首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since NiMH and NiCd batteries are still used in the electronic devices market, a treatment and recycling plant has many advantages both from the environmental and the economic points of view. Unfortunately, there is no relationship between shape, size and chemical composition of spent batteries, consequently the characterization and the leaching method of the starting material becomes an important step of the overall treatment process in choosing the best conditions for the selective separation of the metals by hydrometallurgy. Leaching at 20 degrees C with H(2)SO(4) 2M for about 2h seems to be a good solution in terms of cost and efficiency for both battery types. The hydroxide compounds can be readily leached while Ni present as metallic form requires more aggressive conditions due to kinetic constraints. In this paper, the characterization of NiMH and NiCd spent batteries and the results of leaching tests in different conditions are reported.  相似文献   

2.
The paper is concerned with biohydrometallurgical methods of cadmium recovery from spent Ni–Cd batteries. Cd leaching efficiency from electrode material in different media (H2SO4 and Fe2(SO4)3 solutions), at different Fe(III) concentrations and using the bacteria Acidithiobacillus ferrooxidans were investigated. The main aim of this study was to understand which from the bioleaching products (sulphuric acid or ferric sulphate) play a main role in the bioleaching process of Cd recovery. The influence of Fe ions on Cd leachability was confirmed. The best leaching efficiency of Cd (100%) was reached by bioleaching and also by leaching in Fe2(SO4)3 solution. The results of X-ray diffraction confirmed that no cadmium was present in solid residuum obtained after the Cd bioleaching as well as Cd leaching using solely ferric iron. The use of H2SO4 solution resulted in the lowest efficiency of Cd leachability, the presence of hydroxides in electrode materials caused neutralization of the leaching solution and inhibition of Cd leaching.  相似文献   

3.
A severe threat was posed due to improper and inefficient recycling of waste batteries in China. The present work considered the fundamental aspects of the recycling of cadmium from waste nickel–cadmium batteries by means of vacuum metallurgy separation in scale-up. In the first stage of this work, the characterization of waste nickel–cadmium batteries was carried out. Five types of batteries from different brands and models were selected and their components were characterized in relation to their elemental chemical composition and main phase. In the second stage of this work, the parameters affecting the recycling of cadmium by means of vacuum metallurgy separation were investigated and a L16 (44) orthogonal design was applied to optimize the parameters. With the thermodynamics theory and numerical analysis, it can be seen that the orthogonal design is an effective tool for investigating the parameters affecting the recycling of cadmium. The optimum operating parameters for the recycling of cadmium obtained by orthogonal design and verification test were 1073 K (temperature), 2.5 h (heating time), 2 wt.% (the addition of carbon powder), and 30 mm (the loaded height), respectively, with recycling efficiency approaching 99.98%. The XRD and ICP-AES analyzed results show that the condensed product was characterized as metallic cadmium, and cadmium purity was 99.99% under the optimum condition.  相似文献   

4.
Mineral processing operation is a critical step in any recycling process to realize liberation, separation and concentration of the target parts. Developing effective recycling methods to recover all the valuable parts from spent lithium-ion batteries is in great necessity. The aim of this study is to carefully undertake chemical and process mineralogical characterizations of spent lithium-ion batteries by coupling several analytical techniques to provide basic information for the researches on effective mechanical crushing and separation methods in recycling process. The results show that the grade of Co, Cu and Al is fairly high in spent lithium ion batteries and up to 17.62 wt.%, 7.17 wt.% and 21.60 wt.%. Spent lithium-ion batteries have good selective crushing property, the crushed products could be divided into three parts, they are Al-enriched fraction (+2 mm), Cu and Al-enriched fraction (?2 + 0.25 mm) and Co and graphite-enriched fraction (?0.25 mm). The mineral phase and chemical state analysis reveal the electrode materials recovered from ?0.25 mm size fraction keep the original crystal forms and chemical states in lithium-ion batteries, but the surface of the powders has been coated by a certain kind of hydrocarbon. Based on these results a flowsheet to recycle spent LiBs is proposed.  相似文献   

