首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Riparian buffers are used throughout the world for the protection of water bodies from nonpoint-source nitrogen pollution. Few studies of riparian or treatment wetland denitrification consider the production of nitrous oxide (N2O). The objectives of this research were to ascertain the level of potential N2O production in riparian buffers and identify controlling factors for N2O accumulations within riparian soils of an agricultural watershed in the southeastern Coastal Plain of the USA. Soil samples were obtained from ten sites (site types) with different agronomic management and landscape position. Denitrification enzyme activity (DEA) was measured by the acetylene inhibition method. Nitrous oxide accumulations were measured after incubation with and without acetylene (baseline N2O production). The mean DEA (with acetylene) was 59 microg N2O-N kg(-1) soil h(-1) for all soil samples from the watershed. If no acetylene was added to block conversion of N2O to N2, only 15 microg N2O-N kg(-1) soil h(-1) were accumulated. Half of the samples accumulated no N2O. The highest level of denitrification was found in the soil surface layers and in buffers impacted by either livestock waste or nitrogen from legume production. Nitrous oxide accumulations (with acetylene inhibition) were correlated to soil nitrogen (r2=0.59). Without acetylene inhibition, correlations with soil and site characteristics were lower. Nitrous oxide accumulations were found to be essentially zero, if the soil C/N ratios>25. Soil C/N ratios may be an easily measured and widely applicable parameter for identification of potential hot spots of N2O productions from riparian buffers.  相似文献   

2.
Spray irrigation of forested land can provide an effective system for nutrient removal and treatment of municipal wastewater. Evolution of N2 + N2O from denitrifying activity is an important renovation pathway for N applied to forested land treatment systems. Federal and state guidance documents for design of forested land treatment systems indicate the expected range for denitrification to be up to 25% of applied N, and most forest land treatment systems are designed using values from 15 to 20% of applied N. However, few measurements of denitrification following long-term wastewater applications at forested land treatment sites exist. In this study, soil N2 + N2O-N evolution was directly measured at four different landscape positions (hilltop, midslope, toe-slope, and riparian zone) in a forested land treatment facility in the Georgia Piedmont that has been operating for more than 13 yr. Denitrification rates within effluent-irrigated areas were significantly greater than rates in adjacent nonirrigated buffer zones. Rates of N2 + N2O-N evolved from soil in irrigated forests ranged from 5 to 10 kg ha(-1) yr(-1) N on the three upland landscape positions and averaged 38 kg ha(-1) yr(-1) N within the riparian zone. The relationship between measured riparian zone denitrification rates and soil physical and chemical properties was poor. The best relationship was with soil temperature, with an r2 of 0.18. Overall, on a landscape position weighted basis, only 2.4% of the wastewater-applied N was lost through denitrification.  相似文献   

3.
Anaerobic lagoons are commonly used for the treatment of swine wastewater. Although these lagoons were once thought to be relatively simple, their physical, chemical, and biological processes are very complex. This study of anaerobic lagoons had two objectives: (i) to quantify denitrification enzyme activity (DEA) and (ii) to evaluate the influence of lagoon characteristics on the DEA. The DEA was measured by the acetylene inhibition method. Wastewater samples and physical and chemical measurements were taken from the wastewater column of nine anaerobic swine lagoons from May 2006 to May 2009. These lagoons were typical for anaerobic swine lagoons in the Carolinas relative to their size, operation, and chemical and physical characteristics. Their mean value for DEA was 87 mg N2O-N m(-3) d(-1). In a lagoon with 2-m depth, this rate of DEA would be compatible with 1.74 kg N ha(-1) d(-1) When nonlimiting nitrate was added, the highest DEA was compatible with 4.38 kg N ha(-1) d(-1) loss. Using stepwise regression for this treatment, the lagoon characteristics (i.e., soluble organic carbon, total nitrogen, temperature, and NO3-N) provided a final step model R2 of 0.69. Nitrous oxide from incomplete denitrification was not a significant part of the system nitrogen balance. Although alternate pathways of denitrification may exist within or beneath the wastewater column, this paper documents the lack of sufficient denitrification enzyme activity within the wastewater column of these anaerobic lagoons to support large N2 gas losses via classical nitrification and denitrification.  相似文献   

