首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A pot experiment was conducted to investigate the influence of citric and oxalic acids effect on Pb and Zn uptake by corn and winter wheat. The experiment was employed with citric acid (CA) applied at 3 rates (0, 1.5 and 3.0 mmol kg?1 soil), oxalic acid (OA) at 3 rates (0, 1.5 and 3.0mmol kg?1 soil) and citric acid combined with oxalic acid (1.5 mmol citric acid combined with 1.5 mmol oxalic acid kg?1). Two types of soil were chose in the experiment. One was collected from the agricultural soil near a battery-recycling factory in Anhui province, China (site A) and the other was collected from a Pb-Zn mine residues in Hunan province, China (site B). The results showed that soil pH varied with the different treatment of citric and oxalic acids. However, there were no differences in all the treatments. 3.0mmol CA kg?1 soil addition significantly increased the concentrations of the CaCl2-extractable Pb and Zn and other treatments have no significantly increased. The highest shoot concentrations of Pb and Zn in both species occurred in application of 3.0 mmol CA/kg?1 soil and shoot concentrations of Pb and Zn in both species were significantly higher than the controls in this treatment. Shoot yields declined with application of citric and oxalic acids, indicating that the plants were sensitive to the toxicity of the metals or the amendments. The highest Pb uptake values by maize and wheat werell2.3 and 77.2 μg pot1 in soil of site A, and occurred with the control and 3.0 mmol CA/kg?1 soil respectively.  相似文献   

2.
To determine the potential for phytoextraction of 241Am and other contaminants from soil, accumulation of 241Am, 137Cs, Sr, Fe, Al, Pb, and Mg by tobacco was determined for soil applications of two concentrations of ethylenediaminetetraacetic acid (EDTA), citric acid, and ascorbic acid. In tobacco receiving EDTA at 3.1 mmol/kg of soil, 241Am content of plants averaged 15 Bq/kg (ranging up to 26 Bq/kg) while Fe concentrations became constant at 4.5 mmol/kg. Soil treatment with 18.8 mmol/kg EDTA resulted in average 241Am concentrations of 29 Bq/kg (19 times higher than controls). Uptake of Pb was similar to 241Am. In these samples, Fe increased to a maximum of almost 18 mmol/kg and 241Am content increased linearly with both Fe and Al. Plants receiving ascorbic and citric acids took up smaller quantities of 241Am, Pb, and Fe, even though these reagents were able to elute about as much Fe from the soil as EDTA. Synchrotron microbeam X-ray fluorescence (SXRF) was used to determine radial distributions of elements in roots and stems with and without EDTA treatment. SXRF maps indicate differences in behavior between Fe and Pb that are consistent with the bulk plant observations and provide insight into changes in metal content of the roots in the presence of EDTA.  相似文献   

3.
A pot experiment was conducted to study the influence of elemental sulphur (S) on solubility of soil Pb, Zn and Cd and uptake by maize (Zea mays L.). Two rates of elemental sulphur (S) applied at 0 (S0) and 200 (S200) mmol kg(-1) soil with three rates of each heavy metal at Pb, 0 (Pb0), 200 (Pb200), 400 (Pb400) mg kg(-1) soil, Zn, 0 (Zn0), 100 (Zn100), 200 (Zn200) mg kg(-1) soil and Cd, 0 (Cd0), 50 (Cd50), 100 (Cd100) mg kg(-1) soil, respectively. The result showed that with S application at 200 mmol S kg(-1), soil pH decreased about 0.3 unit and the solubility of the Zn and Cd was significantly increased, but the solubility of Pb had no significant influence. The concentration of Pb, Zn and Cd in maize shoots and roots were increased with increasing rates of heavy metals. However, the concentration of Zn and Cd in shoots and roots were higher with application of S rather than without S but no significant difference was found for Pb. The highest concentration of Zn in the shoots was 2.3 times higher with application of S rather than without at the same rate of Zn, 200 mg kg(-1). Plant biomass was also significantly affected by the application of S and of heavy metals. With heavy metal addition, the shoot and root biomass were decreased with the rates of those of heavy metals increased either with or without application of S. However, the shoot biomass was significantly decreased with S application at the same rate of heavy metals except that with Zn addition. The removal of Cd and Pb by maize uptake and accumulation with application of S had no significant increase compared to that without, but the removal Zn by maize uptake from the soil increased by application of S, 90.9 microg plant(-1) contrast to 25.7 microg plant(-1) at Zn200 within a growth period of only 40 days.  相似文献   

