首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
由于挥发性有机物(VOCs)是O3生成的关键前体物,因此了解VOCs的污染特征以及主要来源对控制O3污染具有重要的意义.本研究于2019年9~10月在深圳市开展了在线VOCs观测,共计监测104个物种.观测期间,臭氧超标率达17.8%.TVOCs总浓度为38.9×10-9,污染日浓度明显高于非污染日.从大类物种来看,浓度从高到低依次为烷烃>含氧有机物(OVOCs)>卤代烃>芳香烃>烯烃>乙炔>乙腈,臭氧生成潜势(OFP)中芳香烃、OVOCs以及烯烃贡献较大.由PMF源解析模型分析结果可知,VOCs主要来源包括生物质燃烧、汽油挥发、机动车尾气、工业过程以及溶剂使用等,而其中对OFP贡献较大的排放源为溶剂使用(45.8%)、机动车尾气(27.3%).臭氧污染日发生时,清晨低风速可能导致了机动车尾气与汽油挥发源在交通早高峰快速积累,而当日高温亦会加快汽油源与溶剂源组分挥发并促进光化学反应.  相似文献   

2.
2021年3—8月,采用热脱附气相色谱质谱法对天津工业区环境空气中109种挥发性有机物(VOCs)进行离线监测,研究了VOCs组成特征、臭氧生成潜势(OFP)及来源,并对工业源进行精细化分析。结果表明:观测期间VOCs浓度为(46.6±19.7)~(136.8±55.7)μg/m3,对VOCs浓度贡献较高的物种是烷烃、卤代烃、含氧挥发性有机物(OVOCs),烷烃、芳香烃浓度呈中午低、早晚高的日变化趋势,OVOCs反之;OFP贡献占比较大的物种有烷烃、芳香烃、烯烃和OVOCs,烷烃的OFP贡献占比主要受其浓度占比影响,夏季芳香烃、烯烃的OFP贡献占比明显升高,臭氧(O3)治理应加强二者的排放管控。来源解析显示,春夏季VOCs的主要来源为工业源、溶剂使用源、柴油车尾气排放源、油气挥发源和天然源。工业源精细化分析表明,芳香烃浓度与焦炭、纯碱产量,OVOCs浓度与天然气、乙烯、农用氮磷钾化肥产量,卤代烃浓度与天然气、汽车、农用氮磷钾化肥、纯碱产量,烯烃浓度与发电设备产量均呈正相关,初步判断,本地区环境空气中的芳香烃、OVOCs、卤代烃、烯烃可能来自于以上细分工业企业。  相似文献   

3.
2019年在珠三角典型产业重镇佛山市狮山镇在线监测大气挥发性有机化合物(VOCs),并开展大气VOCs污染特征、臭氧生成潜势(OFP)及来源贡献分析.观测期间共测得56种VOCs物种,总挥发性有机物(TVOCs)体积浓度为(39.64±30.46)×10-9,主要组成为烷烃(56.5%)和芳香烃(30.1%).大气VOCs在冬季和春季浓度较高.VOCs各组分呈“U”型日变化特征,污染时段的日变化幅度明显大于非污染时段.相对增量反应活性(RIR)结果表明研究区域的O3生成处于VOCs控制区.2019年VOCs的OFP为107.40×10-9,其中芳香烃对总OFP贡献最大(54.6%).OFP浓度最高的10种VOCs占总OFP的80.3%,占TVOCs体积浓度的59.9%,高反应活性的VOCs物种在研究区域具有较高的大气浓度,应重点控制.正交矩阵因子分析模型(PMF)来源解析结果表明,溶剂使用源(42.4%)和机动车排放源(25.8%)是研究区域2019年大气VOCs的主要来源,其次为工业过程源(14.6%)、汽油挥发(7.9%)和天然源(1.7%),控制上述源的VOCs排放是缓解该地区臭氧污染的有效策略.  相似文献   