4.
Riparian zones within the Appalachian Valley and Ridge physiographic province are often characterized by localized variability in soil moisture and organic carbon content, as well as variability in the distribution of soils formed from alluvial and colluvial processes. These sources of variability may significantly influence denitrification rates. This investigation studied the attenuation of nitrate (NO3- -N) as wastewater effluent flowed through the shallow ground water of a forested headwater riparian zone within the Appalachian Valley and Ridge physiographic province. Ground water flow and NO3- -N measurements indicated that NO3- -N discharged to the riparian zone preferentially flowed through the A and B horizons of depressional wetlands located in relic meander scars, with NO3- -N decreasing from > 12 to < 0.5 mg L(-1). Denitrification enzyme activity (DEA) attributable to riparian zone location, soil horizon, and NO3- -N amendments was also determined. Mean DEA in saturated soils attained values as high as 210 microg N kg(-1) h(-1), and was significantly higher than in unsaturated soils, regardless of horizon (p < 0.001). Denitrification enzyme activity in the shallow A horizon of wetland soils was significantly higher (p < 0.001) than in deeper soils. Significant stimulation of DEA (p = 0.027) by N03- -N amendments occurred only in the meander scar soils receiving low NO3- -N (<3.6 mg L(-1)) concentrations. Significant denitrification of high NO3- -N ground water can occur in riparian wetland soils, but DEA is dependent upon localized differences in the degree of soil saturation and organic carbon content.  相似文献   

5.
Constructed wetland treatment of swine wastewater probably involves substantial denitrification. Our objective was to assess denitrification and denitrification enzyme activity (DEA) in such wetlands in relation to plant communities, N loading, carbon or nitrogen limitations, and water depth. Two wetland cells each 3.6 m wide and 33.5 m long were connected in series. One set of cells was planted with rushes and bulrushes, including soft rush (Juncus effusus L.), softstem bulrush [Schoenoplectus tabernaemontani (K.C. Gmel.) Pallal, American bulrush [Schoenoplectus americanus (Pers.) Volkart ex Schinz & R. Keller], and woolgrass bulrush [Scirpus cyperinus (L.) Kunth]. Another set was planted with bur-reeds and cattails, including American bur-reed (Sparganium americanum Nutt.), broadleaf cattail (Typha latifolia L.), and narrowleaf cattail (Typha angustifolia L.). The sets will be referred to herein as bulrush and cattail wetlands, respectively. Denitrification and DEA were measured via the acetylene inhibition method in intact soil cores and disturbed soil samples that were taken during four years (1994-1997). Although DEA in the disturbed samples was greater than denitrification in the core samples, the measurements were highly correlated (r2 > or = 0.82). The DEA was greater in the bulrush wetlands than the cattail wetlands, 0.516 and 0.210 mg N kg(-1) soil h(-1), respectively; and it increased with the cumulative applied N. The DEA mean was equivalent to 9.55 kg N ha(-1) d(-1) in the bulrush wetlands. We hypothesized and confirmed that DEA was generally limited by nitrate rather than carbon. Moreover, we determined that one of the most influential factors in DEA was wetland water depth. In bulrush wetlands, the slope and r2 values of the control treatment were -0.013 mg N kg(-1) soil h(-1) mm(-1) depth and r2 = 0.89, respectively. Results of this investigation indicate that DEA can be very significant in constructed wetlands used to treat swine wastewater.  相似文献   

6.
Atmospheric deposition of nitrogenous compounds to ombrotrophic peatlands (i.e., those that have peat layers higher than their surroundings and receive nutrients and minerals exclusively by precipitation) has the potential to significantly alter ecosystem functioning. This study utilized the acetylene inhibition technique to estimate the relative importance of denitrification in nitrogen removal from a primarily ombrotrophic peatland, in an attempt to estimate the threat of increased nitrogen loadings to these areas. Estimates of mean rates of denitrification ranged from -2.76 to 84.0 ng N(2)O-N cm(-3) h(-1) (equivalent to -150 to 4800 microg N(2)O-N m(-2) h(-1)) using an ex situ core technique and from -8.30 to 5.98 microg N(2)O-N m(-2) h(-1) using an in situ chamber technique. Core rates may have been elevated over natural field levels due to effects of disturbance on substrate availability, and chamber rates may have been low due to diffusional constraints on acetylene and N(2)O. Net nitrification was also measured in an attempt to evaluate this process as a source of nitrate for denitrifiers. The low rates of net nitrification measured, in combination with the low rates of in situ denitrification and the very low amounts of free nitrate measured in this peatland, suggests that inorganic N turnover in this wetland is low. Results showed that nitrate was a limiting factor for denitrification in this peatland, with mean rates from nitrate-amended cores ranging from 13.1 to 260 ng N(2)O-N cm(-3) h(-1), and it is expected that increases in nitrogen loadings will increase denitrification rates in this ecosystem.  相似文献   