5.
A serious environmental problem was presented by waste batteries resulting from lack of relevant regulations and effective recycling technologies in China. The present work considered the enhancement of waste Ni-Cd and Ni-MH batteries recycling by mechanical treatment. In the process of characterization, two types of waste batteries (Ni-Cd and Ni-MH batteries) were selected and their components were characterized in relation to their elemental chemical compositions. In the process of mechanical separation and recycling, waste Ni-Cd and Ni-MH batteries were processed by a recycling technology without a negative impact on the environment. The technology contained mechanical crushing, size classification, gravity separation, and magnetic separation. The results obtained demonstrated that: (1) Mechanical crushing was an effective process to strip the metallic parts from separators and pastes. High liberation efficiency of the metallic parts from separators and pastes was attained in the crushing process until the fractions reached particle sizes smaller than 2 mm. (2) The classified materials mainly consisted of the fractions with the size of particles between 0.5 and 2 mm after size classification. (3) The metallic concentrates of the samples were improved from around 75% to 90% by gravity separation. More than 90% of the metallic materials were separated into heavy fractions when the particle sizes were larger than 0.5 mm. (4) The size of particles between 0.5 and 2 mm and the rotational speed of the separator between 30 and 60 rpm were suitable for magnetic separation during industrial application, with the recycling efficiency exceeding 95%.  相似文献   

6.
The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted.  相似文献   

7.
The quantitative evaluation of emissions from incineration is essential when Life Cycle Assessment (LCA) studies consider this process as an end-of-life solution for some wastes. Thus, the objective of this work is to quantify the main gaseous emissions produced when spent AA alkaline batteries are incinerated. With this aim, batteries were kept for 1h at 1273K in a refractory steel tube hold in a horizontal electric furnace with temperature control. At one end of the refractory steel tube, a constant air flow input assures the presence of oxygen in the atmosphere and guides the gaseous emissions to a filter system followed by a set of two bubbler flasks having an aqueous solution of 10% (v/v) nitric acid. After each set of experiments, sulphur, chlorides and metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Tl and Zn) were analyzed in both the solutions obtained from the steel tube washing and from the bubblers. Sulphur, chlorides and metals were quantified, respectively, using barium sulfate gravimetry, the Volhard method and atomic absorption spectrometry (AAS). The emissions of zinc, the most emitted metal, represent about 6.5% of the zinc content in the batteries. Emissions of manganese (whose oxide is the main component of the cathode) and iron (from the cathode collector) are negligible when compared with their amount in AA alkaline batteries. Mercury is the metal with higher volatility in the composition of the batteries and was collected even in the second bubbler flask. The amount of chlorides collected corresponds to about 36% of the chlorine in the battery sleeve that is made from PVC. A considerable part of the HCl formed in PVC plastic sleeve incineration is neutralized with KOH, zinc and manganese oxides and, thus, it is not totally released in the gas. Some of the emissions are predictable through a thermodynamic data analysis at temperatures in the range of 1200-1300K taking into account the composition of the batteries. This analysis was done for most of potential reactions between components in the batteries as well as between them and the surrounding atmosphere and it reasonably agrees the experimental results. The results obtained show the role of alkaline batteries at the acid gases cleaning process, through the neutralization reactions of some of their components. Therefore, LCA of spent AA alkaline batteries at the municipal solid waste (MSW) incineration process must consider this contribution.  相似文献   

8.
WAXS examinations performed with nickel hydroxide samples heated to various temperatures showed that freshly settled wet nickel hydroxide sample contains some amount of crystalline beta-Ni(OH)(2) structure and its share increased when sample was dried during 3 weeks at ambient temperature. However, the share significantly decreased when the sample was dried at 110 degrees C and more so at 250 degrees C. Crystalline phase traces of Ni(OH)(2) disappeared after sample burning at 980 degrees C and instead the distinct presence of crystalline NiO was determined. The above samples were examined for solubility in stoichiometric amount of sulphuric acid diluted with water to pH 1.9 and 2.8. Solubility was determined by measuring nickel ion concentration in leachate by the AAS method. The dissolving rate was found to decrease with the rise of temperature to which the nickel hydroxide samples were heated. The solubility of Ni(OH)(2) sample burnt at 980 degrees C was undetectable during 90 h solubility-testing time likely due to its transformation into sparingly soluble crystalline NiO. The latter is considered to be the reason for effective immobilization of waste nickel hydroxide in ceramic prepared by blending with clay and sintering at 980 degrees C.  相似文献   

