首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rewilding has been an increasingly popular tool to restore plant–animal interactions and ecological processes impaired by defaunation. However, the reestablishment of such processes has seldom been assessed. We investigated the restoration of ecological interactions following the reintroduction of the brown howler monkey (Alouatta guariba) to a defaunated Atlantic forest site. We expected the reintroduction to restore plant–animal interactions and interactions between howlers and dung beetles, which promote secondary seed dispersal. We estimated the number of interactions expected to be restored by the reintroduction to provide the baseline interaction richness that could be restored. We followed the reintroduced howler monkeys twice a week for 24 months (337 hours total) to assess their diet. We used howler monkey dung in secondary seed dispersal experiments with 2484 seed mimics to estimate the removal rates by dung beetles and collected the beetles to assess community attributes. We compared the potential future contribution of howler monkeys and other frugivores to seed dispersal based on the seed sizes they disperse in other areas where they occur. In 2 years, howler monkeys consumed 60 animal-dispersed plant species out of the 330 estimated. Twenty-one dung beetle species were attracted to experimentally provided dung; most of them were tunnelers, nocturnal, and large-sized (>10 mm). On average 30% (range 0–100%) of the large seed mimics (14 mm) were moved by dung beetles. About 91% of the species consumed by howlers (size range 0.3–34.3 mm) overlapped in seed size with those removed by dung beetles. In our study area, howler monkeys may consume more large-seeded fruit species than most other frugivores, highlighting their potential to affect forest regeneration. Our results show reintroductions may effectively restore ecological links and enhance ecological processes.  相似文献   

2.
Effects of Forest Fragmentation on a Dung Beetle Community in French Guiana   总被引:4,自引:0,他引:4  
Abstract:  Fragmentation is the most common disturbance induced by humans in tropical forests. Some insect groups are particularly suitable for studying the effects of fragmentation on animal communities because they are taxonomically and ecologically homogenous. We investigated the effects of forest fragmentation on a dung beetle species community in the forest archipelago created in 1994–1995 by the dam of Petit Saut, French Guiana. We set and baited an equal number of pitfall traps for dung beetles on three mainland sites and seven island sites. The sites ranged from 1.1 to 38 ha. In 250 trap days, we captured 50 species in 19 genera. Diversity indices were high (2.18–4.06). The lowest diversity was on the small islands and one mainland site. Species richness and abundance were positively related to fragment area but not to distance from mainland or distance to the larger island. The islands had lower species richness and population than mainland forest, but rarefied species richness was relatively invariant across sites. There was a marked change in species composition with decreasing fragment that was not caused by the presence of a common fauna of disturbed-area species on islands. Small islands differed from larger islands, which did not differ significantly from mainland sites. Partial correlation analyses suggested that species richness and abundance of dung beetle species were positively related to the number of species of nonflying mammals and the density index of howler monkeys ( Alouatta seniculus ), two parameters positively related to fragment area.  相似文献   

3.
Chiba S 《Ecology》2007,88(7):1738-1746
The relationship between species richness and environmental variables may change depending on habitat structure, dispersal ability, species mixing, and community adaptation to the environment. It is crucial to know how these factors regulate the environment-diversity relationship. The land molluscan fauna of the Ogasawara Islands in the West Pacific is an excellent model system to address this question because of the high species endemicity (> 90%), small area, and simple habitat structure of the islands. I examined relationships among indigenous species composition, richness, and habitat condition, and especially productivity and forest moisture on the island of Anijima. Two major communities of snails could be distinguished by detrended correspondence analysis (DCA): one group dominated in a moist habitat with high productivity, and the other group dominated in a dry habitat with low productivity. However, species richness became highest at the intermediate condition between the habitats in which the two snail communities were dominant, so that species richness showed a hump-shaped relationship with moisture and productivity. In contrast, the species richness of the snail community in the moist habitat showed a monotonically positive correlation, and that in the dry habitat showed a monotonically negative correlation with moisture and productivity. Thus, the greater species richness in intermediate moisture and productivity resulted from the ecotone effect or community overlap at the transitional areas, where faunas with different ecologies can meet in a single site. These findings suggest that hump-shaped productivity-diversity relationships in land Mollusca would reflect the ecotone effect as a result of the mixing of species adapted to either fertile habitats or sterile habitats.  相似文献   

