首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
微波预处理对秸秆厌氧消化影响的研究   总被引:1,自引:0,他引:1  
以秸秆为研究对象,比较不同的微波强度预处理作用下对秸秆厌氧消化产气特性的影响,研究日产气量、pH值、甲烷气体浓度及生物降解率4个参数的变化趋势,结果表明:微波预处理对秸秆厌氧消化有明显效果,平均日产气量由未被预处理的6.21 mL/g VS上升到 8.16 mL/g VS,上升了31.33%,达到最大日产气量时间由原来的第12 d,提前至第2~第7 d不等,最大日产气量由原来的23.43 mL/g VS上升到43.49 mL/g VS;在360~900 W范围内,微波强度越大,反应的pH值下降越快,秸秆厌氧消化最大日产气量越提前;经过微波预处理的甲烷浓度平均浓度由原来的50%提高至62%左右,其生物能范围也由未处理前的17.58 MJ/m3提高至23.46 MJ/m3,物降解率由未预处理的44.12%,提高至71.55%。  相似文献   

2.
High-solids anaerobic digestion can consistently achieve 55 to 60% volatile solids destruction after thermal hydrolysis pretreatment, which reduces its viscosity and increases the fraction of soluble organic matter. For feed sludge with total solids concentrations between 6.8 and 8.2%, the process is stable at hydraulic retention times of 9 to 12 days, significantly increasing the treatment capacity of existing digesters or, in treatment plants without spare capacity, helping to postpone, reduce, or even avoid costly infrastructure investments. Process stability is related to the high concentration of soluble organic matter in the digesters. High-solids temperature-phased digestion appears to be superior to high-solids mesophilic digestion, with respect to process flexibility and stability, biosolids stabilization, and biogas generation, although ammonia inhibition may have occurred. Implementation of high-solids digestion could significantly reduce operation and maintenance costs of solids-handling operations.  相似文献   

3.
Integration of algal biofuel production to wastewater anaerobic digestion infrastructure has the potential to increase biogas production, decrease high and variable internal nitrogen loads, and improve sludge digestibility and dewaterability. In this research, two species of microalgae, Spirulina platensis and Chlorella sp., were grown on sludge centrate and a centrate and nitrified wastewater effluent mixture. Harvested algae were co-digested with waste activated sludge (WAS) at varying ratios. High-growth (6.8 g m(-2) x d(-1)), nitrogen (36.5 g m(-3) x d(-1)), and phosphorus (6.5 g m(-3) x d(-1)) uptake rates were achieved with Chlorella on centrate. No growth was observed with S. platensis under the same conditions; however, both organisms grew well on the centrate and effluent mixture. Co-digestion of algae with WAS improved volatile solids reduction. Although co-digestion with S. platensis improved biosolids dewaterability, Chlorella had a slight negative effect on dewaterability compared to WAS alone. The efficiency of energy conversion from photons to biogas generated from Chlorella was estimated at 1.4%.  相似文献   

4.
臭氧预处理—厌氧消化工艺促进剩余污泥减量化的研究   总被引:1,自引:0,他引:1  
主要研究了臭氧氧化对剩余污泥的破解效果及污泥厌氧消化效率的影响.结果表明,随着臭氧投加量的增加,悬浮物(SS)、可挥发性悬浮物(VSS)逐步减少,而剩余污泥上清液中的溶解性COD(SCOD)、总有机碳(TOC)、蛋白质和多糖则明显增加.经臭氧预处理(臭氧投加量为0.050 g(以每克SS计))后,剩余污泥中温(35℃)厌氧消化效率明显提高,经65d稳定运行后,总挥发性固体(TVS)去除率为67.58%,与未经臭氧预处理的剩余污泥相比提高50.61%;甲烷平均产率为0.303 L(以每克TVS计),与未经臭氧预处理的剩余污泥相比提高54.59%.可见,臭氧预处理能有效促进污泥厌氧消化,从而达到污泥减量的目的.  相似文献   