4.
It is well known that dissolved organic matter in soil solution may affect the toxicity or bioavailability of heavy metals to plants, but existing information on various organic substances is insufficient for treating problems with heavy metal-contaminated soils. To clarify how dissolved organic matter alters the toxicity and bioavailability of metals, we germinated lettuce seeds exposed to solutions containing Cu and several kinds of dissolved organic matters. Low molecular weight organic acids (citric, malic, and oxalic acids) increased the toxicity and bioavailability of Cu, but low concentrations of the synthetic chelators ethylenediamine tetra-acetic acid (EDTA) and diethylenetriamine penta-acetic acid (DTPA) decreased the toxicity and bioavailability of Cu. In contrast, humic acid appeared to be the most effective organic substance for detoxifying Cu, even though it did not significantly decrease the bioavailability of Cu. Consequently, the bioavailability and toxic effects of Cu in soil depend on the nature of coexisting organic substances in the soil solution.  相似文献   

5.
Spills in the nuclear fuel cycle have led to soil contamination with uranium. In case of small contamination just above release levels, low-cost yet sufficiently efficient remedial measures are recommended. This study was executed to test if low-level U contaminated sandy soil from a nuclear fuel processing site could be phytoextracted in order to attain the required release limits. Two soils were tested: a control soil (317 Bq 238U kg(-1)) and the same soil washed with bicarbonate (69 Bq 238U kg(-1)). Ryegrass (Lolium perenne cv. Melvina) and Indian mustard (Brassica juncea cv. Vitasso) were used as test plants. The annual removal of soil activity by the biomass was less than 0.1%. The addition of citric acid (25 mmol kg(-1)) 1 week before the harvest increased U uptake up to 500-fold. With a ryegrass and mustard yield of 15,000 and 10,000 kg ha(-1), respectively, up to 3.5% and 4.6% of the soil activity could be removed annually by the biomass. With a desired activity reduction level of 1.5 and 5 for the bicarbonate-washed and control soil, respectively, it would take 10-50 years to attain the release limit. However, citric acid addition resulted in a decreased dry weight production.  相似文献   

6.
A commercial formulation of composted municipal solid wastes (MSW) was used for amending soil at 0, 50, 100, 150, 200 and 250 kg ha−1 in which wheat had been grown (field experiments) and element residues of amended soil and plant parts were enumerated. MSW amendment caused a significant improvement in soil quality. Growth (shoot length, leaf number, leaf area, tiller number, plant dry weight and chlorophyll contents of leaves) and yield (length of panicle, number of panicles per plant and grain yield per plant) of wheat increased gradually up to the MSW-amendment level of 200 kg ha−1. Elements, Ni, Zn, Cu, Cd, Cr, and Pb accumulated in plants from MSW amended soil, but the degree of metal accumulation was the least in seeds in comparison to other plant parts (root, stem and leaf). Moreover, Ni, Zn, Cd and Pb, were in high concentration in all plant parts. It is recorded that the level of 200 kg ha−1 MSW amendment caused better growth and yield of wheat, but progressive levels of metal accumulation in plant parts were recorded due to increase in amendment levels. Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.  相似文献   

