首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An international cooperative project on distribution of ozone in the Carpathian Mountains, Central Europe was conducted from 1997 to 1999. Results of that project indicated that in large parts of the Carpathian Mountains, concentrations of ozone were elevated and potentially phytotoxic to forest vegetation. That study led to the establishment of new long-term studies on ecological changes in forests and other ecosystems caused by air pollution in the Retezat Mountains, Southern Carpathians, Romania and in the Tatra Mountains, Western Carpathians on the Polish-Slovak border. Both of these important mountain ranges have the status of national parks and are Man & the Biosphere Reserves. In the Retezat Mountains, the primary research objective was to evaluate how air pollution may affect forest health and biodiversity. The main research objective in the Tatra Mountains was to evaluate responses of natural and managed Norway spruce forests to air pollution and other stresses. Ambient concentrations of ozone (O(3)), sulfur dioxide (SO(2)), nitrogen oxides (NO(x)) as well as forest health and biodiversity changes were monitored on densely distributed research sites. Initial monitoring of pollutants indicated low levels of O(3), SO(2), and NO(x) in the Retezat Mountains, while elevated levels of O(3) and high deposition of atmospheric sulfur (S) and nitrogen (N) have characterized the Tatra Mountains. In the Retezat Mountains, air pollution seems to have little effect on forest health; however, there was concern that over a long time, even low levels of pollution may affect biodiversity of this important ecosystem. In contrast, severe decline of Norway spruce has been observed in the Tatra Mountains. Although bark beetle seems to be the immediate cause of that decline, long-term elevated levels of atmospheric N and S depositions and elevated O(3) could predispose trees to insect attacks and other stresses. European and US scientists studied pollution deposition, soil and plant chemistry, O(3)-sensitive plant species, forest insects, and genetic changes in the Retezat and Tatra Mountains. Results of these investigations are presented in a GIS format to allow for a better understanding of the changes and the recommendations for effective management in these two areas.  相似文献   

2.
To realize the dynamical behavior of 14C among exchangeable carbon reservoirs in terrestrial environment, a method for in situ determination of 14CO2 flux at soil-atmosphere interface and a high flow rate CO2 sampler were developed. This method allowed us to collect integrated quantity of CO2 for determining 14C activity over an extended time period under environmental conditions with minimal site disturbance. The 14CO2 flux from ground surface was estimated to be 1.59 x 10(-5) Bq m (-2) S (-1) in a forest floor with the method. The specific activities of 14C in environmental materials such as some biological and air samples were also determined in the vicinity of the place, where the flux measurement was made, to discuss the behavior of 14C in the forest ecosystem. The results indicated that fresh pine needles had a similar 14C specific activity to the atmospheric CO2 at the same height due to its fairly rapid equilibrium, 14C specific activity in the atmospheric CO2 has a concentration gradient near the ground surface and, at least in this site, CO2 with high 14C specific activity was generated by decomposition of soil organic matter which may be accumulated in soil as a result of former nuclear weapons tests.  相似文献   

3.
European forestry is facing many challenges, including the need to adapt to climate change and an unprecedented increase in forest damage. We investigated these challenges in a Norway spruce-dominated mountain region in Central Europe. We used the model Sibyla to explore forest biomass production to the year 2100 under climate change and under two alternative management systems: the currently applied management (CM), which strives to actively improve the forest’s adaptive capacity, and no management (NM) as a reference. Because biodiversity is thought to have mostly positive effects on the adaptive capacity of forests and on the quality of ecosystem services, we explored how climate change and management affect indicators of biodiversity. We found a differential response across the elevation-climatic gradient, including a drought-induced decrease in biomass production over large areas. With CM, the support of non-spruce species and the projected improvement of their growth increased tree species diversity. The promotion of species with higher survival rates led to a decrease in forest damage relative to both the present conditions and NM. NM preserved the high density of over-matured spruce trees, which caused forest damage to increase. An abundance of dead wood and large standing trees, which can increase biodiversity, increased with NM. Our results suggest that commercial spruce forests, which are not actively adapted to climate change, tend to preserve their monospecific composition at a cost of increased forest damage. The persisting high rates of damage along with the adverse effects of climate change make the prospects of such forests uncertain.  相似文献   