4.
Abstract: One potential contributor to the worldwide decline of bird populations is the increasing prevalence of roads, which have several negative effects on birds and other vertebrates. We synthesized the results of studies and reviews that explore the effects of roads on birds with an emphasis on paved roads. The well‐known direct effects of roads on birds include habitat loss and fragmentation, vehicle‐caused mortality, pollution, and poisoning. Nevertheless, indirect effects may exert a greater influence on bird populations. These effects include noise, artificial light, barriers to movement, and edges associated with roads. Moreover, indirect and direct effects may act synergistically to cause decreases in population density and species richness. Of the many effects of roads, it appears that road mortality and traffic noise may have the most substantial effects on birds relative to other effects and taxonomic groups. Potential measures for mitigating the detrimental effects of roads include noise‐reduction strategies and changes to roadway lighting and vegetation and traffic flow. Road networks and traffic volumes are projected to increase in many countries around the world. Increasing habitat loss and fragmentation and predicted species distribution shifts due to climate change are likely to compound the overall effects of roads on birds.  相似文献   

5.
As people encroach increasingly on natural areas, one question is how this affects avian biodiversity. The answer to this is partly scale‐dependent. At broad scales, human populations and biodiversity concentrate in the same areas and are positively associated, but at local scales people and biodiversity are negatively associated with biodiversity. We investigated whether there is also a systematic temporal trend in the relationship between bird biodiversity and housing development. We used linear regression to examine associations between forest bird species richness and housing growth in the conterminous United States over 30 years. Our data sources were the North American Breeding Bird Survey and the 2000 decennial U.S. Census. In the 9 largest forested ecoregions, housing density increased continually over time. Across the conterminous United States, the association between bird species richness and housing density was positive for virtually all guilds except ground nesting birds. We found a systematic trajectory of declining bird species richness as housing increased through time. In more recently developed ecoregions, where housing density was still low, the association with bird species richness was neutral or positive. In ecoregions that were developed earlier and where housing density was highest, the association of housing density with bird species richness for most guilds was negative and grew stronger with advancing decades. We propose that in general the relationship between human settlement and biodiversity over time unfolds as a 2‐phase process. The first phase is apparently innocuous; associations are positive due to coincidence of low‐density housing with high biodiversity. The second phase is highly detrimental to biodiversity, and increases in housing density are associated with biodiversity losses. The long‐term effect on biodiversity depends on the final housing density. This general pattern can help unify our understanding of the relationship of human encroachment and biodiversity response. Patrones Sistemáticos Temporales en la Relación entre Desarrollos Urbanos y la Biodiversidad de Aves de Bosque  相似文献   

6.
Fragments as Islands: a Synthesis of Faunal Responses to Habitat Patchiness   总被引:7,自引:0,他引:7  
Abstract:  Scientific interest in the impact of habitat fragmentation on biodiversity is increasing, but our understanding of fragmentation is clouded by a lack of appreciation for fundamental similarities and differences across studies representing a wide range of taxa and landscape types. In an effort to synthesize data describing ecological responses of animals to fragmentation across two classes of independent variables (taxonomic group and landscape), we sampled 148 studies of five major faunal groups from the primary literature and analyzed data on 13 variables extracted from those studies. We focused our analyses on three classes of dependent variables (effects of area and isolation on species richness, z values, and nestedness and species composition). Area ranged over more orders of magnitude than isolation and tended to explain more variation in species richness than isolation. There were few matrix or taxon effects on the patterns we investigated, although we did find that sky islands tended to manifest isolation effects on both species richness and nestedness more frequently than other patch types. Sky islands may offer insight into the future of habitat patches fragmented by contemporary habitat loss, and because they show a stronger effect of isolation than other patch types, we suggest that isolation will play an increasing role in the biology of habitat fragments. We use multiple lines of evidence to suggest that our understanding of the role of isolation on community assembly in fragmented landscapes is inadequate. Finally, our observation that consistent taxonomic differences in community patterns were minimal suggests that conservation actions intended to mitigate the negative effects of extinction may have far-reaching effects across taxonomic groups.  相似文献   