7.
The objective of this study was to investigate the effects of earthworm density on the availability of nutrients and heavy metals in metal contaminated soils. Pb/Zn mine tailings were mixed throughly with a red yellow podzolic soil at the ratio (w/w) of 75:25. Earthworms (Pheretima sp.) were introduced to the mixture at four different densities, zero, three, six and nine individuals per pot planted with ryegrass (Loliun multiflorum). The results indicated that earthworm activity significantly enhanced ryegrass shoot biomass. However, as denser earthworm population was introduced, shoot biomass tended to decrease. Earthworm activity significantly increased soil pH and availability of N, P and K in the tailings and soil mixture. There was a general tendency that uptake of Zn by ryegrass increased after earthworm inoculation, although the increase in extractable Zn in tailings and soil mixture was not significant. On the contrary, there seemed to be a lower uptake of Pb by ryegrass under earthworm inoclation, despite the fact that higher extractable Pb concentrations were observed. The present project indicated that the improved growth of ryegrass was due to improved nutrient availability and other soil conditions, by inoculation of earthworms at an appropriate rate. Further studies are needed to illustrate the relationship between metal availability and earthworm activity in the field.  相似文献   

8.
Bi X  Feng X  Yang Y  Qiu G  Li G  Li F  Liu T  Fu Z  Jin Z 《Environment international》2006,32(7):883-890
Total heavy metal (Cd, Cr, Cu, Pb and Zn) concentrations were evaluated in smelting waste, soil, crop and moss samples collected from the Hezhang artisanal zinc smelting areas, Guizhou, China. Soil samples from the cornfield near the smelting sites contained extremely high Cd (5.8-74 mg kg(-1)), Pb (60-14,000 mg kg(-1)) and Zn (260-16,000 mg kg(-1)) concentrations. Elevated heavy metal concentrations were also found in corn plants and total Pb (0.80-1.5 mg kg(-1)) and Cd (0.05-0.76 mg kg(-1)) concentrations in corn grain have totally or partially exceeded the national guidance limits for foodstuff. Thus, the soil-to-crop transfer of heavy metals might pose a potential health risk to the local residents. Similar to the high heavy metal levels in soil and corn, Cd, Cr, Cu, Pb and Zn concentrations in moss samples collected from the smelting sites ranged from 10 to 110, 10 to 55, 26 to 51, 400 to 1200 and 330 to 1100 mg kg(-1), respectively, exhibiting a local spatial pattern of metals deposition from the atmosphere. Based on examination of Zn/Cd and Pb/Cd ratios of the analyzed samples, we have distinguished between the flue gas dust derived and smelting waste derived metals in different environmental compartments.  相似文献   

9.
Abstract

The objective of this study was to investigate the effects of earthworm density on the availability of nutrients and heavy metals in metal contaminated soils. Pb/Zn mine tailings were mixed throughly with a red yellow podzolic soil at the ratio (w/w) of 75:25. Earthworms (Pheretima sp.) were introduced to the mixture at four different densities, zero, three, six and nine individuals per pot planted with ryegrass (Loliun multiflorum). The results indicated that earthworm activity significantly enhanced ryegrass shoot biomass. However, as denser earthworm population was introduced, shoot biomass tended to decrease. Earthworm activity significantly increased soil pH and availability of N, P and K in the tailings and soil mixture. There was a general tendency that uptake of Zn by ryegrass increased after earthworm inoculation, although the increase in extractable Zn in tailings and soil mixture was not significant. On the contrary, there seemed to be a lower uptake of Pb by ryegrass under earthworm inoclation, despite the fact that higher extractable Pb concentrations were observed. The present project indicated that the improved growth of ryegrass was due to improved nutrient availability and other soil conditions, by inoculation of earthworms at an appropriate rate. Further studies are needed to illustrate the relationship between metal availability and earthworm activity in the field.  相似文献   

