首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立基质固相分散(MSPD)辅助加压溶剂萃取(PLE)-高效液相色谱法测定土壤中16种多环芳烃的方法.土壤样品与弗罗里硅土混匀后装入萃取池,在15 MPa、120℃萃取条件下,丙酮∶二氯甲烷(1∶1,V∶V)作为萃取溶剂,静态提取5min,应用高效液相色谱法荧光检测-二极管阵列检测串联,采用外标法对其进行定量分析.结果表明:16种多环芳烃线性关系良好,相关系数均大于0.9994,利用荧光检测器与二极管阵列检测器的方法检出限分别为0.04—0.8μg·L-1、0.6—20μg·L-1,在低、中、高3个水平下的加标回收率在78.4%—105.8%范围内,测定结果的相对标准偏差为1.2%—4.1%(n=5).  相似文献   

2.
垃圾焚烧中多环芳烃的高效液相色谱测定   总被引:3,自引:0,他引:3  
对垃圾焚烧过程中 1 6种多环芳烃经提取、浓缩和净化后 ,采用高效液相色谱法检测 .结果表明 :在实验浓度范围内 ,相关系数大多在 0 999以上 ,回收率范围为 60—1 1 7%,最低检出限为 1 97— 2 33pg ;同时 ,垃圾焚烧固体样品中多环芳烃浓度为 2 49—1 1 7 0 0mg·kg- 1 ,烟气中多环芳烃的浓度为 75 2 0— 1 88 0 0 μg·Nm- 3.  相似文献   

3.
采用自动索氏抽提-凝胶渗透色谱(GPC)-气相色谱/质谱技术,建立了沉积物中多环芳烃和有机氯农药的检测方法.通过对自动索氏抽提提取条件、凝胶渗透色谱净化条件进行优化.以丙酮∶正己烷(V∶V=1∶1)作为提取溶剂,提取温度160℃,用乙酸乙酯∶环己烷(V∶V=1∶1)定容至40 mL,转移上GPC.GPC在线浓缩系统真空腔真空度为180 mbar/190 mbar,以乙酸乙酯∶环己烷(V∶V=1∶1)为流动相,流速为5 mL·min-1,并采用气相色谱-质谱法定性和定量分析.在优化条件下,16种多环芳烃和19种有机氯农药在10—1000μg·L-1范围内具有良好的线性关系(R20.99),检出限(S/N=3)为0.008—0.353μg·kg-1.加标水平为10、50、100μg·kg-1时,平均加标回收率分别为77.6%—106.1%、79.9%—108.7%和80.6%—107.8%,相对标准偏差(RSDs,n=5)均小于10%.  相似文献   

4.
刘彬  闫强  郭丽  张明杰  施敏芳  贺小敏 《环境化学》2019,38(10):2212-2221
本研究通过对仪器定性定量、样品萃取和萃取液净化等环节的条件优化实验,建立了同时测定土壤中8种有机氯农药和15种多环芳烃的加压流体萃取-硅酸镁柱净化-气相色谱质谱分析方法.化合物方法检出限在0.4—3.2μg·kg~(-1)之间,测定下限在1.6—12.8μg·kg~(-1)之间;对化合物含量为0.1 mg·kg~(-1)和0.5 mg·kg~(-1)的土壤加标样品分别进行6次平行分析,回收率在61%—119%之间,测定结果的RSD在2.8%—21%之间;对相关土壤标准物质进行分析,测定结果均在化合物认定值与不确定度范围内.与其他方法相比,本法减少了萃取环节共萃物、降低了净化环节对干扰物的洗脱、有效排除了假阳性,且显著提高了工作效率.  相似文献   

5.
采用加速溶剂萃取作为土壤样品的萃取技术,萃取液浓缩后直接采用在线凝胶净化色谱-气质联用法分析检测土壤中16种多环芳烃.结果表明,16种多环芳烃在1.0—100.0μg·L~(-1)线性关系良好,线性相关系数均大于0.995.对10.0μg·L~(-1)标准溶液连续进样8针,相对标准偏差RSD在1.70%—6.27%之间,重复性良好.16种多环芳烃方法检出限范围为0.001—0.030μg·kg~(-1)(S/N=3).在加标浓度为0.1、0.5、1.0μg·kg-1时,16种多环芳烃的加标回收率均在62.5%—113.7%之间,符合日常分析检测的要求.  相似文献   

