首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Remediation of heavy metal polluted sediment by extracting the metals with sulfuric acid can be performed as follows: abiotic suspension leaching, microbial suspension leaching, abiotic solid-bed leaching, and microbial solid-bed leaching. Abiotic leaching means that the acid is directly added, while microbial leaching means that the acid is generated from sulfur by microbes (bioleaching). These four principles were compared to each other with special emphasis on the effectiveness of metal solubilization and metal removal by subsequent washing. Abiotic suspension leaching was fastest, but suspending the solids exhibits some disadvantages (low solid content, costly reactors, permanent input of energy, high water consumption, special equipment required for solid separation, large amounts of waste water, sediment properties hinder reuse), which prevent suspension leaching in practice. Abiotic solid-bed leaching implies the supply of acid by percolating water which proceeds slowly due to a limited bed permeability. Microbial solid-bed leaching means the generation of acid within the bed and has been proven to be the only principle applicable to practice. Metal removal from leached sediment requires washing with water. Washing of solid beds was much more effective than washing of suspended sediment. The kinetics of metal removal from solid beds 0.3, 0.6 or 1.2m in height were similar; when using a percolation flow of 20lm(-2)h(-1), the removal of 98% of the mobile metals lasted 57-61h and required 8.5, 4.2 or 2.3lkg(-1) water. This means, the higher the solid bed, the lower the sediment-mass-specific demand for time and water.  相似文献   

2.
The application of two different types of elemental sulfur (S0) was studied to evaluate the efficiency on bioleaching of heavy metals from contaminated sediments. Bioleaching tests were performed in suspension and in the solid-bed with a heavy metal contaminated sediment using commercial sulfur powder (technical sulfur) or a microbially produced sulfur waste (biological sulfur) as substrate for the indigenous sulfur-oxidizing bacteria and thus as acid source. Generally, using biological sulfur during suspension leaching yielded in considerably better results than technical sulfur. The equilibrium in acidification, sulfur oxidation and metal solubilization was reached already after 10-14 d of leaching depending upon the amount of sulfur added. The metal removal after 28 d of leaching was higher when biological sulfur was used. The biological sulfur added was oxidized with high rate, and no residual S0 was detectable in the sediment samples after leaching. The observed effects are attributable to the hydrophilic properties of the biologically produced sulfur particles resulting in an increased bioavailability for the Acidithiobacilli. In column experiments only poor effects on the kinetics of the leaching parameters were observed replacing technical sulfur by biological sulfur, and the overall metal removal was almost the same for both types of S0. Therefore, under the conditions of solid-bed leaching the rate of sulfur oxidation and metal solubilization is more strongly affected by transport phenomena than by microbial conversion processes attributed to different physicochemical properties of the sulfur sources. The results indicate that the application of biological sulfur provides a suitable means for improving the efficiency of suspension leaching treatments by shortening the leaching time. Solid-bed leaching treatments may benefit from the reuse of biological sulfur by reducing the costs for material and operating.  相似文献   

3.
The effects of oxygen limitation on solid-bed bioleaching of heavy metals (Me) were studied in a laboratory percolator system using contaminated sediment supplemented with 2% elemental sulfur (So). Oxygen limitation was realized by controlling the gas flow and oxygen concentration in the aeration gas. The oxygen supply varied between 150 and 0.5 mol So (-1) over 28 d of leaching. Moderate oxygen limitation led to temporarily suppression of acidification, rate of sulfate generation and Me solubilization. Lowering the oxygen supply to 0.5 mol O2 mol So (-1) resulted in retarding acidification over a period of three weeks and in poor Me solubilization. Oxidation of So occurred even under strong oxygen limitation at a low rate. High surplus of oxygen was necessary for almost complete oxidation of the added So. The maximum Me solubilization was reached at an oxygen supply of 7.5 mol O2 mol So (-1). Thus, the oxygen input during solid-bed bioleaching can be reduced considerably by controlling the gas flow without loss of metal removal efficiency. Oxygen consumption rates, ranging from 0.4 x 10(-8) to 0.8 x 10(-8) Kg O2 Kg dm (-1) S(-1), are primarily attributed to high reactivity of the sulfur flower and high tolerance of indigenous autotrophic bacteria to low oxygen concentrations. The So related oxygen consumption was calculated assuming a molar yield coefficient Y O2/S of 1.21. The oxygen conversion degree, defined as part of oxygen feed consumed by So oxidation, increased from 0.7% to 68% when the oxygen supply was reduced from 150 to 0.5 mol O2 mol So (-1).  相似文献   

