首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Passive samplers are typically calibrated under constant flow and concentration conditions. This study assessed whether concentration and/or flow pulses could be integrated using a phosphate passive sampler (P-sampler). Assessment involved three 21-day experiments featuring a pulse in flow rate, a pulse of filterable reactive phosphate (FRP) concentration and a simultaneous concentration and flow pulse. FRP concentrations were also determined by parallel grab sampling and the P-sampler calibrated with passive flow monitors (PFMs) and direct measurement of flow rates. The mass lost from the PFM over the deployment periods predicted water velocity to within 5.1, 0.48 and 7.1% when exposed to a flow rate pulse (7.5-50 cm s−1), concentration pulse (5-100 μg P L−1), or both simultaneously. For the P-sampler, good agreement was observed between the grab and passive measurements of FRP concentration when exposed to a pulse in flow (6% overestimation) or concentration (2% underestimation).  相似文献   

2.
Performance reference compound (PRC) derived sampling rates were determined for polyurethane foam (PUF) passive air samplers in both sub-tropical and temperate locations across Australia. These estimates were on average a factor of 2.7 times higher in summer than winter. The known effects of wind speed and temperature on mass transfer coefficients could not account for this observation. Sampling rates are often derived using ambient temperatures, not the actual temperatures within deployment chambers. If deployment chamber temperatures are in fact higher than ambient temperatures, estimated sampler-air partition coefficients would be greater than actual partition coefficients resulting in an overestimation of PRC derived sampling rates. Sampling rates determined under measured ambient temperatures and estimated deployment chamber temperatures in summer ranged from 7.1 to 10 m3 day−1 and 2.2-6.8 m3 day−1 respectively. These results suggest that potential differences between ambient and deployment chamber temperatures should be considered when deriving PRC-based sampling rates.  相似文献   

3.
Passive samplers with polyurethane disks (PUF) were applied in the determination of the concentration of polycyclic aromatic hydrocarbons (PAHs) in ambient air in six residential areas in the Philippines during four simultaneous sampling periods. The uptake profiles of PAHs were determined at one site during one sampling period. Most of the PAHs that were detected in air at concentrations that were significantly higher than their analytical detection limits exhibited a linear uptake trend on the PUF disk. The linear uptake profiles of some high molecular weight (HMW) PAHs were not established and this is attributed to the low concentration of the compounds in air in the gaseous phase. The retention concentrations of phenanthrene-d-10 were determined after depuration in four sampling sites during two sampling periods. The sampling rate for phenanthrene-d-10 was calculated at the linear phase of the uptake using the kA derived from depuration experiments and the relationship of kA and sampling rate which was established in a previous passive sampling study. The average sampling rate obtained for phenanthrene d-10 (2.94±0.69 m3 d−1) was applied for derivation of the concentrations of the PAHs in the field samples.The passive sampler with PUF disk and short integration time of 42–56 days is applicable for the derivation of the concentrations of PAHs in ambient air in the Philippines. The concentrations of the organic pollutants derived from the passive sampler showed variability for the six residential areas; reflecting the influence of possible sources of emission of the pollutants at the sites at the different sampling periods. The weather conditions, including the occurrence of a tropical cyclone, increased rainfall and high-relative humidity during the rainy season, had an influence on the concentrations of PAHs derived by the passive sampler.  相似文献   

4.
During some past two decades there has been a growing interest among air pollution-vegetation effects-scientists to use passive sampling systems for quantifying ambient, gaseous air pollutant concentrations, particularly in remote and wilderness areas. On the positive side, excluding the laboratory analysis costs, passive samplers are inexpensive, easy to use and do not require electricity to operate. Therefore, they are very attractive for use in regional-scale air quality assessments. Passive samplers allow the quantification of cumulative air pollutant exposures, as total or average pollutant concentrations over a sampling duration. Such systems function either by chemical absorption or by physical adsorption of the gaseous pollutant of interest onto the sampling medium. Selection of a passive sampler must be based on its known or tested characteristics of specificity and linearity of response to the chemical constituent being collected. In addition, the effects of wind velocity, radiation, temperature and relative humidity must be addressed in the context of absorbent/adsorbent performance and sampling rate. Because of all these considerations, passive samplers may provide under- or overestimations of the cumulative exposures, compared to the corresponding data from co-located continuous monitors or active samplers, although such statistical variance can be minimized by taking necessary precautions. On the negative side, cumulative exposures cannot identify short-term (相似文献   