7.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decline with depth in glacial outwash vs. negligible decline with depth in alluvium). We measured in situ ground water denitrification rates at three depths (65, 150, and 300 cm) within hydric soils at four riparian sites (two per setting) using a 15N-enriched nitrate "push-pull" method. No significant difference was found in the pattern and magnitude of denitrification when grouping sites by setting. At three sites there was no significant difference in denitrification among depths. Correlations of site characteristics with denitrification varied with depth. At 65 cm, ground water denitrification correlated with variables associated with the surface ecosystem (temperature, dissolved organic carbon). At deeper depths, rates were significantly higher closer to the stream where the subsoil often contains organically enriched deposits that indicate fluvial geomorphic processes. Mean rates ranged from 30 to 120 microg N kg(-1) d(-1) within 10 m versus <1 to 40 microg N kg(-1) d(-1) at >30 m from the stream. High denitrification rates observed in hydric soils, down to 3 m within 10 m of the stream in both alluvial and glacial outwash settings, argue for the importance of both settings in evaluating the significance of riparian wetlands in catchment-scale N dynamics.  相似文献   

8.
The influence of riparian zone lithology on nitrate dynamics is poorly understood. We investigated vertical variations in potential denitrification activity in relation to the lithology and stratigraphy of five headwater riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Conductive coarse sand and gravel layers occurred in four of the five riparian areas. These layers were thin and did not extend to the field-riparian perimeter in some riparian zones, which limited their role as conduits for ground water flow. We found widespread organic-rich layers at depths ranging from 40 to 300 cm that resulted from natural floodplain processes and the burial of surface soils by rapid valley-bottom sedimentation after European settlement. The organic matter content of these layers varied considerably from 2 to 5% (relic channel deposit) to 5 to 21% (buried soils) and 30 to 62% (buried peat). Denitrification potential (DNP) was measured by the acetylene block method in sediment slurries amended with nitrate. The highest DNP rates were usually found in the top 0- to 15-cm surface soil layer in all riparian zones. However, a steep decline in DNP with depth was often absent and high DNP activity occurred in the deep organic-rich layers. Water table variations in 2000-2002 indicated that ground water only interacted frequently with riparian surface soils between late March and May, whereas subsurface organic layers that sustain considerable DNP were below the water table for most of the year. These results suggest that riparian zones with organic deposits at depth may effectively remove nitrate from ground water even when the water table does not interact with organic-rich surface soil horizons.  相似文献   

9.
Mechanisms of nutrient attenuation in a subsurface flow riparian wetland   总被引:2,自引:0,他引:2  
Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.  相似文献   

10.
The denitrification process and nitrous oxide (N2O) production in the soil profile are poorly documented because most research into denitrification has concentrated on the upper soil layer (0-0.15 m). This study, undertaken during the 1999 and 2000 growing seasons, was designed to examine the effects of water table management (WTM), nitrogen (N) application rate, and depth (0.15, 0.30, and 0.45 m) on soil denitrification end-products (N2O and N2) from a corn (Zea mays L.) field. Water table management treatments were free drainage (FD) with open drains and subirrigation (SI) with a target water table depth of 0.6 m. Fertility treatments (ammonium nitrate) were 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). During both growing seasons greater denitrification rates were measured in SI than in FD, particularly in the surface soil (0-0.15 m) and at the intermediate (0.15-0.30 m) soil depths under N200 treatment. Greater denitrification rates under the SI treatment, however, were not accompanied with greater N2O production. The decrease in N2O production under SI was probably caused by a more complete reduction of N2O to N2, which resulted in lower N2O to (N2O + N2) ratios. Denitrification rate, N2O production and N2O to (N2O + N2) ratios were only minimally affected by N treatments, irrespective of sampling date and soil depth. Overall, half of the denitrification occurred at the 0.15- to 0.30- and 0.30- to 0.45-m soil layers, and under SI, regardless of fertility treatment level. Consequently, sampling of the 0- to 0.15-m soil layer alone may not give an accurate estimation of denitrification losses under SI practice.  相似文献   