4.
We assessed human impacts on ecosystems by calculating the proportion of aboveground net primary production appropriated by humans (aHANPP) in the territory of the Czech Republic. The human appropriation of aboveground net primary production reached 21.5 Tg C per year in 2006 or 56% of the annual potential natural productivity. Harvested productivity equivalent aNPPH is contributing to the overall appropriation of photosynthetic production by 80%. Considerable productivity losses have been induced by agricultural land conversion and urbanization. While artificial surfaces are responsible for the appropriation of whole ecosystem production, productivity of urban green areas and managed forests can even exceed natural productivity levels. In the period 1990–2000, the aHANPP dropped by 7%, but the indicator shows an increase by over 2% in the period 2000–2006. The indicator of human appropriation of net primary production enables translation of land cover changes into measures of ecosystem services affected by human activities. We found aHANPP to be a suitable indicator of human impacts on ecosystems, as it detects trends and enables spatial mapping of human impacts.  相似文献   

5.
Numerous analyses of the possible impacts of future climatic changes on tree species composition have been published for both lowland and high-elevation forests. Most of these studies were based on the application of forest "gap" models, and the vast majority of them considered only changes in the average of climatic parameters over time. In this study, we use a unique data set on reconstructed past climatic variations to analyse forest dynamics simulated by the forest gap model ForClim. This analysis forms the basis for a systematic exploration of the ecological effects of changing means vs. changing variability of climate on central European forests. A reconstruction of historical climate covering the last 470 years in the Swiss lowlands (ClimIndex) is extrapolated to a transect across the alpine (cold) treeline and used to simulate the influence of climate variations on the time scale of decades on forest biomass and tree species composition at both sites. While the simulation at the low-elevation site shows little sensitivity to climate variations, the results from upper subalpine forests suggest that two major dieback events would have occurred at elevations above the current but below the climatic tree line, induced by clusters of exceptionally cold summers. The results are in agreement with available dendrochronological data and with documentary evidence on massive negative impacts on flora and fauna at high elevations during these periods. We conclude that ForClim is capable of capturing the effects on tree population dynamics of climate variability at these sites as reconstructed from the ClimIndex record. A factorial design is used to address the sensitivity of ForClim to changes of the long-term averages vs. changes of the variability of monthly temperature and precipitation data. To this end, the simulated tree species composition of near-natural forests is examined along a climate gradient in Europe. The results indicate that there are three types of forest response: (1) little sensitivity to both kinds of change, (2) strong sensitivity to changes in the means, but little sensitivity to changing variability, and (3) strong sensitivity to changing variability at least in parts of the examined climate space. Half of the cases investigated fall under the third category, suggesting that emphasis should be placed on also assessing the sensitivity of ecosystems to future changes in climate variability rather than on changes of average values alone. Electronic Publication  相似文献   

6.
基于林业生态功能和青海省森林资源清查数据,采用森林植被生物量换算因子连续函数法,系统估算与分析青海省森林植被碳储量、碳密度,研究其近20 a碳储量变化并进行现状分析。结果表明:(1)青海省森林碳储量为11 182 64222 t,占同时期全国总碳储量的198%,青海省森林生态系统中面积占较大比重的中龄林,其碳储量尚未达到最大,有较大发展空间;(2)青海省近20 a天然林类型中碳储量较大的前4种分别是:柏木(Cupressus funebris)、桦木(Betula)、杨树(Populus)、云杉(Picea asperata)天然林,表明这几种天然林在青海省森林植被中占有重要的地位,其集中分布对区域生态功能的发挥起主导作用;(3)所采用的碳储量估算方法尚存不足,在以后计算中应考虑根据不同林分类型的含碳量进行计算  相似文献   