7.
Abstract:  The occurrence of fauna in commercial plantations is often associated with structural complexity. Through a meta-analysis, we tested whether the structural complexity of plantations could enhance bird species assemblages and whether bird assemblages respond differently depending on taxonomic affiliation, body size, and diet. Our analyses included 167 case studies in 31 countries in which bird assemblages in forests and plantations were compared and 42 case studies in 14 countries in which bird assemblages in plantations of different structural complexity were compared. Species richness, but not abundance, was higher in forests than in plantations. Both species richness and abundance were significantly higher in complex than in structurally simple plantations. Taxonomic representation and body size did not differ between forest and plantations, except that there were fewer insectivorous birds in plantations than in forests. In the comparison of simple versus complex plantations, abundance of all taxonomic and dietary groups was higher in complex plantations. Body size did not affect bird species richness or abundance. Independent of the type of plantation, bird richness and abundance were greater in structurally complex plantations. Enhancing the structural complexity of plantations may mitigate their impact and offer habitat for some native species.  相似文献   

8.
Protected area delineation and conservation action are urgently needed on marine islands, but the potential biodiversity benefits of these activities can be difficult to assess due to lack of species diversity information for lesser known taxa. We used linear mixed effects modeling and simple spatial analyses to investigate whether conservation activities based on the diversity of well‐known insular taxa (birds and mammals) are likely to also capture the diversity of lesser known taxa (reptiles, amphibians, vascular land plants, ants, land snails, butterflies, and tenebrionid beetles). We assembled total, threatened, and endemic diversity data for both well‐known and lesser known taxa and combined these with physical island biogeography characteristics for 1190 islands from 109 archipelagos. Among physical island biogeography factors, island area was the best indicator of diversity of both well‐known and little‐known taxa. Among taxonomic factors, total mammal species richness was the best indicator of total diversity of lesser known taxa, and the combination of threatened mammal and threatened bird diversity was the best indicator of lesser known endemic richness. The results of other intertaxon diversity comparisons were highly variable, however. Based on our results, we suggest that protecting islands above a certain minimum threshold area may be the most efficient use of conservation resources. For example, using our island database, if the threshold were set at 10 km2 and the smallest 10% of islands greater than this threshold were protected, 119 islands would be protected. The islands would range in size from 10 to 29 km2 and would include 268 lesser known species endemic to a single island, along with 11 bird and mammal species endemic to a single island. Our results suggest that for islands of equivalent size, prioritization based on total or threatened bird and mammal diversity may also capture opportunities to protect lesser known species endemic to islands. Beneficios de los Taxa Poco Estudiados para la Conservación de la Diversidad de Aves y Mamíferos en Islas  相似文献   

9.
Successful control of tsetse (Glossina spp.)-transmitted trypanosomiasis in the Ghibe Valley, Ethiopia, appears to have accelerated conversion of wooded grassland into cropland. Land conversion, in turn, may have fragmented wildlife habitat. Our objective was to assess the influence of the expansion of agricultural land-use, brought about by tsetse control, on ecological properties by using bird species richness and composition as indicators of environmental impacts. We sampled bird species richness and composition (using Timed-Species counts) and habitat structure (using field sampling and remote sensing) in four land cover/land-use types in areas subjected to tsetse fly control and adjacent areas without control. At the height of the growing season bird species numbers and vegetative complexity were greater in the small-holder, oxen-plowed fields and riparian woodlands than in wooded grasslands or in large-holder, tractor-plowed fields. Species composition was highly dissimilar (40–70% dissimilarity) comparing among land-use types, with many species found only in a single type. This implies that trypanosomiasis control that results in land conversion from wooded grasslands to small-holder farming in this region may have no adverse impacts on bird species numbers but will alter composition. These results also suggest that moderate land-use by humans (e.g., small-holder field mosaics) increases habitat heterogeneity and bird species richness relative to high levels of use (e.g., tractor-plowed fields). Tsetse control may be indirectly maintaining species richness in the valley by encouraging the differential spread of these small-scale, heterogeneous farms in place of large-scale, homogeneous farms. Nevertheless, if the extent of small-holder farms significantly exceeds that of present levels, negative impacts on bird species richness and large shifts in species composition may occur.  相似文献   