4.
Bioleaching of heavy metals from sediment: significance of pH   总被引:16,自引:0,他引:16  
Chen SY  Lin JG 《Chemosphere》2001,44(5):1093-1102
Bioleaching process, which causes acidification and solubilization of heavy metals, is one of the promising methods for removing heavy metals from contaminated sediments. The solubilization of heavy metals from contaminated sediments is governed by the sediment pH. In the present study, the significance of pH in bioleaching of heavy metals from contaminated sediment was evaluated at different solid contents of sediments in a bench-scale reactor. Results showed that a temporal change of pH in the bioleaching process was effected by the buffering capacity of the sediment particulates. The variations of pH in this bioleaching process were calculated by a modified logistic model. It was observed that solubilization of heavy metals from sediments is highly pH-dependent. In addition, a non-linear equation for metal solubilization relating pH value in the bioleaching process was established. This allows an easier and faster estimate of metal solubilization by measuring pH in the bioleaching process.  相似文献   

5.
以硫酸亚铁盐为底物,培养以氧化亚铁硫杆菌为主要菌种的土著沥滤微生物,采用批式方法对湘江长沙段底泥进行微生物沥浸实验。实验结果表明,底物投加量与底泥固体浓度比(Sd/Sc)为1.5时已能满足底泥的微生物沥浸要求,进一步研究发现底泥固体浓度为13%、底物投加量为19.5 g/L、沥浸时间为6 d时,底泥中超标重金属Cd、Zn和Cu的去除率可分别达到83.1%、75.3%和61.2%;沥浸后底泥中大部分重金属以残渣态存在,且含量低于农用污泥中污染物控制标准,其中硫化物有机结合态Cu浸出较Zn、Cd需更低的pH,且Cu以间接机理浸出为主;以Fe2+为底物的沥浸体系中,黄铁矾的重吸附或共沉淀是沥浸实验后期重金属浸出率下降的原因之一。  相似文献   

6.
Kumar RN  Nagendran R 《Chemosphere》2007,66(9):1775-1781
Bioleaching of heavy metals from contaminated soil was carried out employing indigenous sulfur oxidizing bacterium Acidithiobacillus thiooxidans. Experiments were carried out to assess the influence of initial pH of the system on bioleaching of chromium, zinc, copper, lead and cadmium from metal contaminated soil. pH at the end of four weeks of bioleaching at different initial pH of 3-7 was between 0.9 and 1.3, ORP between 567 and 617mV and sulfate production was in the range of 6090-8418mgl(-1). Chromium, zinc, copper, lead and cadmium solubilization ranged from "59% to 98%" at different initial pH. A. thiooxidans was not affected by the increasing pH of the bioleaching system towards neutral and it was able to utilize elemental sulfur. The results of the present study are encouraging to develop the bioleaching process for decontamination of heavy metal contaminated soil.  相似文献   

7.
用污泥加硫酸化液沥滤镍镉电池中的重金属是一种全新的工艺,该工艺主要由生物酸化反应器和金属沥滤反应器两个反应器组成.生物酸化反应器中产生的酸液就是沥滤电池中重金属的反应液.研究表明,酸化液在沥滤反应池的停留时间对沥滤的效果有显著影响.在1、4、7、12 d 4个停留时间中,4 d的效果是最好的,对金属Cd和Ni都用40 d左右基本实现了全部滤除;1d略微慢一些,Cd用了40 d,Ni用了45 d;7 d和12 d的沥滤时间都长于50 d.4 d产生的金属废液量是1 d的1/4,考虑到后续处理金属沥滤废液的工作量,选择4d的停留时间要优于1d.  相似文献   

8.
合理、经济地处理混合电镀污泥,回收其中有价值的金属具有重要意义。以不同的酸作为浸出剂对电镀污泥中的金属进行了浸出效果实验。结果表明,在相同条件下,各酸的浸出效果顺序为:硫酸>盐酸>王水>硝酸;液体水与固体电镀污泥比为3,干污泥为5 g,硫酸加入量为15 mL,时间1 h条件下,混合电镀污泥中金属铜锌的浸出率最大,达到97.38%。分别采用铁和铁锰合金还原剂常温还原低熔点重金属离子铜、锌,浸出液中99%以上含量的铜、锌沉淀,使低熔点重金属与黑色金属铁、锰、铬有效分离。低熔点混合重金属可以用来做铜合金添加剂使用,最后沉淀的混合黑色金属氢氧化物处理后可以用来做炼钢合金添加剂使用。  相似文献   