10.
南京地区农田土壤和蔬菜重金属污染状况研究   总被引:32,自引:2,他引:30  
采集了南京市5县4郊5个环境单元(矿冶区、交通干线、工厂周边、污灌地、农产品基地)共100个样点的农田土壤及部分蔬菜样品,测定了重金属(Pb、Cu、Zn、Cd)的质量分数。结果表明,土壤Pb、Cu、Zn、Cd 质量分数的变化范围分别为26.1~4 138.8、16.5 ~3 375.1、46.0~3 587.6、0.09~17.61 mg/kg。不同功能区土壤重金属含量存在明显差异,以矿区周边农田污染最为严重,其次为污灌地和公路沿线农田, 部分农产品基地存在轻度Cd污染,工厂周边农田土壤污染相对较小。19个样点的青菜地上部重金属Pb、Cu、Zn、Cd质量分数的变化范围分别为0.11~7.11、5.04~76.42、36.8~364.3、0.04~2.96 mg/kg,同样以矿区周边污染农田的青菜样本重金属含量最高。青菜重金属含量与土壤重金属生物有效性含量和总量之间呈极显著相关。不合理的矿业开采和冶炼是导致南京地区农田土壤和蔬菜重金属污染的重要原因。  相似文献   

11.
A field survey of higher terrestrial plants growing on Lanping lead-zinc mine, China were conducted to identify species accumulating exceptionally large concentrations of Pb, Cd, Cu and Zn of 20 samples of 17 plant species. Concentrations of Pb and Zn in soil and in plant were higher than that of Cu and Cd. Significant difference was observed among the average concentrations of four heavy metals in plants (except Cd and Cu) and in soil (except Pb and Zn) (P<0.05). For the enrichment coefficient of the four heavy metals in plant, the order of average was Pbtree>herbaceous, and herbaceous grew in soil with the highest concentrations of four heavy metals. In different areas, the concentrations of Pb, Cd, Cu and Zn in plants and soils and enrichment coefficient were different. Plants in Paomaping had more accumulating ability to Pb, Cd and Zn, and plants in Jinfeng River had more accumulating ability to Cu. Six plant species, i.e. S. cathayana, Lithocarpus dealbatus, L. plyneura, Fargesia dura, Arundinella yunnanensis and R. annae in Paomaping, had high accumulation capacity. R. annae in Paomaping had hyperaccumulating capacity to Pb, Cd and Zn, L. plyneura to Pb and Cd, and S. cathayana to Cd, respectively.  相似文献   

12.
A sequential extraction method was used to determine chemical forms of Cu, Zn, Ni and Cd in fly ash-stabilized sludge. A loamy acid soil amended with fly ash-stabilized sludge was used to grow corn under greenhouse conditions. Sewage sludge amended with coal fly ash can reduce the availability of Cu, Zn, Ni and Cd in the sludge. Increasing fly ash amendment rate significantly reduced DTPA-extractable Cu, Zn, Ni and Cd concentrations. Percentages of Cu, Zn and Ni in residual fraction increased with an increase in fly ash amendment rates. Majority of Cu was associated with organic form, but Zn and Ni were associated with Fe-Mn oxide and residual forms. Addition of ash-amended sludge to soil significantly increased dry mass of corn. With coal fly ash amendment rate increasing, concentrations of Zn and Cu in shoot tissues of corn decreased significantly, but concentrations of Cd and Ni did not change significantly. Significant correlations were found between concentrations of Cu and Zn in corn shoot and oxide and total Cu fractions, and all chemical fractions of Zn in fly ash-stabilized sludge, respectively. Hence, ash amendment significantly reduced the availability of heavy metals by chemical modification of their chemical speciation into less available forms.  相似文献   

