化降解。  相似文献   

16.
在高海拔、低气温地区分离得到两株以邻苯二甲酸二甲酯(DMP)为碳源的菌株STX-2和STX-5。经鉴定,STX-2和STX-5分别为假单胞菌属(Pseudomonas)和红球菌属(Rhodococcus)菌株。在单菌试验的基础上,对混菌降解DMP的条件进行了优化。结果表明,混菌在温度为15℃、初始pH为8、140r/min振荡培养72h的条件下,对1 000mg/L的DMP降解效果最好,4种表面活性剂并不能显著提高混菌降解DMP的效果。动力学试验表明,随着DMP初始浓度的增加,降解速度常数降低,半衰期变长。混菌对短链邻苯二甲酸酯(PAEs)降解效果较好,而对长链PAEs降解效果较差。  相似文献   

17.
为明确蜡状芽孢杆菌(Bacillus cereus)混合菌株对毒死蜱的降解效果,采用正交实验的方法构建混合菌。以混合菌对毒死蜱的降解率和菌株的生长量为依据,利用单一因素实验考察了不同因素对混合菌降解毒死蜱的影响。结果表明:构建的混合菌中三菌株的体积比为1∶1∶3。在含80 mg/L毒死蜱的反应体系中,最适接菌量为8%(V/V),最适pH为7。在实验浓度下,混合菌对毒死蜱的降解符合一级动力学方程。混合菌对盐分有较高的耐受度,当反应液中氯化钠浓度在20~100 g/L之间时,混合菌对80 mg/L毒死蜱的降解率最高达61%。  相似文献   

18.
为了提高复合污染土壤修复的微生物资源的丰富度,为混合菌群修复污染土壤积累资料,利用多环芳烃-重金属双抗培养基在污染土壤中筛选得到一株对Cu和Cd有高耐受性的芘降解真菌,经分子生物学鉴定为米曲霉。探究了米曲霉对芘污染水体的降解效果及对重金属Cu和Cd的耐受程度,利用缺乏生长基质的毒性抑制动力学模型对芘单基质降解过程进行了拟合,以期为后续共代谢、固定化的研究及实际工程应用提供一定的理论支撑。结果表明:(1)米曲霉以芘为单基质代谢时,降解率为33%;(2)米曲霉对重金属Cu和Cd的耐受浓度分别为500 mg/L和50 mg/L,分别高出国家土壤重金属二级标准5倍和83倍;(3)米曲霉对单基质芘的降解符合Crridle提出的毒性抑制动力学简化模型Sc=Sc0·Tb*cX0(1-e-bt)(R2=0.9237)。芘初始浓度Sc0=80 mg/L,米曲霉投加量X0=85 mg/L时,数值拟合得到内源呼吸常数b=0.027,生物转化量Tb*c=0.2875。该米曲霉对单基质芘及重金属Cu和Cd表现出一定的降解性能及耐受性能,故可经过适当强化后作为多环芳烃-重金属污染土壤的微生物修复菌种。  相似文献   

19.
利用富集培养技术从某焦化厂土壤中筛选出来的菌种,根据3种不同的配伍方式构成3种不同的菌群。以苯并[a]芘、苯并[a]蒽、苯并[b]荧蒽、苯并[k]荧蒽和茚并[1,2,3-cd]芘5种多环芳烃为唯一碳源的无机盐培养基,不同菌群降解效率均达到60%以上。模拟多环芳烃污染的土壤环境,利用正交实验对菌群组合、菌量等因素不同水平探索降解的适宜条件。降解14 d的适宜条件为组合二:菌量20%、温度30℃、土壤含水率15%、营养盐质量比(m(C)∶m(N)∶m(P))为120∶10∶1、表面活性剂500 mg·kg-1、Fenton试剂和植物油2.5%;降解28 d的适宜条件为组合三:菌量10%、温度30℃、土壤含水率15%、m(C)∶m(N)∶m(P)为100∶10∶1、表面活性剂1 000 mg·kg-1、Fenton试剂和植物油5%;降解52 d的适宜条件为组合三:菌量20%、温度20℃、土壤含水率35%、m(C)∶m(N)∶m(P)为120∶10∶1、表面活性剂500 g·kg-1、Fenton试剂和植物油为0。m(C)∶m(N)∶m(P)随着降解时间的延长影响作用逐渐减小。在降解的整个阶段,菌群组合的类型对于降解率的影响最大。对于降解14 d时,菌群组合二为最优菌群,对于降解28和52 d时,菌群组合三为最优菌群。  相似文献   

20.
为更好有效去除地下水中的常见污染物芘,以萘为降解基质,利用苍白杆菌降解芘,并对反应影响因素进行了研究,模拟了反应动力学。结果表明:浓度为100 mg·L~(-1)、pH=7、25℃、萘的初始反应24 h后萘的去除率达到99.84%,芘的去除率达到37.5%。另外,菌株在萘初始浓度不同的条件下对萘的降解符合一级动力学,对芘的降解符合二级动力学。结果表明苍白杆菌在去除地下水中的萘和芘方面具有很大前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号