首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为研究污水处理过程中曝气对苯系物中苯、甲苯和二甲苯以及氯代烃中三氯甲烷、四氯化碳、三氯乙烯和四氯乙烯去除的影响,设计了2个反应器,模拟污水处理过程,一个为活性污泥反应器,另一个为没有活性污泥的对照反应器.结果表明,在液相中,30.6%的TOC未经微生物降解而直接因曝气逸散到气相.苯系物的逸散比例达到了100%;三氯甲烷、四氯化碳、三氯乙烯和四氯乙烯的逸散比例分别为27.5%、39.0%、42.4%和38.5%.同时利用密闭水箱研究了生物处理单元中苯系物和氯代烃三相分布规律.在厌氧阶段,固相中苯、甲苯、二甲苯、三氯甲烷、四氯化碳、三氯乙烯和四氯乙烯占总量比例分别为38.7%、43.6%、38.0%、28.8%、24.3%、15.3%和20.5%.在曝气阶段,苯系物全部被去除,氯代烃总量略有下降.二沉池阶段,固相中三氯甲烷、四氯化碳、三氯乙烯、四氯乙烯占总质量的比例分别为5.2%、20.1%、6.8%和0%.   相似文献   

2.
将零价铁渗透反应格栅和生物降解格栅联用,先利用氯代烃易还原脱氯的性质通过零价铁渗透反应格栅去除氯代烃,后利用BTEX易生物降解的性质通过生物降解格栅去除BTEX,可以有效去除地下水中由氯代烃和BTEX这两种性质迥异的污染物形成的混合污染羽.但在联合格栅技术中,零价铁渗透反应格栅后的强碱性环境(pH9)、氯代烃脱氯还原中间产物(cis-1,2-DCE)的积累和可能出现的TCE穿透均可对生物降解格栅中BTEX的生物降解产生影响.针对上述问题,本文研究了不同pH条件下TCE和cis-1,2-DCE对苯或甲苯厌氧生物降解的影响.结果发现,碱性pH条件有利于苯或甲苯的生物降解,但不同pH条件下TCE或cis-1,2-DCE的加入对苯或甲苯的生物降解均产生抑制(除pH=7.9,cis-1,2-DCE=100μg·L-1时的甲苯),且TCE对苯和甲苯生物降解的抑制要明显强于cis-1,2-DCE;不同pH条件下,TCE 100和500μg·L-1对苯生物降解的抑制作用没有明显差异,但对甲苯生物降解的抑制却随着TCE浓度的增加而增加;pH=7.9时,cis-1,2-DCE的加入有利于甲苯的生物降解,之后随着pH的增加又转变为抑制.另外,在苯或甲苯厌氧生物降解过程中,可能存在cis-1,2-DCE与苯或甲苯的共代谢生物降解,且甲苯更有利于cis-1,2-DCE的共代谢降解.  相似文献   

3.
刘玉龙  夏凡  刘菲  陈鸿汉 《环境科学》2010,31(7):1526-1532
地下水中挥发性氯代烃和石油烃类(主要为苯、甲苯、乙苯和二甲苯,总称为BTEX)混合污染羽可用铁渗透反应格栅(Fe0-PRB)联合厌氧生物降解技术修复;在设计上游Fe0-PRB时,需考虑BTEX存在下是否需增加其厚度.采用柱实验方法研究了苯和甲苯在粒状铁反应系统中吸附平衡后,对粒状铁去除三氯乙烯(TCE)长期运行的影响.结果表明,苯或甲苯(浓度各1~2mg·L-1左右)存在时,TCE(2mg·L-1左右)的去除仍符合准一级反应动力学;苯和甲苯的存在分别使TCE的去除速率平均降低约15.1%和18.5%,而使cis-1,2-DCE的去除速率各提高约4.5%和42.8%.在Fe0-PRB的长期运行中,矿物沉淀的积累仍是影响TCE还原脱氯的主要因素,苯或甲苯对TCE还原脱氯的抑制仅表现在运行初期;无论有无苯和甲苯,TCE的氯代中间产物种类皆相同,其中以顺式二氯乙烯(cis-1,2-DCE)为主,并且各柱中cis-1,2-DCE均首先穿透,出水浓度为2~75μg·L-1,需以cis-1,2-DCE的水力停留时间来确定Fe0-PRB的厚度,因此在设计上游Fe0-PRB时,若仅考虑TCE的修复目标,不考虑cis-1,2-DCE对下游BTEX生物降解的影响,则不需增加Fe0-PRB厚度.  相似文献   

