首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
太原市环境空气中TSP和PM_(10)来源解析   总被引:2,自引:0,他引:2  
2001年到2002年,在太原市5个采样点分别采集了环境空气中的总悬浮颗粒物(TSP)和可吸入颗粒物(PM10)。用化学质量平衡模型和二重源解析技术解析了TSP和PM10的来源,结果表明,各主要源类对TSP的分担率依次为燃煤尘28%、扬尘24%、建筑水泥尘14%、硫酸盐10%、机动车尾气尘10%、土壤风沙尘5%、钢铁尘4%、硝酸盐4%、其它1%;对PM10的分担率依次为扬尘30%、燃煤尘18%、机动车尾气尘15%、硫酸盐11%、土壤风沙尘9%、建筑水泥尘7%、硝酸盐4%、其它1%。  相似文献   

2.
应用UNMIX模型解析长春市大气中PM10来源   总被引:1,自引:0,他引:1  
大气中可吸入颗粒物(PM10)是影响大气能见度、气候变化以及人体健康的重要污染物,研究大气中PM10的污染来源对于了解城市中大气的污染状况和制定大气污染物防治措施具有重要的意义。选择长春市的净月公园、劳动公园、君子兰公园、体育学院、儿童公园、客车医院、工商学院和邮电学院作为受体采样点,于2011年9月至2012年2月期间,采用KC-120型中流量PM10/TSP采样器(青岛崂山应用研究所)进行大气中可吸入颗粒物PM10的采样,共采集40个受体样品。样品经预处理后,采用电感耦合等离子体质谱法分析了样品中的Be、V、Cr、Mn、Co、Ni、Cu、Zn、Mo、Ag、Cd、Sb、Ba、Tl、Pb、Na、Mg、K、Ca共19种无机元素,将经过标准化后的760个数据代入EPA UNMIX6.0软件对长春市大气中PM10进行源解析研究,其中,Min Rsq=0.89(89%的数据方差可由该模型解释),Min Sig/Noise=2.50。结果表明:长春市大气中的PM10主要有3个来源:源1为燃煤尘或工业扬尘,贡献率为19.5%;源2为机动车尾气或土壤风沙尘,贡献率为13.1%,源3为城市综合扬尘和其他未知尘源,贡献率为67.4%。对这3个源进行相关性分析,3个源间的相关系数并不是理论值0,而是在-0.553~0.345间变化;源1和源3间相关性最大,相关系数为0.553;其次是源1与源2,为0.345。由此说明,长春市的PM10污染是多种因素综合作用的结果。将UNMIX模型的解析值与测量值进行回归分析,发现总物种的解析值与测量值间具有良好的线性正相关关系(r2=0.98),每个物种的解析值与测量值间的相关系数为0.713~0.980,相关性强,二者拟合效果较好。  相似文献   

3.
"二重源解析"模型计算结果的误差是采样误差、样品处理误差、化学组分分析误差、数据处理误差以及数学模型误差等所有误差的积累。提出了"二重源解析"解析结果的相对误差和标准偏差表达式,并用之计算了某市利用"二重源解析"模型计算的源贡献值的相对误差和标准偏差,还针对从源排放出来的初始态颗粒物在传输过程中发生的扬尘态变化提出了扬尘转化率的概念和计算方法。  相似文献   

4.
城市空气颗粒物开放源理论与治理技术研究进展   总被引:7,自引:0,他引:7  
城市空气颗粒物开放源已成为大气颗粒物的主要来源之一,它对改善我国城市空气环境质量具有重要意义。开放源是一种复合源类,具有源强不确定和排放不连续等特点。其所排放的主要污染物是扬尘。但目前只有少数的开放源类起尘量可以进行估算。国内外一般对城市空气颗粒物开放源的防治对策有生态环境综合整治或生态修复治理、湿法防尘、将堆放物用覆盖物覆盖或封闭储存等。  相似文献   