9.
In this study, a very promising way of treating and recycling spent nickel catalysts of fertilizer plants in Vietnam was proposed. Firstly, nickel was recovered from spent catalyst using HNO3—leaching process. Results show that nickel recovery of over 90% with a purity of over 90% can be achieved with HNO3 2.1–2.5 M at 100?°C in 75 min. The residue after leaching is not considered as a hazardous waste according to the Vietnamese regulations. Then, the leachate solution was used as a precursor to prepare a model catalyst for exhaust gas (CO, HC, NOx) treatment. In comparison with the catalyst prepared from the commercial nickel nitrate solution, the catalyst synthesized from recovered nickel exhibits similar properties and activities. The influence of Ni loading of Ni/alumina catalyst as well as the modification of active phase by some metals addition (Mn, Ba, Ce) was also investigated. It is feasible to modify active phase by transition metals such as Mn, Ba, and Ce for complete oxidation of CO and HC at 270?°C and a reduction of NOx below 350?°C at high volumetric flow condition (GHSV?=?110.000 h?1).  相似文献   

10.
The consumption, disposal, material and chemical compositions of rechargeable electric torch wastes (RETWs) were investigated in Ibadan, Nigeria. Twenty-five RETWs of ten models were collected and disassembled. Their battery electrodes (BEs) and printed circuit boards (PCBs) were acid digested and leached using United States Environmental Protection Agency (USEPA) method 3050B and USEPA Method 1311, respectively. The digests and extracts were analysed for total and extractable Pb, Cd, Cr and Ni using atomic absorption spectrophotometer. The US Test method (CPSC-CH-E 1002-08) was used for digestion of the plastic components. Two hundred questionnaires were distributed to users in Ibadan to determine their usage of RETs and their management when spent. The results indicated that BEs contributed the highest percentage (44 %) component, followed by plastic (38 %). Other components include metal, PCBs, glass and wire. Of the respondents, 61.9 % dispose their spent torches in dumpsites. The mean ± SD concentrations of Pb, Cd, Cr and Ni in the BEs were 500 ± 109 g/kg, 3.94 ± 6.84 mg/kg, 0.33 ± 0.88 mg/kg, 1.68 ± 0.74 mg/kg respectively; in the PCBs, they were 684 ± 42 g/kg, 13.7 ± 17.8 mg/kg, 13.5 ± 10.2 mg/kg and 193 ± 437 mg/kg; and in the plastics, they were 14.1 g/kg, 5.33 mg/kg, 17 mg/kg, and 4.67 mg/kg respectively. The extractable Pb in BE (2670 mg/L) and PCBs (235 mg/L) exceeded the Toxicity Characteristics Leaching Procedure (TCLP) limit of 5 mg/L. RETWs present potential environmental problems in the absence of effective recycling.  相似文献   

11.
Nickel–metal hydride (NiMH) batteries contain high amount of industrial metals, especially iron, nickel, cobalt and rare earth elements. Although the battery waste is a considerable secondary source for metal and chemical industries, a recycling process requires a suitable pretreatment method before proceeding with recovery step to reclaim all valuable elements. In this study, AA- and AAA-type spent NiMH batteries were ground and then sieved for size measurement and classification. Chemical composition of the ground battery black mass and sorted six different size fractions were determined by an analytical technique. Crystal structures of the samples were analyzed by X-ray diffraction. Results show that after mechanical treatment, almost 87 wt% of the spent NiMH batteries are suitable for further recycling steps. Size classification by sieving enriched the iron content of the samples in the coarse fraction which is bigger than 0.25 mm. On the other hand, the amounts of nickel and rare earth elements increased by decreasing sample size, and concentrated in the finer fractions. Anode and cathode active materials that are hydrogen storage alloy and nickel hydroxide were mainly collected in finer size fraction of the battery black mass.  相似文献   