10.
We studied the effect of aquatic vegetation on the process of species sorting and community assembly of three functional groups of plankton organisms (phytoplankton, seston-feeding zooplankton, and substrate-dwelling zooplankton) along a primary productivity gradient. We performed an outdoor cattle tank experiment (n = 60) making an orthogonal combination of a primary productivity gradient (four nutrient addition levels: 0, 10, 100, and 1000 microg P/L; N/P ratio: 16) with a vegetation gradient (no macrophytes, artificial macrophytes, and real Elodea nuttallii). We used artificial plants to evaluate the mere effects of plant physical structure independently from other plant effects, such as competition for nutrients or allelopathy. The tanks were inoculated with species-rich mixtures of phytoplankton and zooplankton. Both productivity and macrophytes affected community structure and diversity of the three functional groups. Taxon richness declined with increasing plankton productivity in each functional group according to a nested subset pattern. We found no evidence for unimodal diversity-productivity relationships. The proportional abundance of Daphnia and of colonial Scenedesmus increased strongly with productivity. GLM analyses suggest that the decline in richness of seston feeders was due to competitive exclusion by Daphnia at high productivity. The decline in richness of phytoplankton was probably caused by high Daphnia grazing. However, partial analyses indicate that these explanations do not entirely explain the patterns. Possibly, environmental deterioration associated with high productivity (e.g., high pH) was also responsible for the observed richness decline. Macrophytes had positive effects on the taxon richness of all three functional plankton groups and interacted with the initial productivity gradient in determining their communities. Macrophytes affected the composition and diversity of the three functional groups both by their physical structure and through other mechanisms. Part of the macrophyte effect may be indirect via a reduction of phytoplankton production. Our results also indirectly suggest that the often reported unimodal relationship between primary productivity and diversity in nature may be partially mediated by the tendency of submerged macrophytes to be most abundant at intermediate productivity levels.  相似文献   

11.
Abstract: Studies have documented biodiversity losses due to intensification of coffee management (reduction in canopy richness and complexity). Nevertheless, questions remain regarding relative sensitivity of different taxa, habitat specialists, and functional groups, and whether implications for biodiversity conservation vary across regions. We quantitatively reviewed data from ant, bird, and tree biodiversity studies in coffee agroecosystems to address the following questions: Does species richness decline with intensification or with individual vegetation characteristics? Are there significant losses of species richness in coffee‐management systems compared with forests? Is species loss greater for forest species or for particular functional groups? and Are ants or birds more strongly affected by intensification? Across studies, ant and bird richness declined with management intensification and with changes in vegetation. Species richness of all ants and birds and of forest ant and bird species was lower in most coffee agroecosystems than in forests, but rustic coffee (grown under native forest canopies) had equal or greater ant and bird richness than nearby forests. Sun coffee (grown without canopy trees) sustained the highest species losses, and species loss of forest ant, bird, and tree species increased with management intensity. Losses of ant and bird species were similar, although losses of forest ants were more drastic in rustic coffee. Richness of migratory birds and of birds that forage across vegetation strata was less affected by intensification than richness of resident, canopy, and understory bird species. Rustic farms protected more species than other coffee systems, and loss of species depended greatly on habitat specialization and functional traits. We recommend that forest be protected, rustic coffee be promoted, and intensive coffee farms be restored by augmenting native tree density and richness and allowing growth of epiphytes. We also recommend that future research focus on potential trade‐offs between biodiversity conservation and farmer livelihoods stemming from coffee production.  相似文献   

12.
Avifaunal Use of Wooded Streets in an Urban Landscape   总被引:10,自引:0,他引:10  
Abstract: Birds in urban landscapes primarily occupy parks (  forest fragments), wooded streets ( linear strips connecting fragments), or the urban matrix. I studied the effects of street location in the landscape, vegetation structure, and human disturbance ( pedestrian and automobile load) within wooded streets on bird species richness, temporal persistence, and density of feeding and nesting guilds, and on the probability of street occupation by individual species in Madrid during two consecutive breeding seasons. The number of species recorded increased from the least suitable (control streets without vegetation) to the most suitable habitats (urban parks), with wooded streets being intermediate landscape elements. Fourteen species, belonging to four of the eight guilds identified in this system, were recorded in wooded streets in both years. Streets that connected urban parks, along with vegetation structure, positively influenced the number of species within wooded streets, species persistence, guild density, and probability of occupation of streets by individual species. Human disturbance exerted a negative influence on the same variables. Wooded streets potentially could function as corridors, allowing certain species—particularly those feeding on the ground and breeding in trees or tree holes—to fare well by supporting alternative habitat for feeding and nesting. Local improvements in corridor quality, through increased vegetation complexity and reduced human disturbance, could exert a positive influence on the regional connectivity of the system. Because of differential use of corridors by species with different habitat requirements, however, corridor implementation should also take into account the target species of management.  相似文献   

13.
Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant–myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant–myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant–myrmecophyte networks differ among dam‐induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant–myrmecophyte networks on islands. Ant–myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant–plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant–myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal–plant mutualistic networks. Efectos de la Fragmentación del Paisaje Inducida por Presas sobre Redes Mutualistas Hormiga‐Planta Amazónicas  相似文献   