4.
真菌Trichoderma viride Pers.ex Fr降解三苯废气性能实验   总被引:1,自引:0,他引:1  
利用固相静态试验考察前期实验驯化出的真菌Trichoderma viride Pers.ex Fr对苯、甲苯、二甲苯的好氧生物降解性能。结果表明,在本研究的气相浓度范围内(苯47.25~1677.47g/m3,甲苯64.70~1258.50g/m3、二甲苯20.59~1707.85g/m3),3种气体的降解速率随其初始浓度的增大而增加,降解规律苯、甲苯符合Monod方程,二甲苯符合一级反应。  相似文献   

5.
印刷电路板(PCB)厂挥发性有机物(VOCs)排放指示物筛选   总被引:5,自引:2,他引:3  
马英歌 《环境科学》2012,33(9):2967-2972
采用VOCs快速测定仪和SUMMA罐采样、GC/MS分析方法,采样分析了上海某工业区3个印刷电路板厂生产车间和废气排放口的VOCs含量水平、组成特征和源成分谱.结果表明,在9月和12月2次采样期间,A、B、H厂生产车间总挥发性有机物(TVOCs)(9月/12月)最高浓度分别为(2.94/2.01)×10-9、(3.18/1.11)×10-6、(0.70/0.18)×10-9;废气排放口TVOCs最高浓度则分别为(0.86/0.90)×10-9、(31.2/12.0)×10-6、(1.24/0.30)×10-9.GC/MS分析结果表明,主要检出了烷烃、烯烃、苯系物、酮类、氯代烷烃、氯代苯类、酯类等7大类共67种VOCs化合物;A、B、H厂生产车间/废气排放口最高检出物和检出浓度分别为:2-丁酮6.73 mg.m-3/2-甲基己烷5.93 mg.m-3、乙酸乙酯8.90 mg.m-3/丙烷9.64 mg.m-3、丙烷2.04 mg.m-3/丙烷1.69 mg.m-3.苯、甲苯、二甲苯检出率均为100%,三厂各点位最高检出浓度/平均浓度分别为0.077 mg.m-3/0.035 mg.m-3、0.56 mg.m-3/0.31 mg.m-3、0.21 mg.m-3/0.12 mg.m-3(间+对-二甲苯)和0.081 mg.m-3/0.050 mg.m-3(邻-二甲苯).源成分谱和PCA分析结果表明,A、B厂的VOCs特征轮廓图谱较相似,特征化合物为苯、甲苯、二甲苯以及丙酮和2-丁酮;H厂主要特征污染物除三苯外,还有氯苯和氯代烷烃类化合物.结合原辅材料及生产工艺分析,溶剂、涂料使用和工艺过程的逸散是生产车间面源VOCs排放的主要来源,废气排放口是VOCs重点排放点源.  相似文献   

6.
兰州市大气苯系物的化学活性特征与健康风险评价   总被引:3,自引:0,他引:3  
利用热脱附-气相色谱质谱法测定了2017年12月—2018年6月兰州市5个采样点大气环境中14种苯系物的浓度,利用OFP(臭氧生成潜势)、L~(OH)(羟基消耗速率)和SOAFP(二次有机气溶胶生成潜势)分析其化学活性特征,应用特征物种比值法探讨了BTEX(苯、甲苯、乙苯和二甲苯)的来源,并进行其健康风险评估.结果表明:兰州市大气苯系物的浓度为4.64~32.13μg·m~(-3),平均浓度为14.71μg·m~(-3),且具有冬季夏季春季的特点,5个采样点苯系物总浓度大小顺序为D(18.27μg·m~(-3)) B(17.75μg·m~(-3)) C(14.28μg·m~(-3)) E(12.97μg·m~(-3)) A(10.26μg·m~(-3)).苯系物的L~(OH)为2.64 s~(-1),而苯乙烯和2-甲基萘是关键活性物种;苯系物的OFP为65.05μg·m~(-3),其中甲苯、二甲苯、1,3,5-三甲苯和1,2,4-三甲苯的OFP值较大;苯系物的SOAFP为0.98μg·m~(-3),甲苯和2-甲基萘的贡献较高.B/T(苯/甲苯)值表明,兰州市大气苯系物主要来源于生物质燃料和煤炭燃烧排放;X/E(二甲苯/乙苯)和E/B(乙苯/苯)值表明,污染物气团主要来自本地排放源.人体健康风险评估结果表明,兰州市大气苯系物的非致癌风险(HI=0.05)均小于USEPA建议安全阈值(HI1),致癌风险是安全阈值(1×10~(-6))的3.6倍,显示苯系物对暴露人群存在潜在致癌风险.  相似文献   