7.
Depth profiles of the specific activities of (14)C and carbon isotopic compositions (Delta(14)C, delta(13)C) in soil organic matter and soil CO(2) in a Japanese larch forest were determined. For investigating the transport of CO(2) in soil, specific activities of (14)C, Delta(14)C and delta(13)C in the organic layer, and atmospheric CO(2) in the same forest area were also determined. The specific activity of (14)C and Delta(14)C in the soil organic matter decreased with the increase in depth of 0-60cm, while that of soil CO(2) did not vary greatly at a soil depth of 13-73cm and was more prevalent than that of atmospheric CO(2). Peaks of specific activities of (14)C appeared at the depth of 0-4cm and Delta(14)C values were positive in the depth range from 0 to 15cm. These results suggest that the present soil at a depth of 0-4cm had been produced from the mid-1950s up until 1963, and the bomb C had reached the depth of 15cm in the objective soil area. The delta(13)C in the soil organic matter increased at the depth of 0-55cm, while that of soil CO(2) collected on 8 November 2004 decreased rapidly at the depth of 0-13cm and only slightly at the depth of 53-73cm. By combining the Delta(14)C and delta(13)C of the respective components and using the Keeling plot approach it was made clear that the entering of atmospheric CO(2) showed a large contribution to soil CO(2) at the depth of 0-13cm and a negligible contribution at the depth of 53-73cm for soil air collected on 8 November 2004. Respiration of live roots was presumed to be the main source of soil CO(2) at the depth of 53-73cm on 8 November 2004.  相似文献   

8.
There has and continues to be concern about the effects of elevated nitrogen (N) deposition on natural ecosystems. In this paper, research on natural ecosystems, including wetlands, heathlands, grasslands, steppe, naturally regenerated forests and deserts, is evaluated to determine what is known about nitrogen cycling in these ecosystems, the effects of elevated nitrogen on them and to identify research gaps. Aquatic ecosystems are not included in this review, except as they are part of the larger ecosystem. Research needs fall into several categories: (1) improved understanding and quantification of the N cycle, particularly relatively unstudied processes such as dry deposition, N fixation and decomposition/mineralization; (2) carbon cycling as affected by increased N deposition; (3) effects on arid ecosystems and other "neglected" ecosystems; (4) effects on complex ecosystems and interactions with other pollutants; (5) indicators and assessment tools for natural ecosystems.  相似文献   

9.
森林的过滤器效应是指森林对污染物所具有的净化缓冲作用,这是森林生态系统所具有的重要生态服务功能之一。森林生态系统对污染物的截留、吸附与净化一般是通过污染物在森林生态系统中的乔木层与灌草层植物、枯落物和土壤(微生物)等组分间的转化过程来实现,阐明森林生态系统各组分对污染物的净化效应是正确评估森林过滤器效应的关键。系统综述了森林生态系统各组分对污染物净化效应的国内外主要研究成果,指明了目前该方面研究存在的问题和努力的方向,并指出目前国内已有的大多数研究还处于实验观测与现象揭示阶段,缺乏对过程与机理的深入研究,很少进行多因素的动态综合研究和系统分析,这都限制了我们对森林生态系统对污染物净化过程内在运行机制和客观规律的正确认识和评估。把整个森林生态系统当作一个过滤器,从植物、凋落物、土壤、微生物几个亚系统方面介绍了森林过滤器对污染物净化缓冲作用方面的主要研究进展。  相似文献   

10.
Here we propose a method to quantitatively assess and examine Global No Net Loss (GNNL) of forest biodiversity on a global scale. The method produces a GNNL index of existing forest and enables future predictions of forest loss under different assumptions. The method tests the feasibility of the GNNL index and enables discussion of policy for future global scale sustainable forest management up to 2050. The GNNL index was estimated from an equation including forest areas per country per forest type (primary forest, secondary forest and plantation forest), diversity of forest ecosystem, and species density. Estimates derived from historical data revealed an approximate 7% reduction in GNNL index between 1990 and 2005. Predictions of the GNNL index until 2050 emphasize the importance of regenerating large portions of forests felled for agricultural land (or other uses) with secondary forests.  相似文献   