5.
XAD-2® passive samplers (PAS) have been exposed simultaneously for 14 days on two sites, one rural and one urban, situated in Alsace (East of France) during intensive pesticides application in agriculture (between March and September). PAS have been extracted and analyzed for current-used pesticides and lindane with an analytical method coupling accelerated solvent extraction (ASE), solid-phase microextraction (SPME) and GC/MS/MS. Results show the detection of pesticides is linked to the period of application and spatial and temporal variabilities can be observed with these PAS during the selected sampling period. The spatial and temporal variability is comparable to the one previously observed by comparing data obtained with PAS with data from Hi.-Vol. samplers in an urban area. Sampling rates were calculated for some pesticides and values are comparable to the data already available in the literature. From these sampling rates, concentrations in ng m?3 of pesticides in PAS have been calculated and are in the same order of magnitude as those obtained with Hi.Vol. sampling during the same period of time.  相似文献   

6.
O'Brien D  Bartkow M  Mueller JF 《Chemosphere》2011,83(9):1290-1295
The use of the adsorbent styrenedivinylbenzene-reverse phase sulfonated (SDB-RPD) Empore disk in a chemcatcher type passive sampler is routinely applied in Australia when monitoring herbicides in aquatic environments. One key challenge in the use of passive samplers is mitigating the potentially confounding effects of varying flow conditions on chemical uptake by the passive sampler. Performance reference compounds (PRCs) may be applied to correct sampling rates (Rs) for site specific changed in flow and temperature however evidence suggests the use of PRCs is unreliable when applied to adsorbent passive samplers. The use of the passive flow monitor (PFM) has been introduced for the assessment of site-specific changes in water flow. In the presented study we have demonstrated that the Rs at which both atrazine and prometryn are accumulated within the SDB-RPD-Empore disk is dependent on the flow conditions. Further, the calibration of the measured Rs for chemical uptake by the SDB-RPD-Empore disk to the mass lost from the PFM has shown that the PFM provides an accurate measure of Rs for flow velocities from 0 to 16 cm s−1. Notably, for flow rates >16 cm s−1, a non linear increase in the Rs of both herbicides was observed which indicates that the key resistance to uptake into the SDB-RPD Empore disk is associated with the diffusion through the overlying diffusion limiting membrane. Overall the greatest uncertainty remains at very low flow conditions, which are unlikely to often occur in surface waters. Validation of the PFM use has also been undertaken in a limited field study.  相似文献   

7.
A novel passive sampling technique using a funnel–adsorber–cartridge device was adopted and validated in the field during a long-term monitoring program on the atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in three rural regions of southern Germany. Apart from seasonal variations, fairly stable annual deposition rates around 200 μg m−2 yr−1 for the sum of PAHs were obtained. The time-integrating passive samplers showed that spatial variability due to topography was negligible and differences between open-field and forest deposition were within a factor of 2. Based on correlations with ambient temperature, advection was identified as the most important factor that controls the atmospheric deposition of PAHs. Gas-adsorption contributes significantly to the deposition of the semivolatile compounds in forests, but particle deposition seems to be the major pathway for all PAHs.  相似文献   

8.
Volatile organics compounds (VOCs) are ubiquitous in the air we breathe. The use of passive samplers to measure these concentrations can be an effective technique. When exposed for long durations, a passive sampler may be a good tool for investigating chronic exposures to chemicals in the environment. A passive sampler that was designed for occupational exposures can be used as such a tool. Laboratory validation under as many conditions as possible needs to be accomplished so as to characterize the sampler with known parameters. This paper describes the methods and results of an investigation into the validity of using a passive monitor to sample VOCs for a three-week period. Two concentration levels, two relative humidities, and five VOCs were studied. Results indicate that the samplers work best under conditions of high concentration with low relative humidity and low concentration with high relative humidity. For the passive sampler, excluding chloroform, percent deviations from the predicted values varied between -41 and +22 percent; while the values between the passive and the active samplers varied between -27 and +24 percent. Benzene, heptane, and perchloroethylene were sampled with equal precision and accuracy.  相似文献   