11.
In manure disposal systems, denitrification is a major pathway for N loss and to reduce N transport to surface and ground water. We measured denitrification and the changes in soil N pools in a liquid manure disposal system at the interface of a pasture and a riparian forest. Liquid swine manure was applied weekly at two rates (approximately 800 and 1600 kg N ha-1 yr-1) to triplicate plots of overland flow treatment systems with three different vegetation treatments. Denitrification (acetylene block technique on intact cores) and soil N pools were determined bimonthly for 3 yr. The higher rate of manure application had higher denitrification rates and higher soil nitrate. Depth 1 soil (0-6 cm) had higher denitrification, nitrate, and ammonium than depth 2 soil (6-12 cm). The vegetation treatment consisting of 20 m of grass and 10 m of forest had lower denitrification. Denitrification did not vary significantly with position in the plot (7, 14, 21, and 28 m downslope), but nitrate decreased in the downslope direction while ammonium increased downslope. Denitrification ranged from 4 to 12% of total N applied in the manure. Denitrification rates were similar to those from a nearby dairy manure irrigation site, but were generally a lower percent of N applied, especially at the high swine effluent rate. Denitrification rates for these soils range from 40 to 200 kg N ha-1 yr-1 for the top 12 cm of soil treated with typical liquid manure that is high in ammonium and low in nitrate.  相似文献   

12.
Rapid increases in the swine (Sus scrofa domestica) population in the 1990s and associated potential for nitrate N pollution of surface waters led the state of North Carolina to adopt stringent waste management regulations in 1993. Our objectives were to characterize (i) nitrate N movement from waste application fields (WAFs) in shallow ground water, and (ii) soil, hydrologic, and biological factors influencing the amount of nitrate N in the adjacent stream. A ground water monitoring study was conducted for 36 mo on a swine farm managed under new regulations. Water table contours and lack of vertical gradients indicated horizontal flow over most of the site. Nitrate N concentrations in water from shallow wells in WAFs averaged 30 +/- 19 mg L(-1) and delta15N ratios for nitrate N were between +20 and +25 per mil. Nitrate N concentration decreased from field-edge to streamside wells by 22 to 99%. Measurement of delta18O and delta15N enrichment of nitrate in ground water throughout the WAF-riparian system indicated that denitrification has not caused significant 15N enrichment of nitrate. Over a 24-mo period, delta15N ratios for nitrate N in the stream approached delta15N ratios for nitrate N in ground water beneath WAFs indicating delivery of some waste-derived nitrate N to the stream in shallow ground water. Nitrate N concentrations in the stream were relatively low, averaging 1 mg L(-1). Dilution of high nitrate N water in shallow horizontal flow paths with low nitrate N water from deeper horizontal flow paths at or near the stream, some denitrification as ground water discharges through the stream bottom, and some denitrification in riparian zone contributed to this low nitrate N concentration.  相似文献   

13.
Denitrification in alluvial wetlands in an urban landscape   总被引:1,自引:0,他引:1  
Riparian wetlands have been shown to be effective "sinks" for nitrate N (NO3-), minimizing the downstream export of N to streams and coastal water bodies. However, the vast majority of riparian denitrification research has been in agricultural and forested watersheds, with relatively little work on riparian wetland function in urban watersheds. We investigated the variation and magnitude of denitrification in three constructed and two relict oxbow urban wetlands, and in two forested reference wetlands in the Baltimore metropolitan area. Denitrification rates in wetland sediments were measured with a 15N-enriched NO3- "push-pull" groundwater tracer method during the summer and winter of 2008. Mean denitrification rates did not differ among the wetland types and ranged from 147 +/- 29 microg N kg soil(-1) d(-1) in constructed stormwater wetlands to 100 +/- 11 microg N kg soil(-1) d(-1) in relict oxbows to 106 +/- 32 microg N kg soil(-1) d(-1) in forested reference wetlands. High denitrification rates were observed in both summer and winter, suggesting that these wetlands are sinks for NO3- year round. Comparison of denitrification rates with NO3- standing stocks in the wetland water column and stream NO3- loads indicated that mass removal of NO3- in urban wetland sediments by denitrification could be substantial. Our results suggest that urban wetlands have the potential to reduce NO3- in urban landscapes and should be considered as a means to manage N in urban watersheds.  相似文献   

14.
ABSTRACT: This study evaluates a conceptual model developed for riparian zones in Ontario, Canada, that links landscape hydrogeological characteristics to riparian ground water hydrology and nitrate removal efficiency. Data from a range of riparian sites in the United States and Europe suggest that the riparian zone types identified in the model are consistent with patterns of riparian hydrology and nitrate flux and removal in many humid temperate landscapes. These data also support the view that a riparian width of less than 20 m is often sufficient for effective nitrate removal unless riparian sediments are coarse grained or nitrate transport occurs mainly in surface‐fed ground water seeps. This study assesses the possibility of using topographic, soil, surficial geology, and vegetation maps to determine landscape attributes linked by the model to riparian zone hydrological functioning and nitrate removal efficiency. Although mappable data can help in determining broad classes of riparian zones, field visits are necessary to determine non‐mappable riparian attributes such as seeps, organic horizons, and permeable sediment depth in the riparian zone. This research suggests that the conceptual model could be used for landscape management purposes in most temperate landscapes with minor modifications and that the hydrological component of the model could be adapted for contaminants other than nitrate.  相似文献   