4.
2020年8月底至9月初,重庆市主城区发生了持续时间近2周的O3污染过程.期间,在主城区3个观测站点利用苏玛罐和DNPH采样柱采集的环境空气VOCs样品,研究了O3污染期间VOCs组分特征、光化学反应活性及来源解析.结果表明,观测期间重庆市主城区TVOCs平均体积分数为45.08×10-9,各组分体积分数排序依次为OVOCs、烷烃、卤代烃、烯烃、芳香烃和炔烃.体积分数较高的VOCs物种是甲醛、乙烯和丙酮,三者之和占比TVOCs超过30%.OVOCs和烯烃对· OH消耗速率(Li·OH)和臭氧生成潜势(OFP)均具有较大的贡献,是生成O3的关键VOCs组分;其中,OVOCs组分中主要的活性物种为甲醛、乙醛和丙烯醛,烯烃组分中主要的活性物种为异戊二烯、乙烯和正丁烯.VOCs中二甲苯与乙苯的比值较低,并且两者呈现显著的相关性,表明主城区大气中VOCs气团老化程度高,同时还受到其他区域远距离传输的影响.PMF受体模型解析结果显示,主要有5种VOCs来源,依次为二次生成源(27.67%)、机动车尾气源(26.56%)、工业排放源(17.86%)、植物源(14.51%)和化石燃料燃烧源(13.4%).  相似文献   

5.
选取庞泉沟、神农架、武夷山和长岛4个代表性大气背景站,使用SUMMA罐采样及GC-FID/MS方法分析了4个背景站夏季环境空气中57种挥发性有机污染物浓度水平、物种组成以及日变化特征,并利用PMF模型对背景站VOCs进行来源解析和臭氧生成潜势(OFP)分析.结果表明,采样期间庞泉沟、神农架、武夷山和长岛的VOCs平均浓度分别为(23.06±8.14)×10-9,(8.25±4.27)×10-9,(7.95±11.31)×10-9和(11.98±8.80)×10-9.除庞泉沟外,背景点烷烃、芳香烃、烯烃和炔烃浓度均明显低于城市地区.背景点烷烃、芳香烃、烯烃占比与城市地区差异不显著,但背景点炔烃占比显著小于城市地区.烷烃和芳香烃的日变化呈现出白天消减,夜间累积的特点,烯烃浓度则在09:00~15:00点出现峰值.PMF源解析及成分分析结果表明,人为排放源对背景站VOCs构成和臭氧生成潜势有重要贡献.汽油挥发、溶剂及涂料使用、机动车尾气等排放源对4个背景站点的VOCs浓度贡献占比在39%~58%之间,对OFP贡献占比在35%~58%之间.燃烧源对4个背景站点的VOCs浓度贡献占比在18%~21%之间,对OFP贡献占比在约为13%..植物源对4个背景站点的VOCs浓度贡献占比在7%~17%之间,对OFP贡献占比在8%~33%之间,植物源贡献占比高于城市地区.  相似文献   

6.
为了解南宁市冬季期间挥发性有机物(VOCs)污染特征及来源,采用在线连续监测系统于2020年12月9日~2021年2月22日在南宁市区对116种VOCs进行了在线连续观测.结果显示,观测期间VOCs体积分数为37.57x10-9,烷烃、烯烃、芳香烃、OVOCs及卤代烃体积分数占VOCs比例分别为44%、15%、8%、19%和11%.VOCs体积分数白天低,夜晚高;采用OH消耗速率(LOH)和臭氧生成潜势(OFP)估算了观测期间VOCs大气化学反应活性,结果表明醛酮类、芳香烃和烯烃是主要的活性物质;使用气溶胶生成系数法(FAC)估算了VOCs对二次有机气溶胶(SOA)的贡献,发现芳香烃对SOA生成贡献最大,占比为98%,其中苯、间/对二甲苯和甲苯为优势物种;正交矩阵因子(PMF)解析结果表明,冬季期间南宁市VOCs主要来源于:机动车尾气排放源(30.1%)>固定燃烧及生物质燃烧源(22.2%)>工业工艺排放源(16.8%),而OFP贡献较高的源分别为溶剂使用源(23.9%)、固定燃烧及生物质燃烧源(22%)、机动车尾气排放源(21.8%).因此,机动车尾气排放源和固定燃烧及生物质燃烧源应为南宁市冬季的优先管控源类,其次为工业工艺排放源、溶剂使用源.  相似文献   