13.
The distribution of major and trace elements was systematically investigated by use of energy dispersive X-ray fluorescence spectrometry (EDXRF) on a former horticultural soil. The purpose of the study was to combine mapping of soil element concentration levels with multivariate statistics for characterisation of soil metal pollution in relation to previous and present land use. A 1-ha study site was chosen from a former horticulture where a previous preliminary survey indicated increased concentration levels of toxic elements. The soil was sampled from the top 20 cm of the soil surface in a 10 x 10-m grid-like pattern covering the 1-ha study area. In addition, three soil profiles were studied. The elemental composition of the soil samples was investigated by EDXRF while the composition of aqueous soil extracts was determined by total reflection X-ray fluorescence spectrometry (TXRF). Based on mapping and multivariate statistically analysis of the data obtained by EDXRF, most elements were found in almost constant concentration levels in the top soil throughout the investigated site. However, the contents of the toxic elements Zn, Cu, As, and Pb were found to vary significantly within the area. Hence, the samples with high accumulations of As also contained relatively high amounts of Zn, Cu, and Pb, which indicates that toxic-element-containing pesticides have been applied to the soil surface in the area of the former green houses at the study site. The Pb/As mass ratio in the soil indicates that PbHAsO3 was the preferential lead arsenate used for pest management at the investigated site, while Cu as Bordeaux liquid (CuSO4) and Zn were applied to minimize the leaf damaging effect from the former compounds. Calculations indicated that As annually was applied to the soil in the former greenhouses in doses up to 4 kg As/ha while Pb had been annually applied in doses up to 12 kg Pb/ha. The enrichment of Zn, Cu, As and Pb was greatest in the top 20 cm of the soil and no anthropogenic enrichment of these elements occurred below a depth of 50 cm, indicating that the toxic elements are rather immobile in this soil. The results of this investigation suggest that EDXRF used in combination with multivariate statistics is a strong tool for multi-element mapping of elemental contents, sources and mobility in the terrestrial environment.  相似文献   

14.
The antagonistic effects of supplementation of Zn and Se to the soil on vegetables were studied in this work. In the pot experiment, Se (Se4+) and Zn (Zn2+) were applied, respectively, to the soil, in which the Chinese cabbage (Brassica rapa) and the lettuce (Lactuca sativa L.) were planted. As a result, Se and Zn were enriched evidently in the two vegetables. The contents of Pb and Cd in the two vegetables were decreased markedly while contents of some healthy mineral elements, like Mn and Mg, were increased to some extent when Se and Zn were applied. The antagonism of Se and Zn against Pb and Cd in plants was suggested. The farmland experiment on the lettuce was conducted to explore further the effect of supplementation of Zn and Se under the actual field conditions. Result came out to be that the enrichment of Zn and Se restrained the accumulation of Pb and Cd in the lettuce remarkably, as well as enhanced the absorption of some other nutritional elements, like Fe, Mn, Cu, Ca and Mg. Therefore, application of Se and Zn was proved to be an effective and feasible method to improve trace elements nutrition in the vegetables.  相似文献   

15.
为揭示城市化、工业化等人为活动对土壤环境质量的影响,选择能反映上海城郊乡梯度差异的中心城区、城郊结合部和远郊,采用地统计学方法对表层土壤样品Cu、Zn、Pb的空间变异结构和分布特征进行了对比分析。结果表明:城市土壤Pb、Cu、Zn的变异系数范围为0.24~0.62,均属中等变异强度。徐汇区土壤Cu、Pb、Zn符合正态分布,闵行区土壤Cu、Pb和Zn符合对数正态分布,奉贤区土壤Zn呈正态分布,土壤Cu、Pb符合对数正态分布。由中心城区到远郊,城市土壤Cu、Pb、Zn的各项统计特征值和变异系数均有较大差异,存在明显的空间分布差异。半方差函数分析结果表明,徐汇区作为中心城区,土壤Cu、Pb、Zn符合球状模型,土壤Cu、Zn具有强烈的空间相关性,土壤Pb具有明显的空间自相关。奉贤区以农业用地为主,土壤Pb符合线性模型,土壤Cu符合高斯模型,土壤Zn符合指数模型,具有强烈的空间相关性。闵行区地处城郊结合部,土壤Cu、Pb、Zn的半方差拟合模型均为线性模型,表现为纯块金形式,以随机变异为主,空间相关性弱。采用Kriging最优内插法进行无偏估值,绘制了表层土壤重金属含量的空间分布图,中心城区、城郊结合部、郊区土壤重金属的空间分布受城市化、工业化、城市交通等因素的影响,均表现出不同的空间分布规律。  相似文献   