5.
In this study, high-solids anaerobic digestion of thermally pretreated wastewater solids (THD) was compared with conventional mesophilic anaerobic digestion (MAD). Operational conditions, such as pretreatment temperature (150 to 170 degrees C), solids retention time (15 to 20 days), and digestion temperature (37 to 42 degrees C), were varied for the seven THD systems operated. Volatile solids reduction (VSR) by THD ranged from 56 to 62%, compared with approximately 50% for MAD. Higher VSR contributed to 24 to 59% increased biogas production (m3/kg VSR-d) from THD relative to MAD. The high-solids conditions of the THD feed resulted in high total ammonia-nitrogen (proportional to solids loading) and total alkalinity concentrations in excess of 14 g/L as calcium carbonate (CaCO3). Increased pH in THD reactors caused 5 to 8 times more un-ionized ammonia to be present than in MAD, and this likely led to inhibition of aceticlastic methanogens, resulting in accumulation of residual volatile fatty acids between 2 and 6 g/L as acetic acid. The THD produced biosolids cake that possessed low organic sulfur-based biosolids odor and dewatered to between 33 and 39% total solids. Dual conditioning with cationic polymer and ferric chloride was shown to be an effective strategy for mitigating dissolved organic nitrogen and UV-quenching compounds in the return stream following centrifugal dewatering of THD biosolids.  相似文献   

6.
碱解预处理污泥和原污泥按一定比例进行混合后,投入厌氧反应器中进行消化,研究其对污泥减量化的影响。结果表明,该处理既可以提高污泥减量率,又能改善污泥厌氧消化性能,提高污泥产气量。当碱处理污泥和原污泥混合比为1∶3时,在混合初期由于稀释作用和水解中和作用,溶液的pH能迅速恢复到中性。SS减少48%,较对照组提高了10%;SCOD减少约80%,较对照组提高20%,而空白对照组因未发生溶胞作用,各参数值均处于较低水平,降解率也维持在较低水平。  相似文献   

7.
金属铁铝对混凝强化初沉污泥中温厌氧消化的影响   总被引:1,自引:0,他引:1  
选取FeCl3和AlCl3·6H2O作为混凝剂对城市污水进行一级强化混凝处理,降低二级生物处理的进水负荷,减少污水生物处理系统的能量消耗。主要研究混凝过程投加的金属盐对一级强化混凝产生的初沉污泥中温厌氧消化的影响。和剩余污泥相比,初沉污泥更适合厌氧消化处理,污泥降解性能和产气性能更高。当采用城市污水一级强化混凝处理时,污泥中的金属和金属盐水解引起的pH降低,使混凝强化初沉污泥的厌氧消化受到一定抑制。随着污泥中铝含量的降低和铁含量的增加,厌氧消化的COD降解率和挥发性固体(VS)降解率逐渐升高,生物气产量逐渐增大,产气速率加快。当混凝强化初沉污泥只含有铁时(铁含量为10.16 mg/L),混凝强化初沉污泥厌氧消化效果最好,产气稳定,而且产气速率高,生物气产量为237 mL,生物气甲烷含量为55.5%,降解单位VS产气量为0.80 L/g,均高于其他含铝的混凝强化初沉污泥。污泥中的铁对初沉污泥厌氧消化的抑制作用远远小于铝的作用,说明铁盐适合用于城市污水的一级强化混凝处理。  相似文献   

8.
以某城市污水处理厂剩余污泥为对象,通过实验研究了超声与次氯酸钠预处理对污泥的溶胞效果,以及对后续厌氧消化的影响。结果表明,超声与次氯酸钠耦合作用最优操作条件为超声声能密度1.0 W/mL,作用时间50 min。在此条件下,次氯酸钠投加量为4.023 mg/g SS时,对污泥厌氧消化改善效果最明显,剩余污泥产气率及甲烷含量较对照组分别提高了69.73%和10%。同时污泥VSS去除率由11.11%提高到21.24%,在一定程度上实现了污泥减量。  相似文献   