9.
通过对金矿矿区炼金废渣的酸中和能力、净产酸量及浸出毒性实验,测定了废渣的产酸潜力及重金属砷、镉、铅、锌的总量和它们的浸出量。为了合理处置矿区炼金废渣,并为矿区重金属污染土壤的修复提供技术支持,采用石灰、粉煤灰、堆肥化污泥作为添加剂对废渣进行固化/稳定化处理;通过浸出毒性实验对固化/稳定化处理效果进行综合分析,试图寻求一种最佳的稳定剂。结果表明,无论是单独添加石灰、粉煤灰或者堆肥化污泥还是两两组合混合添加,样品浸出液的pH都有升高,As、Cd的浸出浓度都有明显下降,而且两两组合添加比单独添加的固化/稳定化处理效果更好。在两两组合添加中,粉煤灰混合堆肥化污泥的处理效果最好,浸出液的pH值达到7.82,As、Cd的浸出率分别下降72.0%和72.2%。说明粉煤灰混合堆肥化污泥处理炼金废渣效果最佳,同时具有以废治污的资源化生态效能。  相似文献   

10.
Leaching of heavy metals from land-disposed dredged sediment spoils is a potential environmental hazard. The leaching behavior of Cd, Cu, Pb and Zn in surface soils sampled from abandoned dredged sediment disposal sites was assessed. Using simple mass-balance calculations, the significance of the leaching test results with respect to metal migration into underlying clean soil was appraised. The potential leachability, defined as the amounts released at constant pH 4, decreased in the order (% of total contents): Zn (58%) approximately equal to Cd (49%)>Cu (5%) approximately equal to Pb (2%). The kinetics of metal release were determined in a cascade shaking test using de-mineralized water acidified to pH 4 (HNO(3)). Metal concentrations in the leachates were low and metal migration was, assuming uniform convective flow, predicted to be of no environmental concern. It is emphasized that any long-term prediction of metal migration is uncertain.  相似文献   

11.
污泥中重金属的去除及回收试验   总被引:6,自引:0,他引:6  
论述了利用离子交换技术循环使用柠檬酸去除污泥中重金属,并置换回收重金属的适宜工艺条件.经柠檬酸处理后,污泥中90%以上的重金属被去除;柠檬酸处理液中的重金属用离子交换法回收,考察了树脂种类、流速、操作方式等因素对离子交换、再生效果的影响;在适宜工艺条件下,重金属的交换率均为100%,而洗脱率均接近90%;柠檬酸及离子交换树脂循环使用,重金属也得到回收,降低了处理成本.  相似文献   

12.
丁绍兰  王景 《环境工程学报》2009,3(11):2072-2076
在已确定污泥驯化最佳条件的基础上,通过改变滤材、液固分离条件,添加营养物质继续降低pH等方法,进行提高生物沥滤法分离制革污泥中铬的分离效率的研究。同时考察化学沥滤法(1∶1硫酸)在相同条件下的分离效率。试验结果表明:用相应pH值酸液(1∶1硫酸配制)淋洗,淋洗+闷洗和抽真空+酸液淋洗等过滤方式可提高铬的分离效率。生物沥滤中当pH值下降至1.8时,分离效率即可达到94.65%,与直接用蒸馏水淋洗相比要高得多。化学沥滤中当pH值下降到1时,分离效果可达96.7%,沥滤污泥中剩余铬含量可达到制革污泥农用标准。  相似文献   

13.
14.
Chen SY  Lin JG 《Chemosphere》2004,54(3):283-289
A technologically and economically feasible process called bioleaching was used for the removal of heavy metals from livestock sludge with indigenous sulfur-oxidizing bacteria in this study. The effects of sludge solids concentration on the bioleaching process were examined in a batch bioreactor. Due to the buffering capacity of sludge solids, the rates of pH reduction, ORP rise and metal solubilization were reduced with the increase of the solids concentration. No apparent influence of solids concentration on sulfate produced by sulfur-oxidizing bacteria was observed when the solids concentration was less than 4% (w/v). A Michaelis-Menten type of equation was able to well describe the relationship between solids concentration and rate of metal solubilization. Besides, high efficiencies of metal solubilization were achieved after 16 d of bioleaching. Therefore, the bioleaching process used in this study could be applied to remove heavy metals effectively from the livestock sludge.  相似文献   

15.
水体沉积物重金属生物有效性及评价方法   总被引:1,自引:0,他引:1  
在研究以重金属为主要污染物的水体中,通常把沉积物视为探索环境重金属污染的工具。由于沉积物中重金属化学行为和生态效应的复杂性,对沉积物中重金属生物有效性的研究是当前学术界的热点研究课题。本文就沉积物中重金属的生物有效性及沉积物质量评价方法作了简要评述。包括沉积物对水生生物的作用机理,孔隙水重金属浓度的估算,沉积物质量评价方法,沉积物质量基准。  相似文献   