14.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   

15.
Measurements of primary productivity and its heterogeneity based on satellite images can provide useful estimates of species richness and distribution patterns. However, species richness at a given site may depend not only on local habitat quality and productivity but also on the characteristics of the surrounding landscape. In this study we investigated whether the predictions of species richness of plant families in northern boreal landscape in Finland can be improved by incorporating greenness information from the surrounding landscape, as derived from remotely sensed data (mean, maximum, standard deviation and range values of NDVI derived from Landsat ETM), into local greenness models. Using plant species richness data of 28 plant families from 440 grid cells of 25 ha in size, generalized additive models (GAMs) were fitted into three different sets of explanatory variables: (1) local greenness only, (2) landscape greenness only, and (3) combined local and landscape greenness. The derived richness–greenness relationships were mainly unimodal or positively increasing but varied between different plant families, and depended also on whether greenness was measured as mean or maximum greenness. Incorporation of landscape level greenness variables improved significantly both the explanatory power and cross-validation statistics of the models including only local greenness variables. Landscape greenness information derived from remote sensing data integrated with local information has thus the potentiality to improve predictive assessments of species richness over extensive and inaccessible areas, especially in high-latitude landscapes. Overall, the significant relationship between plants and surrounding landscape quality detected here suggests that landscape factors should be considered in preserving species richness of boreal environments, as well as in conservation planning for biodiversity in other environments.  相似文献   

16.
A unified model of avian species richness on islands and continents   总被引:2,自引:0,他引:2  
Kalmar A  Currie DJ 《Ecology》2007,88(5):1309-1321
How many species in a given taxon should be found in a delimited area in a specified place in the world? Some recent literature suggests that the answer to this question depends strongly on the geographical, evolutionary, and ecological context. For example, current theory suggests that species accumulate as a function of area differently on continents and islands. Species richness-climate relationships have been examined separately on continents and on islands. This study tests the hypotheses that (1) the functional relationship between richness and climate is the same on continents and islands; (2) the species-area slope depends on distance-based isolation; (3) species-area relationships differ among land bridge islands, oceanic islands, and continents; (4) richness differs among biogeographic regions independently of climate and isolation. We related bird species numbers in a worldwide sample of 240 continental parcels and 346 islands to several environmental variables. We found that breeding bird richness varies similarly on islands and on continents as a function of mean annual temperature, an area x precipitation interaction, and the distance separating insular samples from the nearest continent (R2 = 0.86). Most studies to date have postulated that the slope of the species-area relationship depends upon isolation. In contrast, we found no such interaction. A richness-environment relationship derived using Old World sites accurately predicts patterns of richness in the New World and vice versa (R2 = 0.85). Our results suggest that most of the global variation in richness is not strongly context-specific; rather, it reflects a small number of general environmental constraints operating on both continents and islands.  相似文献   

17.
Meynard CN  Quinn JF 《Ecology》2008,89(4):981-990
Spatial structure in metacommunities and their relationships to environmental gradients have been linked to opposing theories of community assembly. In particular, while the species sorting hypothesis predicts strong environmental influences, the neutral theory, the mass effect, and the patch dynamics frameworks all predict differing degrees of spatial structure resulting from dispersal and competition limitations. Here we study the relative influence of environmental gradients and spatial structure in bird assemblages of the Chilean temperate forest. We carried out bird and vegetation surveys in South American temperate forests at 147 points located in nine different protected areas in central Chile, and collected meteorological and productivity data for these localities. Species composition dissimilarities between sites were calculated, as well as three indices of bird local diversity: observed species richness, Chao estimate of richness, and Shannon diversity. A stepwise multiple regression and partial regression analyses were used to select a small number of environmental factors that predicted bird species diversity. Although diversity indices were spatially autocorrelated, environmental factors were sufficient to account for this autocorrelation. Moreover, community dissimilarities were not significantly related to distance between sites. We then tested a multivariate hypothesis about climate, vegetation, and avian diversity interactions using a structural equation modeling (SEM) approach. The SEM showed that climate and area of fragments have important indirect effects on avian diversity, mediated through changes in vegetation structure. Given the scale of this study, the metacommunity framework provides useful insights into the mechanisms driving bird assemblages in this region. Taken together, the weak spatial structure of community composition and diversity, as well as the strong environmental effects on bird diversity, support the interpretation that species sorting has a predominant role in structuring avian assemblages in the region.  相似文献   