7.
臭氧已成为影响我国环境空气质量的重要污染物之一,准确解析环境臭氧及其前体物VOCs的关键源类及其贡献对于有效防控臭氧污染具有重要作用.因此,利用光化学年龄参数方法估算了青岛胶州市2021年1月1日至2月28日在线VOCs监测数据的初始浓度,矫正环境VOCs物种的光化学损耗;并利用正定矩阵因子分解(PMF)和臭氧生成潜势(OFP)模型进行了环境VOCs及其OFP来源解析研究,以期为青岛市环境臭氧污染的防控提供数据支撑.结果表明,研究期间青岛市环境ρ(TVOCs)和OFP的平均值分别为65.9μg·m-3和176.7μg·m-3;其中丙烷浓度(12.4μg·m-3)和占比(18.9%)最高,而间/对-二甲苯的OFP(24.6μg·m-3)及占比(13.9%)最高.研究期间TVOCs的初始浓度为153.1μg·m-3,其光化学损耗率达到63.8%.烯烃是光化学损耗率(92.1%)最高的VOCs物种,其中异戊二烯的光化学损耗率达到98.6%,明显高于其它VOCs物种.基于初始浓度的来源...  相似文献   

8.
为分析苏州市城区冬季VOCs污染水平、变化特征及污染来源,采用质子转移飞行时间质谱仪(PTR-TOF-MS)进行走航和定点观测.结果表明:①城区中心走航期间总挥发性有机物(TVOC)平均浓度为95.00 μg/m3,环高架快速路走航期间TVOC平均浓度为131.48 μg/m3,定点观测期间TVOC平均浓度为72.85 μg/m3.对比其他城市城区,苏州市城区VOCs污染较轻,环境空气质量处于优良水平(浓度数据基于PTR-TOF-MS所能观测物种).②走航及定点观测期间平均浓度最高的均为含氧挥发性有机物(OVOC),城区中心走航区域OVOC占比为35.83%,环高架快速路走航区域OVOC占比为43.33%,定点观测(处于闹市区)期间OVOC占比为33.36%.③观测期间对OFP贡献较大组分为OVOCs、烯烃、芳香烃.结合无机物种定点观测数据发现,VOCs和NO2的浓度峰值与PM2.5浓度峰值变化趋势一致.结合VOCs浓度呈早晚高峰的日变化规律,判断机动车尾气可能是VOCs、NO2、PM2.5的主要排放源之一.④特征比值法判断观测期间空气老化程度较高,苯系物主要来自交通源和燃料燃烧源.PMF(正矩阵因子分解法)源解析结果表明,VOCs污染源包括溶剂使用源、空气老化和二次形成源、植物源、交通源、工业源,结合非参数风回归模型(NWR)评估污染主要来自定点观测点北方的工业企业以及东南方向的环高架快速行驶的机动车,与走航观测高值点位一致.利用MIR系数法得出5类VOCs来源因子,其OFP贡献率依次为空气老化和二次形成源>溶剂使用源>植物源>交通源>工业源.研究显示,苏州市需加强管控溶剂使用行业的VOCs排放量,倡导在上下班高峰期、周末使用公共交通出行,减少机动车尾气排放,可以有效减少当地O3生成.   相似文献   

9.
采用排放因子法建立了2016年兰州市生物质燃烧源挥发性有机物(VOCs)排放清单,并分析了污染物的时空排放特征,利用排放清单对生物质燃烧源的臭氧生成潜势(OFP)和二次有机气溶胶(SOA)生成潜势进行了估算,研究其排放对大气环境的影响.结果表明:2016年兰州市生物质燃烧源排放VOCs总量为6626.2t,排放高值区在榆中东南及东北部、永登中部和七里河南部,经济水平落后、秸秆产量大的地区污染物排放量更大.污染物排放集中在采暖季(11~3月)及农作物收割期(7~8月);兰州市生物质燃烧源的OFP总量为13880.3t,煨炕为OFP贡献最大的子源,占比46.1%,含氧挥发性有机物(OVOCs)为OFP贡献最大的关键组分,占比51.4%;OFP贡献排名前10的物种有乙酸、丙烯、2-丁酮、甲苯、甲醛、乙醛、间/对-二甲苯、1-丁烯、丙酸和异戊二烯.煨炕是SOA生成潜势贡献最大的子源,占比46.5%,芳香烃为SOA生成潜势贡献最大的关键组分,占比62.2%,SOA生成潜势贡献排名前10的物种有苯酚、甲苯、α-蒎烯、间/对-二甲苯、苯、邻二甲苯、茚、1,2,4-三甲基苯、乙苯和1,2,3-三甲基苯;以降低区域O3和SOA浓度为目标时,应优先管控煨炕和秸秆露天燃烧(玉米)两类子源.  相似文献   