5.
大气中可吸入颗粒物(PM10)是影响大气能见度、气候变化以及人体健康的重要污染物,研究大气中PM10的污染来源对于了解城市中大气的污染状况和制定大气污染物防治措施具有重要的意义。选择长春市的净月公园、劳动公园、君子兰公园、体育学院、儿童公园、客车医院、工商学院和邮电学院作为受体采样点,于2011年9月至2012年2月期间,采用KC-120型中流量PM10/TSP采样器(青岛崂山应用研究所)进行大气中可吸入颗粒物PM10的采样,共采集40个受体样品。样品经预处理后,采用电感耦合等离子体质谱法分析了样品中的Be、V、Cr、Mn、Co、Ni、Cu、Zn、Mo、Ag、Cd、Sb、Ba、Tl、Pb、Na、Mg、K、Ca共19种无机元素,将经过标准化后的760个数据代入EPA UNMIX6.0软件对长春市大气中PM10进行源解析研究,其中,Min Rsq=0.89(89%的数据方差可由该模型解释),Min Sig/Noise=2.50。结果表明:长春市大气中的PM10主要有3个来源:源1为燃煤尘或工业扬尘,贡献率为19.5%;源2为机动车尾气或土壤风沙尘,贡献率为13.1%,源3为城市综合扬尘和其他未知尘源,贡献率为67.4%。对这3个源进行相关性分析,3个源间的相关系数并不是理论值0,而是在-0.553~0.345间变化;源1和源3间相关性最大,相关系数为0.553;其次是源1与源2,为0.345。由此说明,长春市的PM10污染是多种因素综合作用的结果。将UNMIX模型的解析值与测量值进行回归分析,发现总物种的解析值与测量值间具有良好的线性正相关关系(r2=0.98),每个物种的解析值与测量值间的相关系数为0.713~0.980,相关性强,二者拟合效果较好。  相似文献   

6.
吉林省典型城市大气中PAHs来源解析   总被引:1,自引:0,他引:1  
通过对吉林省4个典型城市,即吉林、白城、四平和通化市大气颗粒物中多环芳烃(PAHs)的采样和分析,得到16种PAHs的成分谱,应用主因子分析和特征比值法对其进行定性研究,得到吉林省大气中PAHs的2种主要来源--车辆尾气和燃煤。并应用绝对主因子分析法进一步定量计算这2种源对PAHs的浓度贡献值及贡献率,结果表明:吉林省典型城市PAHs解析值为772.39μg·g-1,绝大多数解析值与监测值之间的比值接近于1,车辆尾气对各PAH的贡献率为2.6%~67.6%,燃煤源的贡献率为24.1%~121.2%。另外,该研究还计算了已识别的2种源对于不同环数的PAHs的贡献,2~3环的PAHs大部分来自于燃煤,约占总体的89%,车辆尾气仅占11%;4环的PAHs约58%来源于燃煤,42%来源于车辆尾气;5环的PAHs约45%来源于燃煤,55%来源于车辆尾气;6环PAHs来源于燃煤的占61%,来源于车辆尾气的占39%。  相似文献   

7.
2007年2月在攀枝花市不同功能区采集了大气PM10样品42个和污染源样品32个,采用超声抽提GC/MS方法测定分析了16种多环芳烃(PAHs)的含量。结果显示攀枝花市PM10颗粒相PAHs单体浓度范围为0.34~416.45ng/m3,总量浓度范围为24.56~2569.66ng/m3;攀枝花市5个采样点中河门口片区PM10多环芳烃单体浓度范围为5.64~416.45ng/m3,污染最严重。源样品测定结果分别为扬尘78.74ug/g,煤烟尘6.12ug/g,钢铁工业尘30.54ug/g,焦化尘3187.42ug/g。应用比值法和化学质量平衡(CMB)模型对污染源进行识别,燃煤和炼焦是攀枝花市PAHs的主要来源,对攀枝花市大气可吸入颗粒物中多环芳烃污染的分担率分别为55.8%、19.9%。  相似文献   

8.
采集柳林县城扬尘及空气颗粒物其他污染源(煤烟尘、土壤风沙尘、建筑水泥尘、机动车尾气尘)样品,测定了元素、离子、碳化学组分,并与其他城市的扬尘化学组分进行比较.结果表明,柳林细粒子(PM_(2.5))扬尘和粗粒子(PM_(10))扬尘的化学组成为:常量元素(32.66%、43.65%)TC(17.49%、15.13%)离子组分(4.68%、2.79%)微量元素(1.52%、1.43%).柳林粗粒子扬尘化学组成与其他城市相差较大:TC含量高于其他4个城市,SO_4~(2-)、Ca、Fe含量总体较低.分歧系数计算结果为:细粒子CD_(mk)=0.42,粗粒子CD_(mk)=0.46,均大于0.2,说明扬尘与土壤风沙尘的化学组成相似程度不高,受人类活动的影响较大.总之,土壤风沙尘、建筑水泥尘、煤烟尘是影响柳林扬尘的主要因素,煤炭使用、煤炭运输和机动车尾气尘对柳林扬尘也有一定影响.  相似文献   

