首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial metal leaching from sewage sludge (2-9% w/v) was carried out with the iron-oxidizing bacterium Thiobacillus ferrooxidans. Measurements of pH, oxidation-reduction potential, and concentration of Fe2+ indicated that T. ferrooxidans was effective in removing metals from an incubation bath containing less than 5% sludge solids concentration. Specifically, Cu leaching was completely suppressed at a high solids concentration of 9% (w/v). Results indicated that the deactivation of T. ferrooxidans at a high sludge content was mainly due to the presence of inhibiting materials such as organic matter. A mixed culture of sulfur-oxidizing bacteria was obtained by enrichment from anaerobically digested sewage sludge to enhance the efficiency of the microbial leaching process. These bacteria were much more effective in metal leaching than was iron-oxidizing T. ferrooxidans. At 9% (w/v) solids concentration, the leaching efficiencies of Zn and Cu were 78% (2.66 g/kg dry sludge) and 59% (1.36 g/kg dry sludge), respectively. Therefore, when removing heavy metals from the anaerobically digested sewage sludge, the indigenous sulfur-oxidizing bacteria isolated in the current study were more efficient than T. ferrooxidans, especially at high sludge solids concentrations.  相似文献   

2.
Abstract

Microbial metal leaching from sewage sludge (2-9% w/v) was carried out with the iron-oxidizing bacterium Thiobacillus ferrooxidans. Measurements of pH, oxidation-reduction potential, and concentration of Fe2+ indicated that T. ferrooxidans was effective in removing metals from an incubation bath containing less than 5% sludge solids concentration. Specifically, Cu leaching was completely suppressed at a high solids concentration of 9% (w/v). Results indicated that the deactivation of T. ferrooxidans at a high sludge content was mainly due to the presence of inhibiting materials such as organic matter. A mixed culture of sulfur-oxidizing bacteria was obtained by enrichment from anaerobically digested sewage sludge to enhance the efficiency of the microbial leaching process. These bacteria were much more effective in metal leaching than was iron-oxidizing T. ferrooxidans. At 9% (w/v) solids concentration, the leaching efficiencies of Zn and Cu were 78% (2.66 g/kg dry sludge) and 59% (1.36 g/kg dry sludge), respectively. Therefore, when removing heavy metals from the anaerobically digested sewage sludge, the indigenous sulfur-oxidizing bacteria isolated in the current study were more efficient than T. ferrooxidans, especially at high sludge solids concentrations.  相似文献   

3.
Bioleaching of heavy metals from sediment: significance of pH   总被引:16,自引:0,他引:16  
Chen SY  Lin JG 《Chemosphere》2001,44(5):1093-1102
Bioleaching process, which causes acidification and solubilization of heavy metals, is one of the promising methods for removing heavy metals from contaminated sediments. The solubilization of heavy metals from contaminated sediments is governed by the sediment pH. In the present study, the significance of pH in bioleaching of heavy metals from contaminated sediment was evaluated at different solid contents of sediments in a bench-scale reactor. Results showed that a temporal change of pH in the bioleaching process was effected by the buffering capacity of the sediment particulates. The variations of pH in this bioleaching process were calculated by a modified logistic model. It was observed that solubilization of heavy metals from sediments is highly pH-dependent. In addition, a non-linear equation for metal solubilization relating pH value in the bioleaching process was established. This allows an easier and faster estimate of metal solubilization by measuring pH in the bioleaching process.  相似文献   