10.
北京市城区春季大气挥发性有机物污染特征   总被引:11,自引:1,他引:10       下载免费PDF全文
"2+26"城市联防联控措施的实施及北京市产业结构的调整,使得北京市大气中VOCs(volatile organic compounds,挥发性有机物)质量浓度、组成特征及来源发生了变化.运用AirmoVOC(GC-866)在线自动监测仪对2017年3-5月北京市城区大气中的VOCs进行观测.结果表明:①北京市城区春季大气中ρ(TVOCs)(TVOCs为总挥发性有机物)为34.36 μg/m3,ρ(烷烃)、ρ(芳香烃)、ρ(烯烃)、ρ(炔烃)分别占ρ(TVOCs)的57.13%、33.18%、7.54%、2.15%.质量浓度最高的前3位VOCs物种分别为苯、丙烷和乙烷,其质量浓度分别为5.97、3.51、2.63 μg/m3.②ρ(TVOCs)的日变化有3个较明显的峰值,分别出现在05:00、11:00和23:00,ρ(TVOCs)最低值出现在18:00,并且夜间ρ(TVOCs)高于白天.VOCs日变化特征表明,北京市VOCs污染受凌晨时段柴油车尾气排放和早晚交通高峰期汽油车尾气排放的影响较为明显.③春季VOCs的OFP(ozone formation potential,臭氧生成潜势)分析表明,芳香烃对OFP的贡献率(44.22%)最大,其次是烯烃(31.06%),最后是烷烃(23.86%);北京市VOCs污染的关键活性组分是丙烯、正丁烷、环戊烷、苯、甲苯、二甲苯.④PMF(正矩阵因子分析法)分析表明,溶剂使用源是北京市春季大气中VOCs最主要的排放源,对TVOCs的贡献率为39.06%,其次是移动源(33.79%)和油气挥发源(17.85%),燃烧源的贡献率(9.30%)最低.研究显示,控制移动源、溶剂使用源和燃烧源的排放是控制北京市环境空气中VOCs污染的关键.   相似文献   

11.
2021年2~4月,利用AQMS-900VCM大气挥发性有机物在线监测系统对南昌市经济技术开发区大气中114种挥发性有机化合物(VOCs)进行了在线观测,分析了春季南昌市大气中VOCs浓度水平、日变化,估算了各种VOCs的臭氧生成潜势(OFP),并基于PMF模型探讨了 VOCs的来源.结果表明,南昌市经济技术开发区20...  相似文献   