9.
Batch anaerobic digesters were used to stabilize microwave (MW)-irradiated waste activated sludge (WAS). A low temperature range (50-96 degrees C) MW irradiation was applied. Effects of pretreatment temperature (T) and intensity (I), concentration (C) and percentage of sludge pretreated (PT) were investigated in a multilevel factorial statistical design containing 54 mesophilic batch reactors by monitoring cumulative biogas production (CBP). Variance analysis (ANOVA) determined that the most important factors affecting WAS solubilization were temperature, intensity, and sludge concentration. Improvements in CBP from WAS were significantly affected by sludge percentage pretreated, temperature, and concentration. Pretreatment resulted in 3.6 +/- 0.6 and 3.2 +/- 0.1 fold increases in soluble to total chemical oxygen demand (SCOD/TCOD) at high and low sludge concentrations, respectively. WAS, microwaved to 96 degrees C, produced the greatest improvement in CBP with 15 +/- 0.5 and 20 +/- 0.3% increases over controls after 19 d of digestion at low and high WAS concentrations. Dewaterability of microwaved sludge was enhanced after anaerobic digestion.  相似文献   

10.
Biopower can diversify energy supply and improve energy resiliency. Increases in biopower production from sustainable biomass can provide many economic and environmental benefits. For example, increasing biogas production through anaerobic digestion of food waste would increase the use of renewable fuels throughout California and add to its renewables portfolio. Although a biopower project will produce renewable energy, the process of producing bioenergy should harmonize with the goal of protecting public health. Meeting air emission requirements is paramount to the successful implementation of any biopower project. A case study was conducted by collecting field data from a wastewater treatment plant that employs anaerobic codigestion of fats, oils, and grease (FOG), food waste, and wastewater sludge, and also uses an internal combustion (IC) engine to generate biopower using the biogas. This research project generated scientific information on (a) quality and quantity of biogas from anaerobic codigestion of food waste and municipal wastewater sludge, (b) levels of contaminants in raw biogas that may affect beneficial uses of the biogas, (c) removal of the contaminants by the biogas conditioning systems, (d) emissions of NOx, SO2, CO, CO2, and methane, and (e) types and levels of air toxics present in the exhausts of the IC engine fueled by the biogas. The information is valuable to those who consider similar operations (i.e., co-digestion of food waste with municipal wastewater sludge and power generation using the produced biogas) and to support rulemaking decisions with regards to air quality issues for such applications.

Implications: Full-scale operation of anaerobic codigestion of food waste with municipal sludge is viable, but it is still new. There is a lack of readily available scientific information on the quality of raw biogas, as well as on potential emissions from power generation using this biogas. This research developed scientific information with regard to quality and quantity of biogas from anaerobic co-digestion of food waste and municipal wastewater sludge, as well as impacts on air quality from biopower generation using this biogas. The need and performance of conditioning/pretreatment systems for biopower generation were also assessed.  相似文献   


11.
选取FeCl3和AlCl2·6H2O作为混凝剂对城市污水进行一级强化混凝处理,降低二级生物处理的进水负荷,减少污水生物处理系统的能量消耗。主要研究混凝过程投加的金属盐对一级强化混凝产生的初沉污泥中温厌氧消化的影响。和剩余污泥相比,初沉污泥更适合厌氧消化处理,污泥降解性能和产气性能更高。当采用城市污水一级强化混凝处理时,污泥中的金属和金属盐水解引起的pH降低,使混凝强化初沉污泥的厌氧消化受到一定抑制。随着污泥中铝含量的降低和铁含量的增加,厌氧消化的COD降解率和挥发性固体(Vs)降解率逐渐升高,生物气产量逐渐增大,产气速率加快。当混凝强化初沉污泥只含有铁时(铁含量为10.16mg/L),混凝强化初沉污泥厌氧消化效果最好,产气稳定,而且产气速率高,生物气产量为237mL,生物气甲烷含量为55.5%,降解单位Vs产气量为0.80L/g,均高于其他含铝的混凝强化初沉污泥。污泥中的铁对初沉污泥厌氧消化的抑制作用远远小于铝的作用,说明铁盐适合用于城市污水的一级强化混凝处理。  相似文献   