7.
氯代烃类挥发性有机物在土壤包气带中的垂向迁移是该类污染物呼吸暴露风险的重要途径.为探究氯代烃在土壤包气带中的垂向迁移规律,通过室内土柱模拟试验,研究土壤包气带含水率对不同氯代烃〔TCE(三氯乙烯)、PCE(四氯乙烯)〕气相扩散速率的影响,并通过线性拟合筛选出更准确的气相有效扩散系数预测模型.结果表明,土壤含水率与氯代烃气相有效扩散系数呈显著负相关〔R=-0.89,P < 0.01,n=7(TCE);R=-0.86,P < 0.01,n=7(PCE)〕.随着土壤含水率由0.5%增至40.0%,TCE气相有效扩散系数(DT)由0.035 9 cm2/s降至0.002 5 cm2/s,平衡时间由13 h增至91 h,平衡时气体浓度由4.22 g/m3降至0.31 g/m3;PCE气相有效扩散系数(DP)由0.033 9 cm2/s降至0.001 1 cm2/s,平衡时间由15 h增至103 h,平衡时气体浓度由3.01 g/m3降至0.12 g/m3.与Penman模型、Marshall模型模拟值相比,Millington-Quirk模型模拟值与氯代烃气相有效扩散系数实测值的拟合程度更好(R>0.95,P < 0.01,n=7).研究显示,土壤包气带含水率的增加对氯代烃气相扩散有明显的抑制作用.   相似文献   

8.
全二维气相色谱法测定北京交通干道大气中芳香烃   总被引:5,自引:1,他引:4  
毛婷  徐晓斌  王瑛 《环境科学》2009,30(10):2845-2851
为了更全面地获得城市大气中芳香烃的基础数据,借助具有强大分离、检测复杂样品能力的全二维气相色谱法(GC×GC),于2007年国庆期间对北京交通干道大气中芳香烃进行了采样分析和初步研究.结果表明,该方法对大气中芳香烃检测范围较一维气相色谱法宽,可同时测定单环芳烃和部分多环芳烃,并能将目标芳香烃更好地分离和定量.观测期间,在北京交通干道大气中检测出30多种芳香烃,其中,单环芳烃平均浓度为0.75×10-9~24.64×10-9C(碳单位体积比),甲苯浓度最高,间、对二甲苯与乙苯浓度次之;多环芳烃平均浓度为0.03×10-9~2.28×10-9C,萘浓度最高,2-甲基萘、4-甲基联苯浓度次之;四环以上的稠环芳烃则没有检出.芳香烃浓度变化明显受天气因素影响.高碳数芳香烃之间相关性很高,而苯、甲苯与高碳数的芳香烃相关性较差,表明两者可能受汽车尾气和汽油挥发之外的其它源的显著影响.  相似文献   

9.
厦门不同功能区VOCs的污染特征及健康风险评价   总被引:8,自引:0,他引:8  
为了解厦门市不同功能区大气中挥发性有机物(VOCs)的污染特征和健康风险,于2014年3—8月在厦门市开展大气样品的采集,利用预浓缩系统和气相色谱质谱联用技术进行VOCs含量的定量分析,并采用美国EPA人体暴露风险评价方法对VOCs进行人群健康风险的初步评价.结果表明,各功能区VOCs的平均质量浓度差异较明显,表现为工业区(120.88μg·m-3)交通区(104.41μg·m-3)开发区(84.06μg·m-3)港口区(80.78μg·m-3)居民区(58.75μg·m-3)背景区(41.46μg·m-3).背景区、居民区、交通区、开发区和港口区各类VOCs浓度均表现为烷烃芳香烃烯烃,工业区则表现为芳香烃烷烃烯烃.除背景区外各功能区VOCs浓度在6月最低,而除工业区外各功能区浓度在8月最高.温度和风等气象因素是导致VOCs浓度变化的重要原因.苯、甲苯、乙苯、间,对二甲苯和邻二甲苯(BTEX)在各功能区总芳香烃中所占的比例为65.20%~78.73%.各功能区BTEX的非致癌风险均表现为甲苯乙苯邻二甲苯间,对二甲苯苯,在9.73×10-4~1.33×10-1之间,均在安全范围内,而苯的致癌风险在1.23×10-5~3.08×10-5之间,超出安全范围,存在较大的致癌风险.  相似文献   