12.
A chemical characterisation of used batteries can give useful information to implement suitable recycling techniques and to estimate the flux of the different materials recovered. This work is aimed to provide quantitative data about the composition of mixed batteries (in particular, Ni–Cd, Ni-MH and Li-ion batteries) collected in a Northern Italian town in order to evaluate the feasibility of recovery processes applied to the selected material. The higher concentration of metals in the <3 mm fraction suggested that significant quantities of valuable elements could be recovered: in particular, for a kg of the <3 mm fraction deriving from disassembled batteries, about 390 g Ni and 330 g Cd can be recovered from Ni–Cd, 630 g Ni, 80 g Co from Ni-MH and 250 g Co, 110 g Ni, 120 g Cu from Li-ion ones. Leaching tests applied to the same fractions, to assess possible contaminant releases, resulted in low metal content in aqueous solutions (except for Al and Fe, the concentrations of all metals remained below 1 mg/kg). Even so, great care is required in all handling activities due to the high pH values of leachate solutions.  相似文献   

13.
The object of this study is to stabilize spent alkaline batteries and to recover useful metals. A blend of dolomite, limestone, and cullet was added to act as a reductant and a glass matrix former in vitrification. Specimens were vitrified using an electrical heating furnace at 1400 °C and the output products included slag, ingot, flue gas, and fly ash. The major constituents of the slag were Ca, Mn, and Si, and the results of the toxicity leaching characteristics met the standards in Taiwan. The ingot was a good material for use in production of stainless steel, due to being mainly composed of Fe and Mn. For the fly ash, the high level of Zn makes it economical to recover. The distribution of metals indicated that most of Co, Cr, Cu, Fe, Mn, and Ni moved to the ingot, while Al, Ca, Mg, and Si stayed in the slag; Hg vaporized as gas phase into the flue gas; and Cd, Pb, and Zn were predominately in the fly ash. Recovery efficiency for Fe and Zn was >90% and the results show that vitrification is a promising technology for reclaiming spent alkaline batteries.  相似文献   

14.
Used batteries contain numerous metals in high concentrations and if not disposed of with proper care, they can negatively affect our environment. These metals represent 83% of all spent batteries and therefore it is important to recover metals such as Zn and Mn, and reuse them for the production of new batteries. The recovery of Zn and Mn from used batteries, in particular from Zn–C and alkaline ones has been researched using hydrometallurgical methods. After comminution and classification of elemental components, the electrode paste resulting from these processes was treated by chemical leaching. Prior to the leaching process the electrode paste has been subjected to two washing steps, in order to remove the potassium, which is an inconvenient element in this type of processes. To simultaneously extract Zn and Mn from this paste, the leaching method in alkaline medium (NaOH solution) and acid medium (sulphuric acid solution) was used. Also, to determine the efficiency of extraction of Zn and Mn from used batteries, the following variables were studied: reagents concentration, S/L ratio, temperature, time. The best results for extraction yield of Zn and Mn were obtained under acid leaching conditions (2 M H2SO4, 1 h, 80 °C).  相似文献   

15.
陈炎  程洁红 《化工环保》2017,37(6):688-692
废锂电池中含有的Co、Ni和Cu等金属具有回收价值,Fe的存在降低了有价金属的回收效率。为去除废锂电池硫酸浸出液中的Fe,采用黄钠铁矾法分别以氯酸钠和过氧化氢作为氧化剂氧化除Fe,并优化了过氧化氢作为氧化剂的除Fe工艺参数。实验结果表明:过氧化氢作为氧化剂的除Fe效果好于氯酸钠;在n(H2O2)∶n(Fe)=0.5、初始溶液pH为1.8、终点pH为2.5、反应时间为2.0 h、搅拌速率为500 r/min的最佳工艺条件下,初始ρ(Fe)为0.212g/L的硫酸浸出液经除Fe处理后ρ(Fe)小于0.004 g/L,Fe去除率达98.0%,Co、Ni和Cu的损失率分别为1.04%、2.17%和1.41%。  相似文献   