6.
为了探讨微生物修复不同类型多环芳烃污染土壤的可行性,应用固定化毛霉对多环芳烃污染工业土壤及农田土壤进行微生物修复,用羟丙基-β-环糊精(HPCD)提取模拟评价多环芳烃的微生物可利用性,并分析多环芳烃微生物降解和生物可利用性的相关关系.焦化厂污染土壤中多环芳烃的30 d降解率为77.6%,沈抚灌区污染土壤中多环芳烃的30 d降解率为54.2%,焦化厂土壤和污灌区农田土壤中多环芳烃降解差异明显.焦化厂土壤和污灌区土壤中多环芳烃的30 d降解量和多环芳烃的环糊精可提取量具有相关性,各环数多环芳烃的环糊精可提取量变化解释了焦化厂和污灌区土壤中多环芳烃降解的差异机制,说明可用环糊精提取量预测微生物降解土壤多环芳烃的情况.  相似文献   

7.
长江重庆段表层水体中多环芳烃的分布及来源分析   总被引:5,自引:0,他引:5  
采集了长江重庆段干流以及重要支流共7个断面的表层水样,采用液相色谱法分析15种优先控制的多环芳烃(PAHs).结果表明,水体中总PAHs浓度范围为6.44—109.39 ng·L-1,平均值为41.83 ng·L-1.在5个断面水体中检出苯并(a)芘,浓度为0.05—1.32 ng·L-1,低于我国地表水标准限值(2.8 ng·L-1).长江重庆段的PAHs浓度水平低于大部分国内其他河流,与国外一些河流的浓度水平相当.PAHs组成以中低环PAHs(3环和4环)为主,平均比例分别为55.7%和38.8%,高环PAHs(5环和6环)含量较低,分别占3.6%和1.9%.示踪PAHs比值法结果显示长江重庆段表层水体PAHs主要来源于石化产品的泄漏污染.  相似文献   

8.
本文采用GC-MS结合同时溶剂浓缩(CSR)大体积不分流进样技术,建立了高效、灵敏测定环境水体中18种PAHs的检测方法.优化了提取溶剂种类、用量等参数,并确定以含多环芳烃内标的0.5 m L环己烷做溶剂作为最佳提取条件;采用GC-MS进行分析,通过在分析柱与分流不分流进样口间串接5m×0.53mm预柱的方式,使得进样体积高达50μL,以提高对多环芳烃的检测灵敏度.实验结果表明,使用大体积不分流进样技术,进样体积为50μL时,对各多环芳烃的检测相比传统不分流进样1μL,灵敏度提高了近50倍;18种多环芳烃在0.1—10μg·L-1的范围内,线性相关系数大于0.9992、精密度小于4.5%(n=8),对实际水样,加标5 ng·L~(-1)的回收率为63.5%—119.5%、加标25、50 ng·L~(-1)水平下的加标回收率为76.2%—119.5%.同时以3倍信噪比计算,各组分方法检出限(MDL)为0.010—0.068 ng·L~(-1).总体来看,采用CSR-GCMS对水体中多环芳烃的分析能够大大减少前处理过程中对样品浓缩的时间耗费,并避免低沸点多环芳烃的损失,是一种非常灵敏、高效的检测方法.  相似文献   

9.
采用基质固相分散技术(QuEChERS)为样品前处理方法,建立了高效液相色谱-串联质谱(HPLCMS/MS)快速检测小麦植株、小麦粒和土壤中萎锈灵残留量的分析方法.样品经乙腈提取及盐析处理后,用N-丙基乙二胺(PSA)和石墨化碳黑(GCB)固相萃取填料净化,HPLC-MS/MS、多反应监测模式(MRM)下测定.基质标准曲线外标法进行定量分析.结果显示,在0.005—0.5mg·L-1浓度范围内,不同基质中萎锈灵均有较好的线性关系(R20.998),在0.02、0.2、1mg·kg-1添加水平下,萎锈灵在不同基质中的平均回收率介于77.5%—109.7%,相对标准偏差(RSD)介于1.7%—9.9%,检出限(LOD)为0.5μg·L-1,方法的最低检测浓度(LOQ)均为0.02mg·kg-1.该方法前处理简单、快速,分析时间短,灵敏度、准确度和精密度均符合农药残留检测要求,适用于小麦样品中萎锈灵残留量的检测.  相似文献   

10.
建立了快速溶剂(ASE)提取,高效液相色谱-二极管紫外阵列/荧光串联法测定土壤中18种多环芳烃.通过选择净化小柱和仪器条件的优化,实现了18种多环芳烃组分的完全分离及高灵敏度检测,该方法二极管紫外阵列(PDA)检测器和荧光(RF)检测器检出限分别为0.04—0.6μg·kg-1和0.002—0.07μg·kg-1;4种浓度水平(PDA检测器:0.5μg、2μg;RF检测器:0.02μg、0.05μg)土样加标回收率稳定在82.8%—122%之间,RSD为1%—5%之间.  相似文献   