10.
覆盖土吸附能力的有效评估对填埋场中挥发性氯代烃(VCHs)污染物的控制有重要意义.全面考察了二氯甲烷(DCM)、三氯甲烷(TCM)、1,1,2-三氯乙烷(1,1,2-TCA)、四氯化碳(CT)、顺-1,2-二氯乙烯(c-1,2-DCE)、三氯乙烯(TCE)、四氯乙烯(PCE)和氯苯(CB)8种VCHs在填埋场覆盖层中的吸附特性.结果显示,氯代烷烃和氯代芳烃在覆盖层土壤中吸附等温线符合Freundlich模型(R2=0.65~0.87),氯代烯烃在覆盖层土壤中吸附等温线符合Langmuir模型(R2=0.87~0.96).基于拟合结果预测了覆盖土对VCHs的吸附能力,结果表明VCHs的吸附速率随氯取代数的增多而增大;具有相同氯原子取代数目的氯代烃,覆盖土对氯代烯烃和氯苯的吸附量大于氯代烷烃.因此,在填埋场运行管理中,VCHs中浓度较高的氯代烷烃应该是优先治理的污染物之一.覆盖土中VCHs的吸附平衡时间约为20h,吸附速率变化范围为26~250 μg/(gsoil·h),远高于文献报道中覆盖土对VCHs的最大降解速率.可以推断,强化覆盖土的生物氧化活性可更有效减少VCHs对环境的不利影响.  相似文献   

11.
Air samples were collected simultaneously at platform, mezzanine and outdoor in five typical stations of subway system in Shanghai, China using stainless steel canisters and analyzed by gas chromatography-mass selective detector (GC-MSD) after cryogenic preconcentration. Benzene, toluene, ethylbenzene and xylenes (BTEX) at the platforms and mezzanines inside the stations averaged (10.3 ± 2.1), (38.7 ± 9.0), (19.4 ± 10.1) and (30.0 ± 11.1) μg/m3, respectively; while trichloroethylene (TrCE), tetrachloroethylene (TeCE) and para-dichlorobenzene (pDCB), vinyl chloride and carbon tetrachloride were the most abundant chlorinated hydrocarbons inside the stations with average levels of (3.6 ± 1.3), (1.3 ± 0.5), (4.1 ± 1.1), (2.2 ± 1.1) and (1.2 ± 0.3) μg/m3, respectively. Mean levels of major aromatic and chlorinated hydrocarbons were higher indoor (platforms and mezzanines) than outdoor with average indoor/outdoor (I/O) ratios of 1.1-9.5, whereas no significant indoor/outdoor differences were found except for benzene and TrCE. The highly significant mutual correlations (p < 0.01) for BTEX between indoor and outdoor and their significant correlation (p < 0.05) with methyl tert-butyl ether (MTBE), a marker of traffic-related emission without other indoor and outdoor sources, indicated that BTEX were introduced into the subway stations from indoor/outdoor air exchange and traffic emission should be their dominant source. TrCE and pDCB were mainly from indoor emission and TeCE might have both indoor emission sources and contribution from outdoor air, especially in the mezzanines.  相似文献   