4.
Xiang L  Chan LC  Wong JW 《Chemosphere》2000,41(1-2):283-287
The removal of heavy metals (Cr, Cu, Zn, Ni and Pb) from anaerobically digested sludge from the Yuen Long wastewater treatment plant, Hong Kong, has been studied in a batch system using isolated indigenous iron-oxidizing bacteria. The inoculation of indigenous iron-oxidizing bacteria and the addition of FeSO4 accelerated the solubilization of Cr, Cu, Zn, Ni and Pb from the sludge. pH of the sludge decreased with an increase in Fe2+ concentrations and reached a low pH of 2-2.5 for treatments receiving both bacterial inoculation and FeSO4. After 16 days of bioleaching, the following heavy metal removal efficiencies were obtained: Cr 55.3%, Cu 91.5%, Zn 83.3%, Ni 54.4%, and Pb 16.2%. In contrast, only 2.6% of Cr, 42.9% of Cu, 72.1% of Zn, 22.8% of Ni and 0.56% of Pb were extracted from the control without the bacterial inoculation and addition of FeSO4. The residual heavy metal content in the leached sludge was acceptable for unrestricted use for agriculture. The experimental results confirmed the effectiveness of using the isolated iron-oxidizing bacteria for the removal of heavy metals from sewage sludge.  相似文献   

5.
Fang D  Zhou LX 《Chemosphere》2007,69(2):303-310
Bioleaching process has been demonstrated to be an effective technology in removing Cr from tannery sludge, but a large quantity of dissolved organic matter (DOM) present in tannery sludge often exhibits a marked toxicity to chemolithoautotrophic bioleaching bacteria such as Acidithiobacillus thiooxidans. The purpose of the present study was therefore to enhance Cr bioleaching efficiencies through introducing sludge DOM-degrading heterotrophic microorganism into the sulfur-based sludge bioleaching system. An acid-tolerant DOM-degrading yeast strain Brettanomyces B65 was successfully isolated from a local Haining tannery sludge and it could metabolize sludge DOM as a source of energy and carbon for growth. A combined bioleaching experiment (coupling Brettanomyces B65 and A. thiooxidans TS6) performed in an air-lift reactor indicated that the rates of sludge pH reduction and ORP increase were greatly improved, resulting in enhanced Cr solubilization. Compared with the 5 days required for maximum solubilization of Cr for the control (single bioleaching process without inoculation of Brettanomyces B65), the bioleaching period was significantly shorten to 3 days for the combined bioleaching system. Moreover, little nitrogen and phosphorous were lost and the content of Cr was below the permitted levels for land application after 3 days of bioleaching treatment.  相似文献   

6.
为了得到嗜酸硫细菌沥滤污泥中重金属的最佳工艺参数,对沥滤过程进行3因素4水平的正交实验研究。3种影响因素的水平设置分别为:污泥浓度35、25、15和5 g/L,单质硫投加量15、10、5和1 g/L,接种量15、10、5和3 g/L。对沥滤过程污泥中7种重金属(As、Cd、Cr、Cu、Ni、Pb和Zn)的去除率进行极差分析,提出了因素影响程度依次为单质硫投加量污泥浓度接种量,且最佳工艺条件为:污泥浓度25 g/L,单质硫投加量10 g/L,接种量为5%。采用超声波-离心方法,分步提取污泥胞外聚合物(EPS)的2种形态:松散结合态(LB)和紧密结合态(TB)。分析其中的重金属浓度,提出沥滤后重金属在污泥EPS的赋存以LB为主。  相似文献   

7.
Wong JW  Xiang L  Gu XY  Zhou LX 《Chemosphere》2004,55(1):101-107
The effect of using FeS2 as an energy source, on the bioleaching of heavy metals (Zn, Cr, Cu, Pb and Ni) and nutrients (nitrogen and phosphorus) from anaerobically digested sludge using isolated indigenous iron-oxidizing bacteria was investigated in this paper. Addition of FeS2 in the range of 0.5-4.0 g l(-1) accelerated the acidification of sludge and raised the oxidation-reduction potential of sludge medium with an inoculation of 15% (v/v) of active bacteria, thus resulting in an overall increase in metal dissolution efficiency. After 16 days of bioleaching at 28 degrees C and an initial pH of 3.0, up to 99% of Zn, 65% of Cr, 74% of Cu, 58% of Pb and 84% of Ni can be removed from the sludge. In contrast, only 94% of Zn, 12% of Cr, 21% of Cu, 32% of Pb and 38% of Ni were leached out in the control without inoculation of iron-oxidizing bacteria and the addition of FeS2. Less than 15% of nitrogen and 6% of phosphorous were lost after 16 days of bioleaching when using FeS2 as the energy source. Comparing to 39% and 45% loss respectively for these two nutrients when using FeSO4.7H2O as the energy source, FeS2 appears to be a more suitable energy source for preserving nutrients in sludge while removing heavy metals from sludge.  相似文献   