9.
道路交通扬尘不仅危害人体健康,而且会造成环境污染。以山西省典型公路绿化带为研究对象,对不同公路绿化带进行分类,并选择粒径分别为150、106、75、53μm的黄土粉,模拟道路交通TSP,采用喷粉机设置1、2、3、4 m·s-1的喷粉速度在路沿处设置人工喷粉,在路侧设置样带分0、2、5、10、15、20 m距离梯度布设采样点进行尘源样品的采集,进行称重。本文提出绿化带净滞尘率和梯度净化率的概念,研究不同粒径水平、不同瞬时风力条件以及不同类型绿化带对交通扬尘的阻滞吸收效应,最后基于显著影响因子和因子的互作采用逐步回归法拟合绿化带滞尘效应多元回归模型,分析绿化带滞尘效应与多种林带特征因子的关系。结果表明,公路绿化带明显改变了道路TSP扩散格局,对空气中的粉尘有显著的净化效应。本实验条件下,在距道路5 m范围内绿化带开始发挥效应,净滞尘效应均值达22.95%,随后TSP净滞尘率降低,在20m净滞尘率均值为9.83%,但净化率均值达96.56%;不同粒径水平和瞬时风力条件下,绿化带的滞尘效应不同,TSP粒径为53、75μm时,绿化带在5 m的净滞尘率最高,分别为18.81%和38.09%,而粒径为106、150μm时,绿化带在15 m的净滞尘率最高,分别为15.40%和24.94%,当瞬时风力为1 m·s-1时,净滞尘率在15 m处最高,为16.50%,当瞬时风力分别为2、3、4 m·s-1时,净滞尘率均在5 m处最高,分别为22.03%、28.69%、25.09%,均以高密度型绿化带(郁闭度≥0.55)效果较好;在近路基处栽植杨树(Populus L.)或槐树(Sophora japonica Linn.),且乔木种长势高大并伴有较密的灌草结构,能增强绿化带的滞尘效应。  相似文献   

10.
陈飞  秦传高  钟秦 《生态环境》2013,(12):1916-1921
采用化学质量平衡模型(CMB)对徐州市大气颗粒物中的多环芳烃(PAHs)进行来源分析,从而来确定各个源对大气的PAHs贡献值。主要通过利用大流量采样器配置PM10切割头在冬季和夏季对不同功能区,即生活区、工业区和旅游区采样大气中的可吸入颗粒物(PM10)样品,并用高效液相色谱法(HPLC)重点分析和研究了美国环保局(EPA)列出的16种PHAS优先污染物。研究结果表明:徐州市PM10污染比较严重,PM10污染质量浓度水平冬季是(288.81μg·m-3)大于夏季(276.34μg·m-3),特别是工业区,污染数值达到393.13μg·m-3。夏季的总PAHs质量浓度为22.89 ng·m-3,分别是生活区28.35 ng·m-3、工业区21.75 ng·m-3和旅游区18.58 ng·m-3。冬季的总PAHs质量浓度为306.29 ng·m-3,分别是工业区388.03 ng·m-3、生活区276.29 ng·m-3和旅游区254.28 ng·m-3。夏季和冬季情况下,旅游区的污染相对来说都是最低的PM10中多环芳烃的源解析结果为,煤烟尘污染源的全年贡献率为64.00%,冬季煤烟尘污染源的贡献率为66.51%,夏季煤烟尘污染源的贡献率为57.21%,说明煤烟尘是PM10中多环芳烃的主要贡献源,土壤尘次之,全年贡献率为24.90%,冬季为25.48%,夏季为28.97%,因此,扬尘和烟煤尘的污染是徐州市的PM10中PAHs的最主要来源。  相似文献   