12.
选择广州市20家不同星级的宾馆,用不锈钢采样罐采集客房空气样品,并用预浓缩-气相色谱/质谱联用系统检测.宾馆客房空气中8种苯系物的总浓度平均值为273.1μg/m3,范围为2.3~1058μg/m3.苯,甲苯,乙苯和二甲苯平均值分别为22.9,151.6,46.4和60.5μg/m3.苯平均值变动范围为0.7~72.2μg/m3,均低于我国室内空气质量标准GB/T 18883-2002的限值,但初步计算表明苯暴露对宾馆工作人员和经常入住人群的致癌风险超过1′10-6.甲苯平均浓度范围为1.4~841μg/m3,按我国空气质量标准超标率为24%.宾馆苯系物浓度与星级和装修时间没有显著相关性,一些最近期装修的宾馆可能因采用环保装修材料,苯系物浓度反而相对较低.苯系物浓度最高的数个宾馆装修时间2~5a,其苯与甲苯浓度比值(B/T)都比较低,苯系物来源以室内释放为主.虽然因通风原因宾馆客房苯系物浓度受所处地段室外空气质量影响,但我们的研究表明降低宾馆客房内苯系物水平的最关键因素是采用环保的室内装修材料和产品.  相似文献   

13.
南宁市街区挥发性有机物暴露水平初步分析   总被引:4,自引:3,他引:1  
通过多层吸附管采样和热脱附-气相色谱-质谱联用对南宁市街区及市郊青秀山的挥发性有机物(VOCs)暴露水平进行了分析.结果显示:南宁市街道大气VOCs中一些毒害性苯系物的质量浓度较高,其中苯、甲苯的平均质量浓度分别达到47.5和159.2 μg/m3,分别是对照点青秀山的2.9和2.0倍;苯及其取代物的特征显示,南宁市街区VOCs主要来自机动车的尾气,同时一些公共活动场所苯系物比值和变化特征有所不同,显示出除交通尾气外的其他来源对挥发性有机物的贡献.   相似文献   

14.
随着我国餐饮业的快速发展,餐饮源逐渐成为城市大气非甲烷碳氢(NMHCs)的主要来源之一.因此,深入研究餐饮源NMHCs的排放特征是餐饮业科学减排的重要基础.本研究采集了深圳市6类典型餐馆(西式快餐、茶餐厅、职工食堂、湘菜馆、浙菜馆和家常菜馆)排放的NMHCs,并分析了其相应的排放特征、排放因子(EF)、臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAp).结果显示,6类餐馆排放NMHCs中,茶餐厅、家常菜馆和浙菜馆排放的烷烃浓度最高,而西式快餐和职工食堂排放的烯烃浓度最高,湘菜馆油烟中烷烃和烯烃浓度相近.采用灶台数及用油量作为EF的核算基准,结果显示西式快餐和职工食堂的EF较高.餐饮排放的NMCHs中乙烯、丙烯、1,3-丁二烯、间/对二甲苯、甲苯及癸烷的OFP最高,而环己烷、正庚烷、正辛烷和正癸烷则具有较高的SOA生成潜势.此外,甲苯和苯不仅具有高的O3生成潜势,还对SOA的生成有明显贡献,是油烟中值得重点关注的污染物.  相似文献   

15.
The electrochemical reduction characteristics of chlorinated hydrocarbons were investigated by cyclic voltammetry technique. The reduction mechanism and activity of the chlorinated hydrocarbons at the copper electrode were explored. The relationship between the structure of chlorinated hydrocarbons and their reductive activity were discussed. The experimental results showed that chlorinated alkanes and a portion of chlorinated aromatic hydrocarbons could be reduced directly at the copper electrode. However, chlorinated aromatic hydrocarbons were not easy to reduce at the copper electrode. The results provided a theoretical basis for the catalyzed iron inner electrolysis method. Translated from Environmental Science, 2005, 26(4): 51–54 [译自: 环境科学]  相似文献   

16.
为研究滹沱河冲洪积扇地下水中VOCs(volatile organic compounds,挥发性有机物)的污染现状,于2014年9月在滹沱河冲洪积扇地区采集44个地下水样品,采用吹扫捕集-气相色谱-质谱法分析了25种VOCs的质量浓度,并对其分布特征和健康风险进行了讨论. 结果表明,研究区44个采样点均有VOCs检出,其中氯仿、二氯甲烷检出率为100%. 检出的VOCs中,ρ(氯仿)平均值最高,范围为15.4~52 195.9 ng/L;其次为ρ(四氯化碳)(nd~17 145.8 ng/L). VOCs的分布与工业布局密切相关,受制药企业排污影响,ρ(氯仿)、ρ(苯乙烯)、ρ(苯)、ρ(甲苯)、ρ(乙苯)、ρ(二甲苯)等均在G2-1采样点最高;而在石家庄石化炼制产业密集区域,地下水中检出的VOCs种类、检出频次及含量均较高. 研究显示,研究区地下水VOCs的非致癌风险指数介于1.8×10-5~4.7×10-2之间,均远小于1;G2-22采样点地下水VOCs的致癌风险指数最高,为1.1×10-5,处于可接受水平,但四氯化碳的污染现状值得关注.   相似文献   