8.
采用生物淋滤法处理电子垃圾焚烧迹地重金属严重污染的土壤。所用氧化亚铁硫杆菌是从矿坑废水中通过一系列培养、分离和纯化得到。实验结果表明,生物淋滤法可以有效地去除土壤中重金属Cu、Ph和Zn,去除率的大小顺序为Zn〉Cu〉Pb;采用五步连续提取法分析处理前后土壤中重金属的存在形态,结果表明,通过氧化亚铁硫杆菌处理受重金属污染的土壤,可以促使易移动的重金属结合态的溶解(可交换态、碳酸盐结合态和Fe—Mn氧化物结合态),并使难移动的重金属结合态向易移动的重金属结合态转变。  相似文献   

9.
采用生物淋滤法处理电子垃圾焚烧迹地重金属严重污染的土壤。所用氧化亚铁硫杆菌是从矿坑废水中通过一系列培养、分离和纯化得到。实验结果表明,生物淋滤法可以有效地去除土壤中重金属Cu、Pb和Zn,去除率的大小顺序为Zn>Cu>Pb;采用五步连续提取法分析处理前后土壤中重金属的存在形态,结果表明,通过氧化亚铁硫杆菌处理受重金属污染的土壤,可以促使易移动的重金属结合态的溶解(可交换态、碳酸盐结合态和Fe-Mn氧化物结合态),并使难移动的重金属结合态向易移动的重金属结合态转变。  相似文献   

10.
Bioleaching of metals can be achieved in sewage sludge using Thiobacillus ferrooxidans, which obtains its energy requirements from the oxidation of added ferrous iron. The purpose of this study was to verify the presence of indigenous T. ferroxidans and to evaluate their adaptive capacity and leaching potential. Nineteen sludges (primary, secondary, aerobically and anaerobically digested, oxidation pond) were tested and all of them contained indigenous iron-oxidizing bacteria. The acclimation of these organisms by successive transfers allowed a rise of sludge redox potential over 450 mV and a decrease of sludge pH between 3.8 and 2.2 over a 10-day incubation period. The metal solubilization efficiencies were Cd: 55-98%, Cr: 0-32%, Cu: 39-94%, Mn: 71-98%, Ni: 37-98%, Pb: 0-31% and Zn: 66-98%, were reached with these indigenous strains. The results obtained show that the metal bioleaching may be easily realized by direct acclimation of sludge microflora.  相似文献   

11.
以城市污水处理厂剩余污泥作为处理介质,土著嗜酸氧化硫硫杆菌(Acidithiobacillus thiooxidans,A.thiooxi-dans)为主要沥滤微生物,采用序批式生物沥滤装置,就投加150~725μm的不同粒径元素硫对沥滤的酸化效果、硫酸根产率和重金属去除效果的影响进行了研究。结果表明,在元素硫投配量为3 g/L,曝气强度为1.0 L/(min.L)的条件下,元素硫粒径在165~215μm范围减小时能显著改善污泥酸化速度、提高酸化程度和硫酸根产率。底物元素硫的最佳粒径为165μm,此时沥滤体系pH下降速率为0.85个pH单位/d,硫酸根的产率为454.9 mg/(L.d),沥滤6 d后污泥中高浓度重金属Cu、Zn、Cd的去除率达到70.3%、81.2%、87.8%.  相似文献   