11.
The International Forest Resources and Institutions (IFRI) research program is designed by a network of social and natural scientists from different parts of the world and is intended to exam the interdependency relations between people and forests and to analyze forest conditions In 2003, in terms of IFRI methodology, our team has done some relative research in Kog Bung Preu community forest, which locates in the northeast of Thailand, and collected forest data including some key variables and parameters, such as DBH (Diameter at Breast Height), HEIGHT, BA (Basal Area), and DENSITY of trees and saplings in 31 plots in this community forest. In 2009, we re-visited the forests and 31 forest plots, using IFRI methodology and GPS technology again to collect data based on four key variables of trees and saplings. In the process of data management and analysis, we use IFRI Data Entry Application, and Access, Excel, SPSS, Map-source etc. to help us manage and analyze collected data. Meanwhile, a variety of qualitative and quantitative techniques were used to understand and analyze different variables and data. This paper will mainly focus on the changes in the Kog Bung Preu forest since last visit. By comparing and analyzing the forest plot data of two visits by using macro- and micro-scale, it is intended to reveal the actual status of Kog Bung Preu forest and to discuss the reasons behind the changes. From fieldwork and investigation in 31 forest plots and community residents again, we found that for saplings, DHB has slightly increased, however it did not test as significantly different, unlike HEIGHT which had also increased and had significant differences between the 2 years. Density and basal area for sapling revealed the same trend. They appeared to be notably decreasing from 2003 to 2009. BA does not prove to be significantly different, but DENSITY has a significant difference. Comparing tree variables between 2003 and 2009 gave different results. Every variable showed an increase from the previously recorded data. However, only the DBH and HEIGHT of trees demonstrated significant differences between the 2 years. The generally declining rate of sapling density and basal area may be related to the increase in the density and basal area of trees. It may be assumed that within the 6-year period, some saplings in the plots matured and now fall into the tree class. During this study, a total of 78 species in 38 families were recorded; 51 species are trees belonging to 22 families, 25 species from 14 families are saplings, 12 species from 9 families are seedlings, 2 woody climber species were recorded from 1 family; and herbs and grasses consisting of 27 Species from 16 families. Species composition has decreased compared to data recorded in 2003 from 97 to 78 species in 2009 as well as families which had higher recorded counts in 2003 (48 families) but lower recorded counts in 2009 (38 families). The socioeconomic situation of local community has some changes, from interview we found that most of changes focus on the collection of forest products and timber uses. The interaction between forest and people has improved. Finally, based on the analysis earlier, we discussed some aspects and provide relative suggestions.  相似文献   

12.
To protect biodiversity and improve environmental conditions, China has invested billions of dollars in reforestation and payments for ecosystem service programs. Here, we examine the Sloping Land Conversion Program, the largest such program in the world and found that after 13 years of implementation at our study site, it has had negative impacts on natural tropical forests. GIS and remote sensing techniques revealed that both natural forests and natural shrub and grasslands were replaced by non-native monocultural plantations on Hainan Island, China, a key tropical biodiversity hotspot. Under current Chinese policy, these plantations are classified simply as “forests”, with the assumption that they are equivalent to natural forests. This lack of a distinction in forest quality has led to substantial deforestation and plantation expansion, including encroachment into protected areas on Hainan. Additional social and economic drivers of these changes were identified by examining the participants in this program and their actions. Without a new ecologically based definition of forests and new goals for reforestation, such programs designed to improve ecosystem services, and forest quality may actually threaten remaining natural forests and other vegetation types in Hainan and in other areas of mainland China.  相似文献   

13.
High deforestation rates in tropical countries continue to reduce forest cover and thereby habitat quantity and quality. However, in some places the forest is recovering and expanding thus offsetting the biodiversity and ecosystem service losses. In order to characterize the forest recovery, land use and land cover (LUC) changes were analyzed using aerial photographs, taken between 1952 and 2009, of a peri-urban watershed in the Andes region of Venezuela. The qualities of the changes were assessed using landscape indices and hemeroby indicators. In that period, the forest cover increased about 18 %, mainly due to abandoned pastures on steep slopes. At the same time, the urban area expanded about 4 % on valley bottoms, while pastures and crop fields were reduced about 20 %. The results also showed that forest patches were aggregating, whereas pastures were fragmenting. A reduction in direct human impacts on forests growing on abandoned pastures resulted in a slight recovery of the lower montane cloud forest structure and plant composition. But non-native species were found in all LUC categories. During the study period, we documented not only forest recovery, but also urban area growth, intensified land use and invasions by non-native species all of which could partially counterbalance the positives of forest recovery.  相似文献   