12.
以牛粪为研究对象,考察超声波预处理对牛粪厌氧消化的影响。结果表明,适宜强度的超声波预处理对牛粪厌氧消化有一定促进作用。与未经预处理牛粪相比,在100、175、250W超声波预处理下牛粪厌氧消化的最高产气速率从127.02mL/d分别提高到179.26、212.73、298.71mL/d,累计产气量从1 674.18mL分别提高到2 279.81、2 508.05、2 730.66mL,消化液达到最低pH的时间从30d分别缩短至25、15、10d;消化液最大溶解性COD从14 881mg/L分别提高到16 450、17 080、19 250mg/L,牛粪挥发性固体的生物降解率从44.7%分别提高到55.4%、57.3%、61.7%。超声波强度过大将对微生物造成破坏,降低生物反应活性,从而抑制牛粪厌氧消化。经325W超声波预处理后,牛粪厌氧消化的最高产气速率、累计产气量等参数均不及未经预处理牛粪。在未来实际应用中,应注意控制超声波强度,以达到最优预处理效果。  相似文献   

13.
Effects of microwave pretreatment on waste activated sludge (WAS) in mesophilic semicontinuous digesters with acclimatized inoculum at solids retention times (SRTs) of 5, 10, and 20 days are presented. Batch digesters determined optimum microwave temperature, intensity, WAS concentration, and percentage of WAS pretreated for highest WAS solubilization (soluble to total chemical oxygen demand ratio [SCOD:TCOD]) and biogas production. Pretreatment results indicated the potential to damage floc structure and release 4.2-, 4.5-, and 3.6-fold higher soluble proteins, sugars, and SCOD:TCODs compared with controls, with nucleic acid release. Pretreatment increased dewaterability and bioavailability of WAS with 20% higher biogas production compared with controls in batch digestion. In semicontinuous digesters, relative (to control) improvements in removals dramatically increased, as SRT was shortened from 20 to 10 to 5 days, with 23 and 26% higher volatile solids removals for WAS pretreated to 96 degrees C by microwave and conventional heating at a 5-day SRT.  相似文献   

14.
稀盐酸预处理对稻草厌氧消化的影响   总被引:3,自引:2,他引:1  
为探明稀酸预处理对稻草厌氧消化的影响,采用不同浓度的稀盐酸溶液对稻草进行了浸泡预处理,并在完全混合厌氧消化条件下,研究了稻草厌氧发酵过程中的产气量、甲烷含量,发酵液中COD、pH值及挥发性脂肪酸(VFA)的变化情况.结果表明,增大稀盐酸溶液浓度会提高稻草厌氧消化反应的效果.分别经4%、8%和12%的稀盐酸溶液浸泡预处理...  相似文献   

15.
低强度超声波预处理对厨余垃圾厌氧消化的影响   总被引:3,自引:0,他引:3  
冯磊  李润东 《环境工程学报》2012,6(9):3280-3286
以厨余垃圾为研究对象,实验研究产气效率、pH、SCOD、甲烷浓度及生物降解率5个参数的变化趋势,比较低强度超声波处理对厨余垃圾厌氧消化产气特性的影响,结果表明:(1)低强度超声波处理对厨余垃圾厌氧消化产生明显效果,在不同的超声波强度(100、175和250 W)或处理时间(20和40 min)下,产气效率、累计产气量、pH下降幅度、SCOD增加幅度随处理时间和超声功率增加而增加;在超声波强度250 W和处理时间60 min下出现抑制作用;(2)在超声波强度250 W和处理时间40 min条件下,超声波对厨余垃圾厌氧消化增强效果最明显,累计产气量由未处理的3 513 mL提高至5 007 mL,提高42.6%,甲烷气体浓度由51.25%提高至58.8%,生物降解率由58.11%提高至73.5%.  相似文献   