9.
Studies conducted in Saskatchewan and elsewhere have demonstrated the atmospheric transport of agricultural pesticides and other organic contaminants and their deposition into aquatic ecosystems. To date these studies have focused on ambient concentrations in the atmosphere and in wet precipitation. To measure the dry deposition of organic chemicals, a new sampler was designed which uses a moving sheet of water to passively trap dry particles and gasses. The moving sheet of water drains into a reservoir and, during recirculation through the sampler, is passed through an XAD-2 resin column which adsorbs the trapped organic contaminants. All surfaces which contact the process water are stainless steel or Teflon. Chemicals collected can be related to airborne materials depositing into aquatic ecosystems. The sampler has received a United States patent (number 5,413,003 – 9 May 1996) with the Canadian patent pending.XAD-2 resin adsorption efficiencies for 10 or 50 μg fortifications of ten pesticides ranged from 76% for atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine) to 110% for triallate [S-(2,3,3-trichloro-2-phenyl)bis(1-methylethyl)carbamothioate], dicamba (2-methoxy-3,6-dichlorobenzoic acid) and toxaphene (chlorinated camphene mixture). Field testing using duplicate samplers showed good reproducibility and amounts trapped were consistent with those from high volume and bulk pan samplers located on the same site. Average atmospheric dry deposition rates of three chemicals, collected for 5 weeks in May and June, were: dicamba, 69 ng m-2 da-1; 2,4-D (2,4-dichlorophenoxyacetic acid), 276 ng m-2 da-1: and, γ-HCH (γ-1, 2, 3, 4, 5, 6-hexachlorocyclohexane), 327 ng m-2 da-1.  相似文献   

10.
Membrane-enclosed copolymer (MECOPs) samplers containing crystalline copolymers of ethylvinylbenzene-divinylbenzene in polyethylene membranes were used to assess the influence of a steel complex on the level and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in ambient air. MECOPs were deployed at six sites in Pohang, Korea for 37 days (August 9, 2005–September 14, 2005). Fluorene, phenanthrene, anthracene, and fluoranthene were dominant PAHs with the highest contribution of phenanthrene (59%) to the total amount of vapor-phase PAHs. The spatial distribution of total PAHs in the vapor phase ranging from 76 to 1077 ng MECOP−1 and air dispersion modeling suggested that the steel complex was the major PAH source in Pohang. It was revealed that the major wind directions rather than the distance from the steel complex were a significant factor affecting the levels of PAHs at the sampling sites. Finally, we tried to convert MECOP concentrations (ng MECOP−1) to air concentrations (ng m−3) with the modified sampling rates (m3 day−1). This study demonstrates again that passive air samplers are useful tools for spatially resolved and time-integrated monitoring of semivolatile organic compounds (SOCs) in ambient air.  相似文献   

11.
Potential exposures from ground-level pyrotechnics were assessed by air monitoring and developing emission factors. Total particulate matter, copper and SO2 exposures exceeded occupational health guidelines at two outdoor performances using consumer pyrotechnics. Al, Ba, B, Bi, Mg, Sr, Zn, and aldehyde levels were elevated, but did not pose a health hazard based on occupational standards. Emission factors for total particulate matter, metals, inorganic ions, aldehydes, and polyaromatic hydrocarbons (PAHs) were determined for seven ground-supported pyrotechnics through air sampling in an airtight room after combustion. Particle generation ranged from 5 to 13% of the combusted mass. Emission factors (g Kg?1) for metals common to pyrotechnics were also high: K, 23–45; Mg, 1–7; Cu, 0.05–7; and Ba, 0.03–6. Pb emission rates of 1.6 and 2.7% of the combusted mass for two devices were noteworthy. A high correlation (r2 ≥ 0.89) between metal concentrations in pyrotechnic compositions and emission factors were noted for Pb, Cr, Mg, Sb, and Bi, whereas low correlations (r2 ≤ 0.1) were observed for Ba, Sr, Fe, and Zn. This may be due to the inherent heterogeneity of multi-effect pyrotechnics. The generation of inorganic nitrogen in both the particulate (NO2?, NO3?) and gaseous (NO, NO2) forms varied widely (<0.1–1000 mg Kg?1). Aldehyde emission factors varied by two orders of magnitude even though the carbon source was carbohydrates and charcoal for all devices: formaldehyde (<7.0–82 mg Kg?1), acetaldehyde (43–210 mg Kg?1), and acrolein (1.9–12 mg Kg?1). Formation of lower molecular weight PAHs such as naphthalene and acenaphthylene were favored, with their emission factors being comparable to that from the combustion of household refuse and agricultural debris. Ba, Sr, Cu, and Pb had emission factors that could produce exposures exceeding occupational exposure guidelines. Sb and unalloyed Mg, which are banned from consumer fireworks in the US, were present in significant amounts.  相似文献   

12.