18.
Threats to Avifauna on Oceanic Islands   总被引:1,自引:0,他引:1  
Abstract:  Results of the study by Blackburn et al. (2004 a ) of avifauna on oceanic islands suggest that distance from the mainland and time since European colonization have major influences on species extinctions and that island area is a significant but secondary contributing factor. After augmenting the data of the study on geographical properties for some of the islands they examined, we used a causal analysis approach with structural equation modeling to reexamine their conclusions. In our model geographical properties of islands, such as island area and isolation, were considered constraints on biological factors, such as the number of introduced mammalian predators and existing number of avifauna, that can directly or indirectly influence extinction. Of the variables we tested, island area had the greatest total influence on the threat of extinction due to its direct and indirect effects on the size of island avifauna. Larger islands had both a greater number of threatened bird species and more avifauna, increasing the number of species that could become threatened with extinction. Island isolation also had a significant, positive, and direct effect on threats to island avifauna because islands farther from the mainland had fewer current extant avifauna. Time since European colonization had a significant negative, but relatively weaker, influence on threats compared with the traditional biogeographic factors of island area and distance to the mainland. We also tested the hypothesis that the amount of threat is proportionally lower on islands that have had more extinctions (i.e., there is a "filter effect"). Because the proportion of bird extinctions potentially explained only 2.3% of the variation in the proportion of threatened species on islands, our results did not support this hypothesis. Causal modeling provided a powerful tool for examining threat of extinction patterns of known and hypothesized pathways of influence.  相似文献   

19.
Abstract: Ecological traps and other cases of apparently maladaptive habitat selection cast doubt on the relevance of density as an indicator of habitat quality. Nevertheless, the prevalence of these phenomena remains poorly known, and density may still reflect habitat quality in most systems. We examined the relationship between density and two other parameters of habitat quality in an open‐nesting passerine species: the Ovenbird (Seiurus aurocapilla). We hypothesized that the average individual bird makes a good decision when selecting its breeding territory and that territory spacing reflects site productivity or predation risk. Therefore, we predicted that density would be positively correlated with productivity (number of young fledged per unit area). Because individual performance is sensitive to events partly determined by chance, such as nest predation, we further predicted density would be weakly correlated or uncorrelated with the proportion of territories fledging young. We collected data in 23 study sites (25 ha each), 16 of which were located in untreated mature northern hardwood forest and seven in stands partially harvested (treated) 1–7 years prior to the survey. Density explained most of the variability in productivity (R2= 0.73), and there was no apparent decoupling between density and productivity in treated plots. In contrast, there was no significant relationship between density and the proportion of territories fledging ≥1 young over the entire breeding season. These results suggest that density reflects habitat quality at the plot scale in this study system. To our knowledge this is one of the few studies testing the value of territory density as an indicator of habitat quality in an open‐nesting bird species on the basis of a relatively large number of sizeable study plots.  相似文献   

20.
Abstract: In large parts of northern Mexico native plant communities are being converted to non‐native buffelgrass (Pennisetum ciliare) pastures, and this conversion could fundamentally alter primary productivity and species richness. In Sonora, Mexico land conversion is occurring at a regional scale along a rainfall‐driven gradient of primary productivity, across which native plant communities transition from desert scrub to thorn scrub. We used a paired sampling design to compare a satellite‐derived index of primary productivity, richness of perennial plant species, and canopy‐height profiles of native plant communities with buffelgrass pastures. We sampled species richness across a gradient of primary productivity in desert scrub and thorn scrub vegetation to examine the influence of site productivity on the outcomes of land conversion. We also examined the influence of pasture age on species richness of perennial plants. Index values of primary productivity were lower in buffelgrass pastures than in native vegetation, which suggests a reduction in primary productivity. Land conversion reduced species richness by approximately 50% at local and regional scales, reduced tree and shrub cover by 78%, and reduced canopy height. Land conversion disproportionately reduced shrub species richness, which reflects the common practice among Sonoran ranchers of conserving certain tree and cactus species. Site productivity did not affect the outcomes of land conversion. The age of a buffelgrass pasture was unrelated to species richness within the pasture, which suggests that passive recovery of species richness to preconversion levels is unlikely. Our findings demonstrate that land conversion can result in large losses of plant species richness at local and regional scales and in substantial changes to primary productivity and vegetation structure, which casts doubt on the feasibility of restoring native plant communities without active intervention on the part of land managers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号