16.
The effects of alkali-enhanced microwave (MW; 50–175 °C) and ultrasonic (US) (0.75 W/mL, 15–60 min) pretreatments, on solubilisation and subsequent anaerobic digestion efficiency of pulp and paper mill waste-activated sludge, were investigated. Improvements in total chemical oxygen demand and volatile suspended solids (VSS) solubilisation were limited to 33 and 39 % in MW pretreatment only (175 °C). It reached 78 and 66 % in combined MW–alkali pretreatment (pH 12?+?175 °C), respectively. Similarly, chemical oxygen demand and VSS solubilisation were 58 and 37 % in US pretreatment alone (60 min) and it improved by 66 and 49 % after US–alkali pretreatment (pH 12?+?60 min), respectively. The biogas yield for US 60 min–alkali (pH 12)-pretreated sludge was significantly improved by 47 and 20 % over the control and US 60 reactors, respectively. The biogas generation for MW (150 °C)–alkali (pH 12)-pretreated sludge was only 6.3 % higher than control; however, it was 8.3 % lower than the MW (150 °C) reactor, which was due to the inhibition of anaerobic activity under harsh thermal–alkali treatment condition.  相似文献   

17.
污泥加热预处理对中温厌氧消化的影响   总被引:1,自引:1,他引:0  
对污泥加热预处理给中温厌氧混合消化和污泥单独消化带来的影响进行了研究.研究结果表明,污泥加热预处理有利于提高混合消化对 COD 的去除率,尤其是 SCOD 的去除率由 77%增长到 93%,但不利于 TS 和 VS 的去除;而对污泥单独消化,预处理则不利于有机物的去除.采用加热预处理后的污泥进样,混合消化和污泥单独消化的甲烷产气量均有所提高.  相似文献   

18.
猪粪和羊粪与麦秆不同配比中温厌氧发酵研究   总被引:3,自引:0,他引:3  
研究了猪粪和羊粪分别与麦秆不同配比中温(35℃)厌氧发酵对产气量、消化时间和最优C/N值的影响。结果表明,猪粪与麦秆在中温厌氧发酵时,所需的最优C/N值为21,且经141 d就可充分发酵,最大干物质累积产气量可达369.53 mL/g。羊粪与麦秆中温厌氧发酵时,所需的最优C/N值为24,且经96 d就可充分发酵,最大干物质累积产气量可达209 mL/g。猪粪秸秆中温厌氧发酵时易发生酸化,发酵前应通过预处理来减少酸化可能;而羊粪麦秆不易发生酸化。  相似文献   

19.
超声波促进城市生活污泥缺氧/好氧消化的研究   总被引:1,自引:1,他引:0  
本研究将超声波预处理引入城市生活污泥缺氧/好氧消化工艺中,自主设计了容积为30 L的生活污泥超声波-缺氧/好氧消化中试系统并用以实验研究。超声波预处理的参数为超声频率28 kHz,声能密度0.15 W/mL,超声时间10 min,超声间隔12 h,污泥超声比例30%。结果表明,引入超声预处理后,缩短了污泥的稳定时间,提高了污泥的消化效率。污泥消化10 d就已经达到了稳定标准,比未引入超声预处理时缩短了12 d,而MLVSS最大去除率提高了11%,达到了55.10%。超声波的引入,对污泥缺氧/好氧消化系统中污泥上清液溶解性COD(SCOD)的变化趋势影响比较明显,而对上清液的pH、氨氮和TP的变化趋势没有明显影响。  相似文献   

20.
Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m3/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号