14.
Increasing rates of deforestation in tropical forests have been linked to agriculturalists. A critical concern generating debate is how well communities of trees recover into a more species rich ecosystem after restoration planting. The aim of the study was to evaluate the pattern of recovery of communities of tree, assess the influence of Acanthus pubescens, Lantana camara and Pennisetum purpureum, on the recovery as well as how restoration planting facilitates recruitment of other native tree seedlings along a gradient of forest restoration in Kibale National Park, Uganda after evictions of illegal settlers. We studied six restoration forests ranging in age from 3 to 16 years, naturally regenerating and three primary forests. Our results showed that recovery with natural regeneration was more effective than restoration planting although the latter enhanced recruitment of other native tree seedling. Tree recovery was generally correlated with age so that species density and diversity increased although at different rates. A reverse pattern was found for dominance but no clear pattern was found for tree density (individual/ha). Communities of tree showed directional patterns of change however community composition were still distinct among the different forests. A. pubescens, L. camara and P. purpureum negatively correlated with species density, tree density and diversity but a positive correlation was found for dominance. Restoration planting can reestablish forests with high species density, tree density and diversity, but this is dependent on age and the extent of the herbs, grasses and shrubs cover in tropical forests.  相似文献   

15.
The state of tree and ground vegetation layers in spruce-fir forests around the Middle Ural Copper Smelter (Revda, Sverdlovsk oblast) has been repeatedly evaluated in 25 permanent sampling plots at 5- to 10-year intervals (1989–2013). The results have been used to characterize the dynamics of plant communities in the period of reduction of emissions from the smelter. Although the annual amount of emissions has decreased from 150–225 × 103 t in the 1980s to less than 5 × 103 t after 2010, the vegetation in the impact zone (1 and 2 km from the smelter) remains severely suppressed: the trees continue to die off, and the diversity of ground vegetation layer is very low. In zones with low and moderate levels of industrial pollution (30 and 4–7 km from the smelter), natural factors associated with windfall disturbance after the 1995 windstorm with snow have played a more important role in the dynamics of forest communities than the reduction of emissions itself.  相似文献   

16.
Toxic effects of photochemical smog on ponderosa and Jeffrey pines in the San Bernardino Mountains were discovered in the 1950s. It was revealed that ozone is the main cause of foliar injury manifested as chlorotic mottle and premature needle senescence. Various morphological, physiological and biochemical alterations in the affected plants have been reported over a period of about 40 years of multidisciplinary research. Recently, the focus of research has shifted from studying the effects of ozone to multiple pollutant effects. Recent studies have indicated that the combination of ozone and nitrogen may alter biomass allocation in pines towards that of deciduous trees, accelerate litter accumulation, and increase carbon sequestration rates in heavily polluted forests. Further study of the effects of multiple pollutants, and their long-term consequences on the mixed conifer ecosystem, cannot be adequately done using the original San Bernardino Mountains Air Pollution Gradient network. To correct deficiencies in the design, the new site network is being configured for long-term studies on multiple air pollutant concentrations and deposition, physiological and biochemical changes in trees, growth and composition of over-story species, biogeochemical cycling including carbon cycling and sequestration, water quality, and biodiversity of forest ecosystems. Eleven sites have been re-established. A comparison of 1974 stand composition with data from 2000 stand composition indicate that significant changes in species composition have occurred at some sites with less change at other sites. Moist, high-pollution sites have experienced the greatest amount of forest change, while dryer low-pollution sites have experienced the least amount of stand change. In general, ponderosa pine had the lowest basal area increases and the highest mortality across the San Bernardino Mountains.  相似文献   