11.
中国饮用水中多环芳烃的分布和健康风险评价   总被引:11,自引:0,他引:11  
饮用水中存在的多环芳烃对人类的身体健康会产生危害。应用固相萃取富集法和气相色谱?质谱联用(GC/MS)分析方法对全国主要城市的80座自来水厂出水中多环芳烃的浓度进行了分析。结果表明:各自来水厂的出水中多环芳烃总量在174.02-658.44ng.L-1之间,其中致癌性多环芳烃的总量为55.08-173.36ng.L-1,致癌性多环芳烃占多环芳烃总量比例最高可达到49.68%。就其组成而言,出水中多环芳烃以3环芳烃(31%-37%)为主,但各环均有检出;通过评价水体健康风险,得到水厂出水中多环芳烃对人体的健康风险值是10-6a-1。  相似文献   

12.
本研究建立了检测污泥中16种多环芳烃(PAHs)的气相色谱-质谱测定方法,对该介质中16种多环芳烃(PAHs)的提取、净化和色谱质谱条件进行了优化.采用100 m L正己烷∶丙酮(V∶V,50∶50)混合溶剂索式提取样品中的待测组分,经分子印迹固相萃取柱(MIPs/SPE)净化,内标法定量.结果表明,分子印迹固相萃取柱(MIPs/SPE)对PAHs单体专一吸附效果显著,对中环、高环PAHs的吸附明显,并且基质效应减弱.16种多环芳烃的线性范围为10—5000 ng·m L~(-1),相关系数(R2)不低于0.9978,加标水平为50、250、500 ng·m L~(-1)时,基质平均加标回收率分别为60%—105%,58%—121%和63%—115%,相对标准偏差(RSDs,n=6)为3.8%—9.4%.该方法快速、准确、灵敏度高、重现性好.  相似文献   

13.
GC-MS/MS结合改进的QuEChERS方法测定茶叶中多农药残留   总被引:1,自引:0,他引:1  
本文建立了三重四极杆气质联用仪GC-MS/MS结合改良的QuEChERS方法同时检测茶叶中61种农药多残留的分析方法.在2—200μg·L-1浓度范围内,各农药的相关系数均在0.999以上.对50μg·L-1的标准溶液连续6针进样,峰面积的RSD%均小于3.2%.当样品称样量为5 g时,绝大数农药的最低检出限(LOD)在5.0μg·kg-1以下.在0.01 mg·kg-1和0.1 mg·kg-1的加标浓度下,大部分农药的加标回收率在70.0%—110.0%之间,完全满足日常检测对茶叶中农药残留分析的要求.  相似文献   

14.
本文建立了气相色谱-质谱法(GCMS)检测运动场地塑胶面层中18种多环芳烃的方法.样品经乙酸乙酯超声萃取60 min,取上清液,加入内标混合溶液(萘-D8、蒽-D10和苝-D12等3种内标),用GCMS分离和检测.结果表明,多环芳烃在5—200μg·L~(-1)浓度范围内标准曲线线性良好,相关系数均在0.999以上.在5.0μg·L~(-1)浓度下,连续6次进样,峰面积RSD值均小于10.0%,精密度良好.以3倍信噪比(peak to peak)计算18种多环芳烃的检出限,以10倍信噪比(peak to peak)计算18种多环芳烃的定量限,各组分的检出限为0.09—0.8μg·kg~(-1),定量限为0.27—2.4μg·kg~(-1).在1.0 mg·kg~(-1)的加标浓度下,样品加标回收率为83.2%—129.7%.该方法简单方便,能够有效的监测运动场地塑胶面层中多环芳烃的含量.  相似文献   

15.
北京市冬季大气气溶胶中PAHs的污染特征   总被引:2,自引:0,他引:2  
利用大流量颗粒物采样器采集了2005-2006年冬季北京市大气气溶胶中PM10和PM2.5样品,采用气相色谱/质谱技术对样品中的多环芳烃进行检测.结果表明:北京市冬季大气颗粒物PM10和PM2.5中PAHs总量分别为520.5±476.9ng·m-3和326.8±294.3ng·m-3,且大部分存在于细粒子中,4环以上的稠环芳烃占总浓度的87%.根据荧蒽/芘等比值指标判别,北京市冬季PAHs主要以燃煤排放为主,其次是石油燃烧交通排放.风速增大和太阳辐射曝辐量增强,都会降低颗粒物中多环芳烃浓度.  相似文献   