12.
Anaerobically digested sewage sludges were treated for heavy metal removal through a biological solubilization process called bacterial leaching (bioleaching). The solubilization of copper and zinc from these sludges is described in this study: using continuously stirred tank reactors with and without sludge recycling at different mean hydraulic residence times (1, 2, 3 and 4 days). Significant linear equations were established for the solubilization of zinc and copper according to relevant parameters: oxygen reduction potential (ORP), pH and residence time (t). Zinc solubilization was related to the residence time with a r2 (explained variance) of 0.82. Considering only t=2 and 3 days explained variance of 0.31 and 0.24 were found between zinc solubilization as a function of ORP and pH indicating a minor importance of those two factors for this metal in the range of pH and ORP experimented. Cu solubilization was weakly correlated to mean hydraulic residence time (r2=0.48), while it was highly correlated to ORP (r2=0.80) and pH (r2=0.62) considering only t of 2 and 3 days in the case of pH and ORP. The ORP dependence of Cu solubilization has been clearly demonstrated in this study. In addition to this, the importance of the substrate concentration for Cu solubilization has been confirmed. The hypothesis of a biological solubilization of Cu by the indirect mechanism has been supported. The results permit, under optimum conditions, the drawing of linear equations which will allow prediction of metal solubilization efficiencies from the parameters pH (Cu), ORP (Cu) and residence time (Cu and Zn), during the treatment. The linear regressions will be a useful tool for routine operation of the process.  相似文献   

13.
Kumar RN  Nagendran R 《Chemosphere》2007,66(9):1775-1781
Bioleaching of heavy metals from contaminated soil was carried out employing indigenous sulfur oxidizing bacterium Acidithiobacillus thiooxidans. Experiments were carried out to assess the influence of initial pH of the system on bioleaching of chromium, zinc, copper, lead and cadmium from metal contaminated soil. pH at the end of four weeks of bioleaching at different initial pH of 3-7 was between 0.9 and 1.3, ORP between 567 and 617mV and sulfate production was in the range of 6090-8418mgl(-1). Chromium, zinc, copper, lead and cadmium solubilization ranged from "59% to 98%" at different initial pH. A. thiooxidans was not affected by the increasing pH of the bioleaching system towards neutral and it was able to utilize elemental sulfur. The results of the present study are encouraging to develop the bioleaching process for decontamination of heavy metal contaminated soil.  相似文献   

14.
Bioleaching processes have been demonstrated to be effective technologies in removing heavy metals from wastewater sludge, but long hydraulic retention times are typically required to operate these bioprocesses. A hybrid process (coupling biological and chemical processes) has been explored in laboratory pilot-scale experiments for heavy metals (cadmium [Cd], copper [Cu], chromium [Cr], and zinc [Zn]) removal from three types of sludge (primary sludge, secondary activated sludge, and a mixture of primary and secondary sludge). The hybrid process consisted of producing a concentrate ferric ion solution followed by chemical treatment of sludges. Ferric iron solution was produced biologically via oxidation of ferrous iron by A. ferrooxidans in a continuous-flow stirred tank (5.2 L) reactor (CSTR). Wastewater sludge filtrate (WSF) containing nutrients (phosphorus and nitrogen) has been used as culture media to support the growth and activity of indigenous iron-oxidizing bacteria. Results showed that total organic carbon (TOC) concentrations of the culture media in excess of 235 mg/L were found to be inhibitory to bacterial growth. The oxidation rate increased as ferrous iron concentrations ranged from 10 to 40 g Fe2+/L. The percentage of ferrous iron (Fe2+) oxidized to ferric iron (Fe3+) increased as the hydraulic retention time (HRT) increased from 12 to 48 h. Successful and complete Fe2+ oxidation was recorded at a HRT of 48 h using 10 g Fe2+/L. Subsequently, ferric ion solution produced by A. ferrooxidans in sludge filtrate was used to solubilize heavy metals contained in wastewater sludge. The best solubilization was obtained with a mixture of primary and secondary sludge, demonstrating a removal efficiency of 63, 71, 49, and 80% for Cd, Cu, Cr, and Zn, respectively.  相似文献   