16.
High metal contents in edible mushrooms growing in severely contaminated industrial areas pose an important toxicological risk. In the presented study, trace element (Pb, Cd, Zn, Cu, Ag, As, Se) contents were determined in caps and stipes of three different edible mushroom species (Boletus edulis Bull. Fr., Xerocomus badius Fr. Gilb., Xerocomus chrysenteron Bull. Quél.). Additionally, information about the chemical fractionation of metals in separate soil horizons and Pb isotopic data from soils and fruiting bodies allowed a more detailed insight on the uptake mechanisms of metals by the studied mushroom species. Total metal and metalloid concentrations in the organic soil horizons reached 36234 mg Pb kg(-1); 11.9 mg Cd kg(-1); 519 mg Zn kg(-1); 488 mg Cu kg(-1); 25.1 mg Ag kg(-1); 120 mg As kg(-1) and 5.88 Se mg kg(-1). In order to evaluate the accumulation capacity of the studied species, bioconcentration factors (BCF) were calculated for separate trace elements. For selected metals (Pb, Cd, Zn, Cu), a modified BCF calculation (using EDTA-extractable concentrations of metals in soil) was proposed. High contents of Pb (up to 165 mg kg(-1)) and Cd (up to 55 mg kg(-1)) exceeded all the regulatory limits in all the studied species. This was also the case for Se (up to 57 mg kg(-1)) in B. edulis. Intensive consumption of this species grown in such polluted areas can therefore pose toxicological risks for human health. A novel finding was that X. badius can act as an Ag accumulating species when grown at polluted sites due to the high concentrations of Ag (up to 190 mg kg(-1)) in caps. Pb isotopic data showed that Pb originating from the recent air pollution control residues is present mainly in the exchangeable/acid-extractable fraction of the organic horizons and is taken up by fruiting bodies; especially in the case of B. edulis, where fast Pb accumulation occurs. Due to the high species-dependent variations of metal contents, the studied mushrooms are not suitable as bioindicators of environmental pollution.  相似文献   

17.
采集了湘潭锰矿红旗分矿开采区、沙圹村恢复区的代表性当季蔬菜(莴笋叶Fruticicolidae、小白菜Brassica chinensis、香葱Allium schoenoprasum、空心菜Ipomoea aquatica)、废弃区的优势植物(商陆Phytolacca acinosa、野茼蒿Crassocephalum crepidioides、苍耳Xanthium sibiricum)和3个研究区的土壤,通过原子吸收分光光度法分析了Mn、Pb、Zn含量。结果表明:开采区蔬菜Mn含量(8.3~84.5 mg/kg)明显高于恢复区(2.7~55.6 mg/kg),开采区和恢复区蔬菜都明显受到Pb污染(0.6~33mg/kg),蔬菜Zn含量范围为1.9~6.5mg/kg;3个研究区域土壤重金属均明显超标,最严重的是Pb污染(1 993.5~2 213.5mg/kg)。商陆、野茼蒿和苍耳中重金属含量差异较大,对重金属的耐性强,其中商陆表现出最好的耐性与长势。研究结论对锰矿土地合理利用以及矿区土壤重金属治理提供一定的科学依据。  相似文献   