16.
The presence of LiCoO(2) and LiCo(x)Ni((1-x))O(2) in the cathodic material of Li-ion and Li-polymer batteries has stimulated the recovery of Co and Ni by hydrometallurgical processes. In particular, the two metals were separated by SX method and then recovered by electrochemical (galvanostatic and potentiostatic) processes. The metallic Ni has been electrowon at 250 A/m(2), pH 3-3.2 and 50 degrees C, with 87% current efficiency and 2.96 kWh/kg specific energy consumption. Potentiostatic electrolysis produces a very poor Ni powder in about 1 h with current efficiency changing from 70% to 45% depending on Ni concentration in the electrolyte. Current efficiency of 96% and specific energy consumption of 2.8 kWh/kg were obtained for Co at 250 A/m(2), pH 4-4.2 and 50 degrees C, by using a solution containing manganese and (NH(4))(2)SO(4). The Co powder, produced in potentiostatic conditions (-0.9 V vs. SCE, pH 4, room temperature) appears particularly suitable for Co recycling as cobaltite in new batteries.  相似文献   

17.
Ni-MH spent batteries: a raw material to produce Ni-Co alloys   总被引:5,自引:0,他引:5  
Ni-MH spent batteries are heterogeneous and complex materials, so any kind of metallurgical recovery process needs a mechanical pre-treatment at least to separate irony materials and recyclable plastic materials (like ABS) respectively, in order to get additional profit from this saleable scrap, as well as minimize waste arising from the braking separation process. Pyrometallurgical processing is not suitable to treat Ni-MH batteries mainly because of Rare Earths losses in the slag. On the other hand, the hydrometallurgical method, that offers better opportunities in terms of recovery yield and higher purity of Ni, Co, and RE, requires several process steps as shown in technical literature. The main problems during leach liquor purification are the removal of elements such as Mn, Zn, Cd, dissolved during the leaching step, and the separation of Ni from Co. In the present work, the latter problem is overcome by co-deposition of a Ni-35/40%w Co alloy of good quality. The experiments carried out in a laboratory scale pilot-plant show that a current efficiency higher than 91% can be reached in long duration electrowinning tests performed at 50 degrees C and 4.3 catholyte pH.  相似文献   

18.
失效动力锂离子电池再利用和有用金属回收技术研究   总被引:1,自引:0,他引:1  
动力锂离子电池以其贮电能力大、充放电速度快等优点被广泛应用在电动汽车上,近年来失效电动汽车动力锂离子电池报废量不断增加,但未得到有效处理回收,造成了巨大的资源浪费和环境污染.失效电池还有80%左右的容量可以使用,可以在场地车或者储能电站进行再利用,以达到材料和电池的最大利用率;同时电池中含有多种有用金属(如Co,Al,Ni,Li等)且相对含量较高,极具回收价值.针对失效动力锂离子电池的再利用和有用金属的各种回收方法进行了评述.  相似文献   

19.
20.
Recovery of nickel, cobalt and some salts from spent Ni-MH batteries   总被引:2,自引:0,他引:2  
This work provides a method to help recover nickel, cobalt metals and some of their salts having market value from spent nickel-metal hydride batteries (SNiB). The methodology used benefits the solubility of the battery electrode materials in sulfuric or hydrochloric acids. The results obtained showed that sulfuric acid was slightly less powerful in leaching SNiB compared to HCl acid. Despite that, sulfuric acid was extremely applied on economic basis. The highest level of solubility attained 93.5% using 3N sulfuric acid at 90 degrees C for 3h. The addition of hydrogen peroxide to the reacting acid solution improved the level of solubility and enhanced the process in a shorter time. The maximum recovery of nickel and cobalt metals was 99.9% and 99.4%, respectively. Results were explained in the light of a model assuming that solubility was a first order reaction. It involved a multi-step sequence, the first step of which was the rate determining step of the overall solubility. Nickel salts such as hydroxide, chloride, hexamminenickel chloride, hexamminenickel nitrate, oxalate and nickel oleate were prepared. With cobalt, basic carbonate, chloride, nitrate, citrate, oleate and acetate salts were prepared from cobalt hydroxide Cost estimates showed that the prices of the end products were nearly 30% lower compared to the prices of the same chemicals prepared from primary resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号