15.
污泥酸化速率影响因子的探讨   总被引:2,自引:0,他引:2  
采用城市污水厂污泥作为嗜酸微生物菌株来源,通过添加一定量的单质硫,使其中的嗜酸硫杆菌群大量增殖,并使污泥pH大幅降低.取得的培养物可用于废旧干电池中重金属沥滤等的处理.由于培养物对重金属沥滤效率和污泥的酸化速率密切相关,为此进行了不同的污泥种类、加硫量、污泥浓度和曝气强度对污泥酸化速率影响的实验.实验表明,初沉泥、二沉泥和混合浓缩污泥都能迅速利用硫产酸;加硫量(以100 mL污泥计)在0.5、1.0、2.0、4.0 g时,快速酸化的趋势相同.0.5 g的加硫量显示出略微慢的酸化速率,最后达到的最低pH在1.2左右,其他三个都降至1.0以下.污泥质量分数在0.5%、1.0%、2.0%、3.0%、4.0%时,也具有相同的酸化趋势,0.5%质量分数的污泥下降速率最快,这与较低浓度下污泥对pH的缓冲能力较小有关;曝气强度在0.45 L/min和0.3 L/min差别较小,5 d内能迅速降低pH,0.2 L/min的酸化速率较慢,足够长的时间(12 d)也能将pH降至2.5左右,0.1 L/min的曝气强度的酸化速率最慢,不能达到预期的酸化效果.  相似文献   

16.
The application of two different types of elemental sulfur (S0) was studied to evaluate the efficiency on bioleaching of heavy metals from contaminated sediments. Bioleaching tests were performed in suspension and in the solid-bed with a heavy metal contaminated sediment using commercial sulfur powder (technical sulfur) or a microbially produced sulfur waste (biological sulfur) as substrate for the indigenous sulfur-oxidizing bacteria and thus as acid source. Generally, using biological sulfur during suspension leaching yielded in considerably better results than technical sulfur. The equilibrium in acidification, sulfur oxidation and metal solubilization was reached already after 10-14 d of leaching depending upon the amount of sulfur added. The metal removal after 28 d of leaching was higher when biological sulfur was used. The biological sulfur added was oxidized with high rate, and no residual S0 was detectable in the sediment samples after leaching. The observed effects are attributable to the hydrophilic properties of the biologically produced sulfur particles resulting in an increased bioavailability for the Acidithiobacilli. In column experiments only poor effects on the kinetics of the leaching parameters were observed replacing technical sulfur by biological sulfur, and the overall metal removal was almost the same for both types of S0. Therefore, under the conditions of solid-bed leaching the rate of sulfur oxidation and metal solubilization is more strongly affected by transport phenomena than by microbial conversion processes attributed to different physicochemical properties of the sulfur sources. The results indicate that the application of biological sulfur provides a suitable means for improving the efficiency of suspension leaching treatments by shortening the leaching time. Solid-bed leaching treatments may benefit from the reuse of biological sulfur by reducing the costs for material and operating.  相似文献   

17.
Zhao L  Zhu NW  Wang XH 《Chemosphere》2008,70(6):974-981
Bioleaching of spent Ni-Cd batteries using acidified sewage sludge was carried out in a continuous flow two-step leaching system including an acidifying reactor and a leaching reactor. Two systems operated about 30d to achieve almost complete dissolution of heavy metals Ni, Cd and Co in four Ni-Cd batteries. Ferrous sulphate and elemental sulfur were used as two different substrates to culture indigenous thiobacilli in sewage sludge. pH and ORP of the acidifying reactor was stabilized around 2.3 and 334mV for the iron-oxidizing system and 1.2 and 390mV for the sulfur-oxidizing system. It was opposite to the acidifying reactor, the pH/ORP in the leaching reactor of the iron-oxidizing system was relatively lower/higher than that of the sulphur-oxidizing system in the first 17d. The metal dissolution, in the first 12-16d, was faster in the iron-oxidizing system than in the sulphur-oxidizing system due to the lower pH. In the iron-oxidizing system, the maximum solubilization of cadmium (2500mg l(-1)) and cobalt (260mg l(-1)) can be reached at day 6-8 and the most of metal nickel was leached in the first 16d. But in the sulphur-oxidizing system there was a lag period of 4-8d to reach the maximum solubilization of cadmium and cobalt. The maximum dissolution of nickel hydroxide (1400mg l(-1)) and metallic nickel (2300mg l(-1)) occurred at about day 12 and day 20, respectively.  相似文献   