18.
为揭示城市化、工业化等人为活动对土壤环境质量的影响,选择上海城郊结合部为研究区域,采用地统计学方法对表层土壤样品Cu、Zn、Pb、Cr、Mn 5种重金属的空间变异结构和分布特征进行了分析。结果表明:土壤Cu、Cr、Mn、Pb、Zn均属中等变异,土壤Mn含量服从正态分布,土壤Cr、Cu、Pb、Zn含量服从对数正态分布;半方差函数模型拟合结果显示土壤Mn符合指数模型,土壤Cr、Cu、Pb、Zn符合线性模型、其中土壤Cu、Pb、Zn为纯块金效应模型,反映了城郊结合部土壤污染空间变异的复杂性。通过泛克里格插值可直观反应表层土壤重金属含量空间分布特征,发现土壤Cr、Mn呈岛状,土壤Cu、Pb、Zn呈多岛状分布的特点,工业和交通污染源是影响土壤重金属空间分布的重要因素  相似文献   

19.
This study investigated the sorption characteristics and release of selected heavy metals (Cd, Cu, Cr, Pb and Zn) from a typical urban soil material from a derelict brownfield site in Western Scotland, UK. The study aimed to evaluate contaminant interactions with an urban substrate, comprising a mix of mineral soil and residue materials (e.g. brick, concrete, wood). This type of material has received little consideration in the literature to date. Soil samples were subject to a sequence of test involving batch equilibration and dynamic leaching, in single (non-competitive) and multi-element (competitive) solutions. The batch experiments were carried out in unadjusted and close to soil field pH conditions (pH 2 and 7, respectively). The equilibrium adsorption capacity for heavy metals was measured and extrapolated using the Langmuir isotherm. The parameters of the isotherms x(m) (the maximum amount adsorbed per unit mass of adsorbent (mg/g)) and b (adsorption constant (m(3)/g)) were calculated for Cd, Cu, Cr, Pb as single-element and multi-element solutions. The adsorption from the single-element solution was more effective than adsorption under multi-element conditions, due to competitive effects. For example, the adsorption of copper from a single-element solution was over four times greater than for a multi-element solution. In the case of Cr and Zn, migration of metal from soil to solution was observed. Adsorption capacity at pH 2 followed the order Cr>Cu>Pb>Cd and at pH 7 Cd>Zn, with precipitation affecting Cu and Pb behaviour. During the column leaching experiment, most of the heavy metals were irreversibly bound to the soil, but in the case of Cr some movement from soil into solution was observed. The results also showed that Cd, Cu, Pb and Zn were removed from the solution and adsorbed on the soil. No significant difference in the metal removal from single- and multi-element solutions was observed. Overall, the urban residue behaved in a similar manner to mineral soils despite a significant component of anthropogenic solid materials.  相似文献   

20.
长三角典型城郊农田土壤-浙贝母重金属迁移特征研究   总被引:1,自引:0,他引:1  
城郊生态系统中土壤重金属分布及其在土壤—植物系统的迁移和富集特征是城乡共生体土壤安全研究的热点问题。以典型经济作物浙贝母(Fritillaria thunbergii)为例,基于野外采样和实验分析,对长三角代表性城郊农田中土壤—植物系统重金属的分布、富集和迁移特征开展研究。结果表明:受人类活动的影响,城郊农田土壤中重金属除Cr外,Cu、Zn、As、Cd和Pb的平均含量超过土壤背景值,并且不同重金属在空间分布上表现较高的空间异质性。除Cd和Cr外,浙贝母植株不同部位重金属含量表现为叶、茎显著高于鳞茎,叶中重金属含量可达到鳞茎的5~10倍,表明叶比鳞茎更易富集重金属。重金属迁移系数分析表明,Cr、Cu、Zn、As、Cd和Pb主要富集在浙贝母植株的地上部分,且不同重金属在植株中的迁移和富集能力具有较大的差异。浙贝母地上部分对Cr、As和Pb的富集能力较低,对Cu、Zn和Cd的富集能力相对较强。相比而言,鳞茎对不同重金属的富集能力均较弱,综合污染评价也表明,浙贝母鳞茎中重金属含量并未超过污染标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号