11.
为研究武汉市道路尘中碳组分污染特征及来源,于2018年5月在武汉市青山区采集道路尘样品,用热光碳分析仪测定样品中有机碳(OC)、元素碳(EC)、烟炱(soot)和焦炭(char)含量,并使用特征比值法、相关分析及主成分分析法对道路尘碳组分污染特征和来源进行探讨分析.结果表明,道路尘中OC、EC、soot和char含量平均值分别为1.29、2.21、2.04、0.17 g·kg-1,说明不同碳组分含量存在较大的空间变异性.相关性分析表明OC和EC的来源存在一定差异,且EC主要贡献来源是soot.OC;EC和char;soot比值和主成分分析结果表明,武汉市青山区道路尘中碳组分主要来源于机动车尾气和燃煤排放,也可能受到生物质燃烧的影响.  相似文献   

12.
污染源解析是城市大气环境精准防治的重要基础。为探究典型工业城市大气降尘中重金属污染分布特征和污染源解析,本研究在济南市域内采集了35个大气降尘样品,分析了样品中重金属浓度及其空间分布特征,采用正定矩阵因子分析模型(Positive Matrix Factorization,PMF)解析降尘中重金属来源。研究结果表明,降尘中Mn、Fe、Co、Ni、Cu、Zn、As和Pb浓度平均值分别为501.4、29884.6、8.2、24.8、44.3、153.9、12.5、40.1 mg·kg-1,其中Zn、Cu和Pb的地累积指数(Geoaccumulation Index,Igeo)分别为1.17、1.06和1.01,属于中度污染;钢铁冶炼较为发达的钢城区降尘中Mn、Fe、Co、Cu和As浓度显著高于其他区县,其浓度平均值分别为1172.4、73577.3、17.0、139.7、32.3 mg·kg-1,而Zn和Pb在历下区、槐荫区等人口密集区域最高浓度可达351.5 mg·kg-1和114.0 mg·kg-1;PMF分析结果表明,济南市降尘重金属主要存在4个贡献源,分别为土壤源、工业源、交通源和混合源,贡献率分别为46.8%、26.6%、15.2%和11.4%。其中,重金属Co、Cu、Fe主要来自土壤源,Mn主要来自于土壤源和工业源的贡献,Ni主要来自于土壤源和混合源,交通源对降尘中Pb和Zn的贡献率较高,As则主要来自于工业源。本研究结果可为济南市大气环境精准防控政策的制定提供理论依据。  相似文献   

13.
大气颗粒物源解析土壤风沙尘成分谱研究进展   总被引:2,自引:0,他引:2  
土壤风沙尘是颗粒物源解析的一类重要尘源,文章从概念、成分、粒径、采样、区域性特征、标识元素选择、成分谱比较、影响因素、数据库建设等几个方面介绍了土壤风沙尘的研究进展。  相似文献   

14.
Over the course of the last decade, research conducted by the Imperial College Environmental Geochemistry Research Group has focused on the nature and effects of lead in UK dusts and soils. An initial nationwide reconnaissance survey demonstrated that approximately 10% of the population is exposed to lead levels in excess of 2,000 g g–1 in house-hold dust. Subsequent exposure studies revealed that for 2 year old children in the UK urban environment, approximately 50% of lead intake was from dust ingested as a result of hand-to-mouth activity. Follow-up computer controlled scanning electron microscopy (CCSEM) analysis of urban household dust and particulate material wiped from children's hands showed that important sources of dust lead include lead-based paint, road dust and soils. CCSEM identification of specific soil lead tracer particles (from minewaste contaminated soils) in dusts and on children's hands further documented the important role of soil as a source of exposure. Speciation studies of soil lead of this origin indicated that the form of the lead, which is largely influenced by the soil environment, is the primary control on bioavailability. It appears that although lead of minewaste origin may be present at elevated levels in dusts and soils, it does not necessarily contribute to elevated blood lead levels when the lead is present in relatively insoluble form.  相似文献   

15.
本文结合实例介绍了大气颗粒物来源解析最常用的模型-化学质量平衡(CMB)的原理、有效方差最小二乘解法及诊断检验技术,并用MPIN矩阵检验了拟合元素对拟合源的灵敏度,奇异值分解法(SVD)鉴别了共线源,得出天津市经济技术开发区(TEDA)的TSP主要来源为风沙、扬尘,其次为燃煤飞灰和木灰。  相似文献   