12.
天津市郊夏季VOCs化学特征及其时间精细化的来源解析   总被引:3,自引:3,他引:0  
夏季为环境空气中臭氧污染事件的频发时期,针对挥发性有机化合物(VOCs)及其臭氧生成潜势(OFP)的时间精细化的来源解析研究,对有效地进行臭氧污染防控具有非常重要的作用.利用2019年夏季(6~8月)天津市郊区点位监测的小时分辨率VOCs在线数据,分析臭氧污染事件和非臭氧污染时期环境受体中VOCs及其OFP的变化特征,并利用正定矩阵因子分解(PMF)模型进行精细化的来源解析研究.结果表明,夏季环境受体中VOCs平均体积分数为24.42×10-9,臭氧污染事件中的VOCs平均体积分数为27.72×10-9,较非臭氧污染时期增加15.69%.夏季总VOCs(TVOCs)的OFP为87.92×10-9,其中烯烃的OFP最高,对TVOCs的OFP的贡献达58.28%.臭氧污染事件中TVOCs的OFP为102.68×10-9,较非臭氧污染时期增加19.59%.臭氧污染事件中VOCs的来源分别为石化工业及汽油挥发(29.44%)、柴油车尾气(23.52%)、液化石油气及汽油车尾气(22.00%)、天然气及燃烧(13.41%)、溶剂使用(6.14%)和植物排放(5.49%).相比于非臭氧污染时期,液化石油气及汽油车尾气和柴油车尾气分别增长4.84%和5.29%.石化工业及汽油挥发和植物排放的贡献均表现为08:00开始上升,11:00达到最高,这与太阳辐射增强和温度不断上升密切相关.液化石油气及汽油车尾气和柴油车尾气均具有明显的早晚高峰特征,并在夜间(00:00~06:00)保持较高贡献水平.根据PMF结果并结合OFP的计算方法,解析了不同源类对臭氧生成潜势的 贡献.石化工业及汽油挥发(31.01%)和柴油车尾气(36.64%)是较高贡献源类,相比非臭氧污染时期分别增加了 1.74%和8.27%;并且石化工业及汽油挥发贡献率在臭氧污染事件发生过程的上升阶段显著增加,而在下降阶段明显下降.  相似文献   

13.
于2020年9~10月在深圳北部典型工业区开展在线观测以分析该地VOCs污染状况,并使用基于观测的模型(OBM)研究臭氧生成敏感性.观测期间VOCs的总浓度为48.5×10-9,浓度水平上烷烃>含氧有机物(OVOCs)>卤代烃>芳香烃>烯烃>乙炔>乙腈.臭氧生成潜势(OFP)为320μg/m3,其中芳香烃、OVOCs以及烷烃贡献最大,这3类物种OFP贡献总和超过90%.乙烯与苯呈现“两峰一谷”的日变化特征,主要受到机动车排放的贡献.相对增量反应性(RIR)分析表明,削减人为源VOCs对控制当地臭氧生成最为有效,当中又应优先控制芳香烃;经典动力学曲线(EKMA)分析表明该片区臭氧生成处于过渡区,在开展VOCs区域联防联控的同时,需要在当地进行有力的NOx控制以强化该地区臭氧污染长期管控.  相似文献   

14.
利用在线GC-MS/FID,对重庆主城区2015年夏、秋季大气挥发性有机物(VOCs)开展了为期1个月的观测.结果发现,监测期间主城区总挥发性有机物(TVOCs)体积分数为41.35×10-9,烷烃占比最大,其次是烯炔烃、芳香烃和含氧性挥发性有机物(OVOCs),卤代烃占比最小.将本次研究结果同以往研究结果比较发现,高乙炔浓度可能受交通源排放的影响,而乙烯和乙烷浓度的大幅度降低则得益于主城区化工企业的大举搬迁.通过最大增量反应活性(MIR)估算VOCs的臭氧生成潜势(OFP)发现,芳香烃(32.1%)和烯烃(30.6%)对臭氧生成的贡献最为显著,其中以乙烯、乙醛和间/对二甲苯的OFP最强,因此,对烯烃和芳香烃的削减能有效控制大气中O3的生成.通过PMF模型共解析出5个因子,主要为生物源及二次生成、其他交通源、天然气交通源、溶剂源和工业源.从5个因子对VOCs的贡献百分比可以看出,重庆城区交通源贡献最大(50.4%),其次是工业源和溶剂源的贡献(30%),生物源及二次生成的贡献最小.  相似文献   

15.
鄂州市大气VOCs污染特征及来源解析   总被引:5,自引:4,他引:1  
2018年3月~2019年2月,在鄂州市主城区采用在线气相色谱仪对102种大气挥发性有机物(VOCs)定量检测,对比分析了VOCs组成、季节变化特征和日变化规律,并利用最大增量反应活性(MIR)估算了VOCs的臭氧生成潜势(OFP).结果表明,鄂州大气VOCs年均体积分数为(30.78±15.89)×10~(-9),总体表现为冬季高夏季低,具体表现为烷烃含氧化合物卤代烃烯烃芳香烃炔烃.日变化规律表现为夜晚体积分数高于白天,且总体上呈"双峰"分布,芳香烃、卤代烃和OVOCs在00:00至02:00出现"第三峰".对VOCs臭氧生成潜势(OFP)贡献较大的是芳香烃和烯烃,贡献率分别为35.45%和29.5%,其中对OFP贡献率最高的物种为乙烯,达到24.217%.分析VOCs特征物种,发现机动车尾气和溶剂使用是鄂州VOCs的主要来源,其中机动车排放是最主要来源,控制鄂州机动车排放有助于削减大气VOCs活性较大的组分,从而减少臭氧的生成.  相似文献   