Purpose  

Polar chemical integrative samplers (POCIS) were examined for their sampling efficiency of 12 pesticides and one metabolite commonly detected in surface waters. Laboratory-based calibration experiments of POCISs were conducted. The determined passive sampling rates were applied for the monitoring of pesticides levels in Lake Amvrakia, Western Greece. Spot sampling was also performed for comparison purposes.  相似文献   

13.
Effects of fullerene-spiked sediment on a benthic organism, Lumbriculus variegatus (Oligochaeta), were investigated. Survival, growth, reproduction, and feeding rates were measured to assess possible adverse effects of fullerene agglomerates produced by water stirring and then spiked to a natural sediment. L. variegatus were exposed to 10 and 50 mg fullerenes/kg sediment dry mass for 28 d. These concentrations did not impact worm survival or reproduction compared to the control. Feeding activities were slightly decreased for both concentrations indicating fullerenes’ disruptive effect on feeding. Depuration efficiency decreased in the high concentration only. Electron and light microscopy and extraction of the worm fecal pellets revealed fullerene agglomerates in the gut tract but not absorption into gut epithelial cells. Micrographs also indicated that 16% of the epidermal cuticle fibers of the worms were not present in the 50 mg/kg exposures, which may make worms susceptible to other contaminants.  相似文献   

14.
Abstract

Volatile organlcs compounds (VOCs) are ubiquitous in the air we breathe. The use of passive samplers to measure these concentrations can be an effective technique. When exposed for long durations, a passive sampler may be a good tool for investigating chronic exposures to chemicals in the environment. A passive sampler that was designed for occupational exposures can be used as such a tool. Laboratory validation under as many conditions as possible needs to be accomplished so as to characterize the sampler with known parameters. This paper describes the methods and results of an investigation into the validity of using a passive monitor to sample VOCs for a three-week period. Two concentration levels, two relative humidities, and five VOCs were studied. Results indicate that the samplers work best under conditions of high concentration with low relative humidity and low concentration with high relative humidity. For the passive sampler, excluding chloroform, percent deviations from the predicted values varied between ?41 and +22 percent; while the values between the passive and the active samplers varied between ?27 and +24 percent. Benzene, heptane, and perchloroethylene were sampled with equal precision and accuracy.  相似文献   

15.
To evaluate the spatial variability of ozone concentrations, two studies were undertaken in the montane environment of Trentino region, northern Italy, in 2007. In the first study, a 225 km2 area was considered. Here, a randomized design was used to evaluate the variability of ozone concentration at 1 and 225 km2 scale. Measurements were carried out by passive samplers between May and June 2007. In a second study, the whole 6207 km2 area of Trentino was considered. The area is covered by five grid cells of the European Monitoring and Evaluation Programme (EMEP). A systematic 15 × 15 km grid was used to allocate 15 passive samplers over the entire province, resulting into 1–4 samplers for each of the 5 EMEP grid cells (2500 km2 each) overlapping the study area. Measurements were carried out between June and September 2007. Accuracy of passive samplers was checked by direct comparison with conventional ozone analysers. Significant differences (P = 0.034) were found in ozone concentration among 1 × 1 km quadrates within the 225 km2 study area, while variability within the 1 × 1 km grid cells (coefficient of variation, CV′ = 0.12) slightly exceed the measurement error (CV′ = 0.08). At larger scales (225, 2500 and 6207 km2), ozone concentration shows much higher variability (CV′ from 0.18 to 0.28, with peak values at 0.40). Reported differences lead to very different AOT40 estimates even within the same EMEP grid cell. These findings suggest that 1 × 1 km resolution seems appropriate for ozone concentration modelling. On the other hand, significant sub-grid variation may exist at the resolution adopted by the EMEP model. Coupled with the likely variability of other important meteorological, soil and vegetation variables, our findings suggest that ozone risk assessment for vegetation based on large-scale modelled AOT40 and flux needs to be considered with great caution. The evidence reported in this paper asks for more detailed national-scale modelling, and the development of methods to incorporate local scale variations into large-scale models.  相似文献   

16.
To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07 m3 g?1 d?1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n = 3) of anthracene and p,p′-DDE at 0.96 and 1.57 m3 g?1 d?1 with relative standard deviations of 8.4% and 8.6% respectively.  相似文献   