16.
建立了测定土壤中15种邻苯二甲酸酯类增塑剂的快速溶剂萃取/气相色谱-质谱联用(GC-MS)分析方法.样品用快速溶剂萃取仪(ASE)提取,样液经NH2粉净化,4000 r·min-1离心5 min,取上清液氮吹浓缩定容后,采用气相色谱-质谱联用(GC-MS)测定,外标法定量.在0.05—5.00μg·m L-1范围内,相关系数R20.992,样品在0.10—2.00 mg·kg-1范围内加标,平均回收率在64.5%—119.4%之间,相对标准偏差(RSD)为2.1%—11.8%,检出限(LOD)在0.02—0.05 mg·kg-1之间,定量限(LOQ)在0.06—0.15 mg·kg-1.采用该方法对7个土壤样品进行测定,结果表明该法简便、快速、结果准确可靠、灵敏度高、对人体毒害性小,能够满足土壤中15种邻苯二甲酸酯增塑剂检测需求.  相似文献   

17.
杭州市郊区表层土壤中的多环芳烃   总被引:6,自引:0,他引:6  
采集了杭州市郊区表层土壤中多环芳烃样品,用内标法和色谱-质谱技术对多环芳烃化合物进行定量分析.美国环保总署推荐优先控制的16种多环芳烃均被检出,多环芳烃单体的质量浓度在1.49~87.43 ng·g-1之间;其中萘、芴、苊等低分子量芳烃的质量浓度相对较低; 、茚并[1,2,3-cd]芘、苯并[ghi]苝等高分子量芳烃的质量浓度相对较高,苯并[ghi]苝的质量浓度最高.16种多环芳烃的质量总浓度超过荷兰政府规定无污染土壤PAHs值的10~40倍;与国内外其他地区相比较,多环芳烃污染处于中等水平.多环芳烃Ant/(Phe+Ant)、BaA/(Chr+BaA)、Flua/(Pyr+Flua)等参数表明,多环芳烃主要来源于燃烧源,且以机动车尾气为主;BeP/(BeP+BaP)比值偏高,可能与土壤中的多环芳烃主要来源于大气沉降有关.  相似文献   

18.
以2,6-吡啶二羧酸和1,5-二苯碳酰二肼为衍生试剂,采用柱前和柱后衍生的方式建立了离子色谱法同时测定环境水样中三价铬和六价铬的方法.通过六通阀控制1,5-二苯碳酰二肼注入系统的时间,避免了六价铬衍生液本底对三价铬测定的干扰,提高了三价铬检测的灵敏度,将三价铬的检出限由原来的0.17 mg·L-1降低至5.9μg·L-1.同时,对检测波长、淋洗液浓度、衍生液流速和定量环体积进行了选择优化.该方法对0.72 mg·L-1Cr(Ⅲ)和0.24 mg·L-1Cr(Ⅵ)峰面积测定值的相对标准偏差分别为0.34%和0.65%,六价铬的检出限为3.2μg·L-1.测定了含铬污染废水、电镀厂处理前后的废水和河水共9个样品中Cr(Ⅲ)和Cr(Ⅵ)的含量,并进行了加标回收实验.结果表明,在0.02—0.48 mg·L-1加标范围内,Cr(Ⅲ)的加标回收率在83.7%—117.0%;在0.02—0.24 mg·L-1加标范围内,Cr(Ⅵ)的加标回收率在96.0%—104.5%.  相似文献   

19.
浊点萃取-高效液相色谱测定土壤及底泥中痕量多环芳烃   总被引:3,自引:0,他引:3  
采用阴离子表面活性剂十二烷基硫酸钠(SDS)超声波辅助浊点萃取(CPE),高效液相色谱法(HPLC)测定土壤及底泥中痕量多环芳烃(PAHs),在SDS浓度为2.75%,HCl用量为4.2mol·l-1,平衡温度为70℃.恒温时间为50min的最佳条件下,萘、芴、苊烯、菲和芘的方法检测限分别:31.40,18.84,12.56,94.20和31.40μg·l-1,线性范嗣为0-10.0 mg·l-1.  相似文献   

20.
城市回用水中多环芳烃致癌风险评价   总被引:1,自引:0,他引:1  
为评价人群暴露于城市回用水中16种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)对于人体健康的潜在风险,采用气相色谱-质谱(GC-MS)联用的分析化学方法对不同季节回用水中16种PAHs进行定量分析;在此基础上采用美国国家科学院和国家研究委员会提出的环境健康风险评价方法,分析不同回用条件下具有中国水体基质特色的城市回用水中PAHs健康风险.结果显示,回用水样中16种PAHs的总浓度为1 422.85 ng·L-1,污水处理厂二级出水水样16种PAHs的总浓度为1 791.77 ng ·L-1,经过处理后回用水中PAHs含量有所降低.风险评价分析结果显示,回用水在城市绿化、农业灌溉和景观娱乐3种不同回用途径下多环芳烃的致癌风险分别为788×10-8、2.77×10-6、3.04×10-6,总致癌风险为5.89×10-6.以上结果可以得出,回用水在城市绿化、农田灌溉和景观娱乐接触过程中多环芳烃所增加的致癌风险很低,回用水中多环芳烃的健康风险处于可接受水平.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号