16.
臭氧污染在全国呈加剧态势,在非重点区域和非重点城市其相关研究薄弱.在湛江市选取3个采样点,使用苏玛罐和2,4-二硝基苯肼(DNPH)吸附管采样,并利用气相色谱-质谱/氢离子火焰检测器(GC-MS/FID)和高效液相色谱(HPLC)分析了101种挥发性有机物(VOCs),分析其主要组分和变化特点,计算VOCs的臭氧生成潜势(OFP),并利用正定矩阵因子分解模型(PMF)进行源解析.结果表明,采样期间湛江市φ(TVOCs)平均值为1.28×10-7,其中OVOCs占比最高,为52%,其次为烷烃(36%)、烯烃(7%)、卤代烃(2.42%)、芳香烃(1.61%)和炔烃(0.78%).VOCs组分日变化特征表明,芳香烃和烷烃早晚体积分数高而中午低,受光化学反应影响大;而OVOCs在光化学反应强烈的中午体积分数低而傍晚高,表明傍晚采样点附近OVOCs直接排放增多或受到上风向污染源输送的影响.湛江市TVOCs的OFP为3.28×10-7,优势物种为甲醛、1-丁烯、正丁烷、2-丁酮和乙醛.表征气团老化程度的X/E值和气团后向轨迹分析表明,采样期间,当受来自...  相似文献   

17.
在2018年9月14~23日选取了典型光化学污染期间,在长三角重点城市杭州市城区开展大气中挥发性有机物(VOCs)的加密观测.对80个有效样品分析结果表明,观测期间大气VOCs的122种化合物平均体积分数为(59.5±19.8)×10~(-9),含氧化合物(OVOC)是其中最主要的组分.用臭氧生成潜势(OFP)评估大气反应活性结果表明,观测期间OFP平均值为145×10~(-9),其中贡献最大的是芳烃和醛酮化合物.其大气VOCs整体活性水平与丙烯腈相当.运用正交矩阵因子(PMF)模型对VOCs进行源解析后,识别出杭州市大气VOCs的5个主要污染源,分别为二次生成(25.2%)、燃烧及工艺过程(27.2%)、溶剂使用(17.3%)、天然源(9.2%)和机动车排放(21.2%).本研究结果可为深入掌握杭州市VOCs污染特征以及科学制定防控措施提供技术支撑.  相似文献   

18.
选取上海市某工业区内专项化学品制造行业中有代表性的10家企业,使用苏玛罐对各企业有组织排放废气进行采样,通过GC-MS(气相色谱-质谱联用仪)对106种VOCs进行分析,研究了专项化学品制造行业的VOCs排放特征,并使用MIR(最大增量反应活性)法计算了各企业排放VOCs对臭氧生成的贡献.结果表明:OVOCs(含氧挥发性有机物)和芳香烃是专项化学品制造行业的VOCs特征组分,OVOCs与芳香烃质量分数之和为65.0%~100.0%;8家企业排放的VOCs中质量分数最高的物种均为OVOCs,w(OVOCs)为55.8%~99.9%.异丙醇、四氢呋喃、丙酮、乙酸乙酯等OVOCs及苯、甲苯等芳香烃是专项化学品制造行业的特征物种.10家企业排放VOCs的OFP(臭氧生成潜势)为1.9~933.5 mg/m 3,OVOCs和芳香烃是专项化学品制造企业的主要活性组分,累计对OFP的贡献率在80.1%~100.0%之间.异丙醇、四氢呋喃、丙酮、乙酸乙酯、甲基异丁基酮、苯和甲苯等是专项化学品制造行业的关键活性物种.研究显示,专项化学品制造行业VOCs污染治理应重点控制OVOCs和芳香烃.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号