16.
以城市污水处理厂剩余污泥作为处理介质,土著嗜酸氧化硫硫杆菌(Acidithiobacillus thiooxidans,A.thiooxi-dans)为主要沥滤微生物,采用序批式生物沥滤装置,就投加150~725μm的不同粒径元素硫对沥滤的酸化效果、硫酸根产率和重金属去除效果的影响进行了研究。结果表明,在元素硫投配量为3 g/L,曝气强度为1.0 L/(min.L)的条件下,元素硫粒径在165~215μm范围减小时能显著改善污泥酸化速度、提高酸化程度和硫酸根产率。底物元素硫的最佳粒径为165μm,此时沥滤体系pH下降速率为0.85个pH单位/d,硫酸根的产率为454.9 mg/(L.d),沥滤6 d后污泥中高浓度重金属Cu、Zn、Cd的去除率达到70.3%、81.2%、87.8%.  相似文献   

17.

A pot experiment and a leaching experiment were conducted to investigate the effects of earthworms and pig manure on heavy metals (Cd, Pb, and Zn) immobility, in vitro bioaccessibility and leachability under simulated acid rain (SAR). Results showed manure significantly increased soil organic carbon (SOC), dissolved organic carbon (DOC), available phosphorus (AP), total N, total P and pH, and decreased CaCl2-extractable metals and total heavy metals in water and SAR leachate. The addition of earthworms significantly increased AP (from 0.38 to 1.7 mg kg?1), and a downward trend in CaCl2-extractable and total leaching loss of heavy metals were observed. The combined earthworm and manure treatment decreased CaCl2-extractable Zn, Cd, and Pb. For Na4P2O7-extractable metals, Cd and Pb were decreased with increasing manure application rate. Application of earthworm alone did not contribute to the remediation of heavy metal polluted soils. Considering the effects on heavy metal immobilization and cost, the application of 6% manure was an alternative approach for treating contaminated soils. These findings provide valuable information for risk management during immobilization of heavy metals in contaminated soils.

  相似文献   

18.
镍渣的重金属浸出特性   总被引:3,自引:0,他引:3  
在分析镍渣的矿物相组成和重金属元素含量的基础上,鉴定了镍渣样品的浸出毒性,并考察了pH、液固比和浸出时间等条件对镍渣样中铬、铅、铜和锌等重金属浸出特性的影响。结果表明,镍渣中的重金属总量约为渣样的0.9%,且铬、铜和锌的含量较高,需进行安全管理。实验所用镍渣样品为第Ⅰ类一般工业固体废物。在强酸条件下镍渣中重金属浸出浓度较大,pH3后浸出浓度显著降低;液固比40 L/kg时,镍渣中重金属不断溶出,液固比40 L/kg后,浸出达到饱和,浸出浓度趋于平衡;随着浸出时间的增加,重金属离子的浸出浓度先增加后减少,但由于各重金属性质不同,各重金属达到最大浸出浓度的时间不同。  相似文献   

19.
pH值对烧结砖中重金属释放的影响   总被引:1,自引:0,他引:1  
采用酸消解实验和NEN 7371浸出实验研究了烧结砖中重金属总量和有效释放量,采用pH-dependence实验研究pH对破碎烧结砖样品中重金属(Cr、Ni、As、Cd和Pb)浸出特性的影响,以及烧结砖样品的酸碱缓冲容量。结果表明,烧结砖中重金属的有效释放量低于总量,释放率从大到小依次为CdAsPbNiCr;烧结砖的酸缓冲容量较小,浸出液pH从7.03降到3.64,消耗了29.33 mmol/kg硝酸,碱缓冲容量较大,pH从7.03升到12.40,共消耗256 mmol/kg氢氧化钠溶液,因此在使用烧结砖的过程中要特别注意环境pH;浸提液的酸碱性是影响烧结砖中重金属浸出的重要参数,在实验研究的pH范围内,不同重金属的浸出规律不同。Cr和As的释放受pH影响较小,而Ni和Cd的浸出量随pH的增大而降低,Pb的浸出量在强酸和强碱条件下均较大,当pH在5.59~9.86的范围内浸出量很低。  相似文献   

20.
生物法和化学法回收制革污泥中铬的对比研究   总被引:1,自引:0,他引:1  
研究了嗜酸性硫杆菌(Thiobacillus)生物沥滤法和1:1硫酸化学沥滤法分离回收制革污泥中的铬.比较了嗜酸性硫杆菌生物沥滤法和化学沥滤法回收制革污泥铬过程中pH、氧化还原电位(ORP)、沉降比(SV)以及铬的沥滤率的变化.试验结果表明,pH是影响制革污泥中铬的沥滤率的关键因素.生物沥滤法在使污泥pH大幅度降低的同时,能很好地改善污泥的沉降性能,对铬的沥滤效果好于化学沥滤法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号