17.
The polyurethane foam (PUF) disk-based passive air samplers (PAS), mounted inside two aluminium bowls to buffer the air flow to the disk and to shield it from precipitation and sunlight, were used for the collection of atmospheric SVOCs in Singapore during April 2008–June 2008. Data obtained from PAS measurements are compared to those from active high-volume air sampling (AAS). Single factor ANOVA tests show that there were no significant differences in chemical distribution profiles between actively and passively collected samples (PAHs, F = 3.38 × 10?8 < Fcritical = 4.17 with p > 0.05; OCPs, F = 2.71 × 10?8 < Fcritical = 4.75 with p > 0.05). The average air-side mass transfer coefficient (kA) for PAS, determined from the loss of depuration compounds such as 13C6 – HCB (1000 ng), 13C12 – 4,4′ DDT (1000 ng) and 13C12 – PCB 101 (1000 ng)spiked on the disks prior to deployment, was 0.12 ± 0.04 m s?1. These values are comparable to those reported previously in the literature. The average sampling rate was 3.78 ± 1.83 m3 d?1 for the 365 cm2 PUF disk. Throughout the entire sampling period (~68 d), most of the PAHs and all OCPs exhibited a linear uptake trend on PAS, while naphthalene, acenaphthylene, acenaphthene and fluorene reached the curvilinear phase after the first ~30 d exposure. Theoretically estimated times to equilibrium (teq) ranged from around one month for Acy to hundreds of years for DB(ah)A. Sampling rates, based on the time integrated active sampling-derived concentrations and masses collected by PUF disks during the linear uptake phase, were determined for all target compounds with the average values of 2.50 m3 d?1 and 3.43 m3 d?1 for PAHs and OCPs, respectively. More variations were observed as compared to those from the depuration study. These variation were most likely due to the difference of physicochemical properties of individual species. Lastly, multiple linear regression models were developed to estimate the log-transformed gaseous concentration of an individual compound in air based on the mass collection rate of the gaseous SVOCs measured using the PAS and the molecular weight (MW) of the particular compound for both PAHs and OCPs, respectively.  相似文献   

18.

Background, aim, and scope  

Fluorotelomer alcohols (FTOH) are widely used substances that were detected even in remote regions of the world. For the determination of FTOH in the atmosphere, appropriate sampling techniques are needed. In this study, triolein-filled low-density polyethylene tubes were used as semipermeable membrane devices (SPMD) and tested for their suitability as passive air samplers for FTOH.  相似文献   

19.

Introduction

This study presents the performance evaluation of a tailor-made passive sampler developed for the monitoring of tropospheric ozone.

Methods

The performance of the passive sampler was tested in the field conditions in terms of accuracy, precision, blank values, detection limit, effects of some parameters such as sampling site characteristics and sampling period on the field blanks, self-consistency, experimental and theoretical uptake rates, shelf life and comparison with commercial passive samplers.

Results

There was an agreement (R 2?=?0.84) between the responses of passive sampler and the continuous automatic analyser. The accuracy of the sampler, expressed as percent relative error, was obtained lower than 15%. Method precision in terms of coefficient of variance for three simultaneously applied passive samplers was 12%. Sampler detection limit was 2.42???g?m?3 for an exposure period of 1?week, and the sampler can be stored safely for a period of up to 8?weeks before exposure. Satisfactory self-consistency results showed that extended periods gave the same integrated response as a series of short-term samplers run side by side. The uptake rate of ozone was found to be 10.21?mL?min?1 in a very good agreement with the theoretical uptake rate (10.32?mL?min?1). The results of the comparison study conducted against a commercially available diffusion tube (Gradko diffusion tube) showed a good linear relationship (R 2?=?0.93) between two passive samplers.

Conclusions

The sampler seems suitable to be used in large-scale measurements of ozone where no data are available or the number of existing automated monitors is not sufficient.  相似文献   

20.
Passive air samplers (PAS) can be used to monitor semi-volatile organic compounds in the atmosphere. Polyurethane foam (PUF) disks are a popular sampling medium because they have a high retention capacity for such compounds. This paper reports a highly time-resolved uptake study, to derive uptake rate data under field conditions, and investigate the effects of using different foam densities on the uptake rate. PUF disks were deployed alongside an active sampler, for periods of up to 12 weeks. The uptake rates were measured for a range of gas- and particle-bound persistent organic pollutants (polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs)), of different properties, to explore whether gas–particle partitioning affected uptake rate. Uptake rates for two different densities of foam (0.021 and 0.035 g cm?3) were not statistically significantly different from each other. Uptake rates of light PCBs averaged ~6.5 m3 day?1, somewhat higher than in previous studies; higher wind speeds and lower temperatures in this study are the likely reason for this difference. The study showed: i) the uptake rate of the compound with lowest KOA considered in this study (PCB-28/31) declined in the later weeks, indicating an approach to equilibrium; ii) uptake rates of lighter BDEs and heavier PCBs (compounds of intermediate KOA in this study) remain similar throughout the study period, indicating that they are not approaching equilibrium during the 12-week-study; iii) uptake rates were typically: ~8 m3 day?1 for PCB-52; ~9.5 m3 day?1 for PCB-95; ~11 m3 day?1 for BDE-28 and ~2 m3 day?1 BDE-99. The latter compound has an important particle-bound component and this lowers the sampling rate compared to predicted uptake rates for compounds which are in the gas phase only. It is shown that knowledge of gas–particle partitioning is needed to correct for this effect, and to improve predicted uptake rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号