17.
The conservation and sustainable use of forests in the twenty-first century pose huge challenges for forest management and policy. Society demands that forests provide a wide range of ecosystem services, from timber products, raw materials and renewable energy to sociocultural amenities and habitats for nature conservation. Innovative management and policy approaches need to be developed to meet these often-conflicting demands in a context of environmental change of uncertain magnitude and scale. Genetic diversity is a key component of resilience and adaptability. Overall, forest tree populations are genetically very diverse, conferring them an enormous potential for genetic adaptation via the processes of gene flow and natural selection. Here, we review the main challenges facing our forests in the coming century and focus on how recent progress in genetics can contribute to the development of appropriate practical actions that forest managers and policy makers can adopt to promote forest resilience to climate change. Emerging knowledge will inform and clarify current controversies relating to the choice of appropriate genetic resources for planting, the effect of silvicultural systems and stand tending on adaptive potential and the best ways to harness genetic diversity in breeding and conservation programs. Gaps in our knowledge remain, and we identify where additional information is needed (e.g., the adaptive value of peripheral populations or the genetic determinism of key adaptive traits) and the types of studies that are required to provide this key understanding.  相似文献   

18.
A set of characters has been used to evaluate transformations in forest phytocenoses and their small mammal communities affected by urbanization, compared to conditionally undisturbed phytocenoses (communities). In park forests of the city of Yekaterinburg, the understory and subordinate shrub and herb-dwarf shrub layers of phytocenosis are transformed to a greater extent. The undergrowth of conifer forestforming species is as a rule sparse or absent, and that of deciduous trees often consists mainly of invasive species. Small mammal communities in pine forests transformed under the effect of urbanization also undergo changes leading to the formation of relatively stable (for an urbanized environment) zoocenoses differing both in species composition and in parameters characterizing community diversity.  相似文献   

19.
The objective of this paper is to analyse the impacts of climate change on a pine forest stand in Central Siberia (Zotino) to assess benefits and risks for such forests in the future. We use the regional statistical climate model STARS to develop a set of climate change scenarios assuming a temperature increase by mid-century of 1, 2, 3 and 4 K. The process-based forest growth model 4C is applied to a 200-year-old pine forest to analyse impacts on carbon and water balance as well as the risk of fire under these climate change scenarios. The climate scenarios indicate precipitation increases mainly during winter and decreases during summer with increasing temperature trend. They cause rising forest productivity up to about 20 % in spite of increasing respiration losses. At the same time, the water-use efficiency increases slightly from 2.0 g C l?1 H2O under current climate to 2.1 g C l?1 H2O under 4 K scenario indicating that higher water losses from increasing evapotranspiration do not appear to lead to water limitations for the productivity at this site. The simulated actual evaporation increases by up to 32 %, but the climatic water balance decreases by up to 20 % with increasing temperature trend. In contrast, the risk of fire indicated by the Nesterov index clearly increases. Our analysis confirms increasing productivity of the boreal pine stand but also highlights increasing drought stress and risks from abiotic disturbances which could cancel out productivity gains.  相似文献   

20.
在综合国内若干城市生态系统服务功能价值研究实例的基础上,构建了中国城市森林生态系统服务功能价值转移数据库和相应的Meta回归分析模型,对价值转移评估的影响因素进行了全面探讨,并对该模型的样本外价值转移的有效性进行了检验.研究结果表明:(1)中国城市森林生态系统服务功能的平均价值为5.868 万元/hm2·a,按照价值高低排序依次为:涵养水源>固碳释氧>保育土壤>生物多样性保护>净化大气环境>森林游憩>积累营养物质,且总体呈现出西部地区>东部地区>中部地区的区位分布特征;(2)城市森林生态系统服务功能的评估方法、类型因素,城市的区位、人口、经济因素和研究区面积因素都是影响城市森林生态系统服务功能价值变化的主要因素;(3)所构建的Meta价值转移模型的样本外价值转移的平均转移误差为18.54%,用于研究样本外价值转移估计的有效性较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号