18.
Gu XY  Wong JW 《Chemosphere》2007,69(2):311-318
The presence of organic acids was found to be inhibitory to the bioleaching of sewage sludge and the objective of the present study was to elucidate the roles of heterotrophic microorganisms in removing organic acids during the bioleaching of heavy metals from anaerobically digested sewage sludge. Microbiological analysis showed that acetic and propionic acids posed a severe inhibitory effect on iron-oxidizing bacteria as reflected by a sharp decrease in their viable counts in the first 4d and it only started to increase 2d after the depletion of both acids. Biodegradation of these inhibitory organic acids was revealed by sharp increases in total fungi and acidophiles between day 3 and day 5 which coincided with degradation of organic acids. This was further confirmed by the increases in total counts of both acetate and propionate degraders in the same period. Two yeast strains Y4 and Y5 with strong ability to degrade acetate and/or propionate were isolated and identified as Pichia sp. and Blastoschizomycetes capitatus, respectively. B. capitatus Y5 was an more important player in removing the inhibitory organic acids during the bioleaching process since it could utilize both acetate and propionate as sole carbon source while Pichia sp. Y4 was an strict acetate degrader. Results from the present study not only provided the evidence for biodegradation of organic acids by heterotrophs, but also disclosed a biological mechanism for the initiation of bioleaching of organic acid-laden sewage sludge.  相似文献   

19.
The objective of this research was to investigate the performance of the ferrous sulfate bioleaching (FSBL) process in a pilot plant for decontamination and stabilization of wastewater sludge. Batch and continuous experiments, conducted with two 4-m3 bioreactors using indigenous iron-oxidizing bacteria (20% v/v of inoculum) with addition of 4.0 g ferrous sulfate heptahydrate per liter of sludge initially acidified to pH 4.0, were sufficient for effective heavy metal (cadmium, copper, manganese, zinc, and lead) removal yields. The average metal removal yields during the FSBL process were as follows: cadmium (69 to 75%), copper (68 to 70%), manganese (72 to 73%), zinc (65 to 66%), and lead (16%). The FSBL process was also found to be effective in removing both fecal and total coliforms (abatement > 5 to 6 log units). The nutrients content (nitrogen, phosphorus, and magnesium) were also preserved in decontaminated sludge.  相似文献   

20.
More than 50% of municipal sewage sludges cannot be used on agricultural land because of their heavy metals content. Therefore, microbial leaching of heavy metal from municipal sludge was studied in a continuously stirred tank reactor without recycling (CSTR) or with sludge recycling (CSTRWR) at residence times of 1, 2, 3 and 4 days. The reactor CSTRWR is supposed to be more efficient for bacterial process due to the recycling of active bacteria from the settling tank to the reactor. The CSTRWR and the CSTR with 1 g litre(-1) FeSO(4).7H(2)O addition were equally efficient because of copper reprecipitation or recomplexation in the settling tank of the CSTRWR. In the CSTR, about 62% of copper and about 77% of zinc were dissolved in 3 days residence time compared to 50% of copper and 64% of zinc in the CSTRWR, if 3 g litre(-1) FeSO(4).7H(2)O was added. Thus with larger amount of substrate, the CSTR was more efficient than the CSTRWR. Residence time and pH were the main factors for zinc solubilization while for copper, the redox potential was also a major factor. The effect of FeSO(4).7H(2)O concentration on bacterial activity to solubilize heavy metals was also studied, increased concentration of FeSO(4).7H(2)O yielded better copper solubilization while it had no effect or a negative effect on zinc. This supports the hypothesis of a direct mechanism for zinc solubilization and of an indirect mechanism for copper solubilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号