17.
焦化厂因其工艺特殊,SO2、NOx、颗粒物及VOCs的排放问题较为突出。故对焦化厂厂界环境空气VOCs排放特征进行分析,并依据最大增量反应活性(MIR)法和等效丙烯浓度(PEC)法对VOCs的臭氧生成潜势(OFP)进行评估,依据气溶胶生成系数(FAC)法对VOCs二次有机气溶胶生成潜势(SOAFP)进行评估。结果表明:1)厂界上、下风向5个点位共分析出包括芳香烃、卤代烃、烯烃、硫化物、酮类在内的17种VOCs; 2)不同区域厂界检出的VOCs差异显著,总质量浓度为28.2~167.9μg/m3,其中芳香烃在各点位TVOCs中占比最大,达到51.01%~84.63%;3)脱硫提盐冷鼓区域边界OFP最大,理论值为335.51μg/m3,办公生活区边界OFP最小,理论值为47.06μg/m3,芳香烃对OFP贡献率为27.21%~62.37%,烯烃为39.17%~61.84%,卤代烃为2.08%~14.56%;通过PEC法估算OFP,结果变化趋势与MIR法结果相一致,等效丙烯浓度为3.11~31.89μg/m3;且1—5点位芳香烃的等效丙烯浓度贡献率分别为37.10%、51.46%、66.79%、58.80%和22.74%;4)1—5点位SOAFP分别为0.452,0.938,2.517,4.055,0.495μg/m3;芳香烃对SOAFP贡献最大。丙烯、甲苯、二甲苯、氯乙烯等质量浓度和反应活性均较大的物质,是需要优先控制的VOCs组分,可作为焦化厂环境空气VOCs的标志物。  相似文献   

18.
蒸气入侵暴露情景下土壤气筛选值推导与比较   总被引:1,自引:1,他引:0       下载免费PDF全文
采用J&E模型推导了典型蒸气入侵暴露情形下土壤气中ρ(苯)、ρ(甲苯)、ρ(氯仿)及ρ(1,1-二氯乙烯)的筛选值,并与US EPA(美国国家环境保护局)及美国各州的颁布值进行比较. 结果表明,具有致癌效应的苯、氯仿相同暴露情形下的筛选值低于非致癌效应的甲苯、1,1-二氯乙烯3~4个数量级,表明VOCs污染场地应重点关注致癌性污染物. 其中,浅层土壤气居住暴露情形下ρ(苯)、ρ(甲苯)、ρ(氯仿)及ρ(1,1-二氯乙烯)的筛选值分别为9.6×102、2.7×102、1.1×107、4.0×105μg/m3,工商业暴露情形下分别为4.6×103、1.3×103、6.3×107、2.4×106μg/m3. 深层土壤气居住暴露情形下ρ(苯)、ρ(甲苯)、ρ(氯仿)及ρ(1,1-二氯乙烯)的筛选值分别为1.1×103、3.1×102、1.2×107、4.5×105μg/m3,工商业暴露情形下分别为5.2×103、1.5×103、7.1×107、2.7×106μg/m3. 筛选值大小的决定因素包括污染物的室内允许浓度、土壤气衰减系数及建筑物参数. 浅层与深层土壤气中各污染物筛选值无明显差异,但与US EPA及美国各州的颁布值差异较大,这主要是由污染物室内允许浓度及衰减系数确定方法的不同所致. 浅层土壤气平均衰减系数为2.3×10-4,与深层土壤气平均衰减系数(2.0×10-4)无明显差异,但均低于US EPA对应经验值〔0.1(浅层)、0.01(深层)〕2~3个数量级. 在不考虑吸附及生物降解时,污染源上方清洁土壤对污染物的衰减作用不明显.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号