16.
天津城市道路灰尘重金属污染特征   总被引:4,自引:0,他引:4  
以天津城市道路灰尘重金属为研究对象,按照环线分布将天津市中心城区划分为内环以内、内环-中环、中环以外3个区域,总共设置93个采样点。对表层灰尘进行采样收集,预处理后测定样品的理化性质,采用原子吸收光谱仪测定道路灰尘中重金属Cd、Cr、Cu、Ni和Pb的含量,进而分析天津市道路灰尘重金属的含量水平,运用ArcGIS软件中的地统计分析方法内插得出其空间分布特征,通过Pearson相关分析和主成分分析判析重金属来源。研究结果表明:道路灰尘颗粒粒径表现为双峰,主峰对应粒径较小,且为非正态分布,大量小粒径颗粒的存在使重金属含量增高;市区和各环区有机质变异系数较大,道路灰尘中有机质的空间分布差异较大,因而人为因素影响广泛;市区道路灰尘中重金属 Cd、Cr、Cu、Ni 和 Pb的平均含量依次为0.99、121.41、100.62、43.35和61.48 mg·kg-1,分别为天津土壤环境背景值的11.00倍、1.44倍、3.49倍、1.30倍和2.93倍;Cd、Cr和Cu的空间分布差异较大,Ni和Pb的空间分布差异较小;Pearson相关分析表明Pb-有机质(P<0.05), Cu-Ni(P<0.01)和Cr-Cu(P<0.05)之间存在显著正相关关系,主成分分析人为因素的积累贡献率为33.050%,自然因素的积累贡献率为57.315%,因此得出重金属受人为因素影响较大,交通尾气排放和工业污染为天津道路灰尘重金属污染的重要来源,且以多因子复合影响为主。  相似文献   

17.
上海市道路灰尘中铂族元素(PGEs)富集特征   总被引:4,自引:0,他引:4  
分析了上海市道路灰尘铂族元素(PGEs)累积水平和分布特征,并探讨了来源变化.样品经王水消解后由ICP-MS测定.研究结果表明,上海市道路灰尘Rh,Pd,Pt浓度分别达到:27.68(61.05-4.50)ng·g~(-1),107.72(12.98-241.4)ng·g~(-1)和34.89(0.36-108.6)ng·g~(-1),分别是参照点的18.33倍、11.12倍和65.83倍,高出地壳丰度值两个数量级以上,与国际其他城市道路灰尘PGEs水平相比,Pt含量较低,Pd和Rh含量处于中间水平;内环-中环区间的道路灰尘PGEs含基最高,从此区域分别往城区内和城区外,PGEs含鼍逐渐降低,至郊区道路,灰尘PGEs含量达到最低,车流量及道路是否限行高污染车辆是主要致因;不同类型道路PGEs浓度水平表现为:快速路(包括环线)>主干道>次干道>高速公路>郊区公路,道路类型会对PGEs分布产生较大的影响,但并没有对其产生决定性作用;PGEs间相关性很好,汽车催化转化器(VECs)排放是道路灰尘PGEs主要来源,Pd含量远高于Pt和Rh,不同于大多数文献的研究结果,VECs类型发生变化是主要原因;同为交通污染排放的元素,Cr与PGEs的相关性很好,Cu与PGEs之间有一定相关性,Zn只与Pt有相关性,而Ph与PGEs没有相关性,Pb和Zn为汽车催化剂毒物是主要原因.  相似文献   

18.
A receptor modeling approach has been applied to identify and apportion sources of airborne particulate matter in Thessaloniki, Greece. The absolute principal component analysis source apportionment technique used, provided quantitative information regarding both source particle characteristics and impacts. The analysis identified four major sources of heavy metals within total suspended particles (TSP) in the centre of the city: oil burning, pyrometallurgical non‐ferrous metal processes, motor vehicles and soil resuspension. Their contributions to TSP estimated by regression on absolute principal component scores (APCS) were 12%, 8%, 5% and 4%, respectively. A similar analysis conducted for a sampling site close to the industrial area identified five major sources: oil burning, industrial Cr source, soil resuspension, pyrometallurgical non‐ferrous metal processes and motor vehicles with contributions 20%, 15%, 9%, 8% and 4%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号