15.
Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.  相似文献   

16.
Little is known about the occurrence and distribution of the herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] in soil, ground water, and surface water in areas affected by grass-seed production. A field study was designed to investigate the occurrence and distribution of diuron and its transformation products at a poorly drained field site located along an intermittent tributary of Lake Creek in the southern Willamette Valley of Oregon. The experimental sites consisted of a field under commercial grass seed production with a cultivated riparian zone and a second site that was part of the same grass seed field but with a noncultivated riparian zone. Diuron and its transformation product DCPMU [3-(3,4-dichlorophenyl)-1-methylurea] were the only significant residues detected in this study. Concentrations of diuron in surface water declined from a maximum of 28 microg/L immediately following application to low levels that persisted as long as flow was present. Diuron and DCPMU concentrations in shallow ground water (15-36 cm below ground surface) were highest (2-13 microg/L) in the zone immediately adjacent (0.5 m) to Lake Creek and indicated the influence of stream water on shallow ground water near the stream. Diuron and DCPMU detected in soil prior to the second season's application indicated the persistence of diuron and DCPMU from the previous year's application. Surface runoff during the rainy season removes only a very small percentage (<1%) of the applied herbicide. In addition, no evidence was obtained for the downward transport of diuron or its transformation products to deep ground water.  相似文献   

17.
Streamside vegetated buffer strips (riparian zones) are often assumed to be zones of ground water nitrate (NO3(-)) attenuation. At a site in southwestern Ontario (Zorra site), detailed monitoring revealed that elevated NO3(-) -N (4-93 mg L(-1)) persisted throughout a 100-m-wide riparian floodplain. Typical of riparian zones, the site has a soil zone of recent river alluvium that is organic carbon (OC) rich (36 +/- 16 g kg(-1)). This material is underlain by an older glacial outwash aquifer with a much lower OC content (2.3 +/- 2.5 g kg(-1). Examination of NO3(-), Cl(-), SO4(2-), and dissolved organic carbon (DOC) concentrations; N/Cl ratios; and NO3(-) isotopic composition (delta15N and delta18O) provides evidence of four distinct NO3(-) source zones within the riparian environment. Denitrification occurs but is incomplete and is restricted to a narrow interval located within ~0.5 m of the alluvium-aquifer contact and to one zone (poultry manure compost zone) where elevated DOC persists from the source. In older ground water close to the river discharge point, denitrification remains insufficient to substantially deplete NO3(-). Overall, denitrification related specifically to the riparian environment is limited at this site. The persistence of NO3(-) in the aquifer at this site is a consequence of its Pleistocene age and resulting low OC content, in contrast to recent fluvial sediments in modern agricultural terrain, which, even if permeable, usually have zones enriched in labile OC. Thus, sediment age and origin are additional factors that should be considered when assessing the potential for riparian zone denitrification.  相似文献   

18.
Numerous studies have shown that riparian wetlands can play an important role in reducing nitrate concentrations before the ground water discharges into streams. Denitrification has been identified as an important process for this removal. Several approaches have been proposed to predict the denitrifying removal capacity of a riparian wetland, but no widely used tool exists to precisely quantify this capacity at the landscape scale. We propose such a methodology based on modeling the spatial variation of soil-water interactions in the entire riparian wetland. Mean values of denitrification enzyme activity (DEA) within three soil-denitrifying classes were 604, 212, and 24 ng N g(-1) h(-1) for Classes 3, 2, and 1, respectively. The study area, having a ground surface of about 15000 m2, was underlain by an aquifer with a calculated volume of 60000 m3, less than 10000 m3 of which corresponded to active denitrifying horizons (Classes 2 and 3). By volume, approximately 30% of Class 3 and 70% of Class 2 were interacting with ground water. The denitrifying removal capacity of our wetland was calculated to be about 1.8 kg N m(-2) yr(-1). The calculated denitrifying capacity of our site was less than expected. This is due to the fact that not all ground water interacts with the horizons having the highest denitrifying capacity. Thus, we show that whatever the system is, specific local pedological and hydrogeological conditions and their interactions are paramount in controlling the denitrification process.  相似文献   

19.
Abstract: Identifying relationships between landscape hydrogeological setting, riparian hydrological functioning and riparian zone sensitivity to climate and water quality changes is critical in order to best use riparian zones as best management practices in the future. In this study, we investigate water table dynamics, water flow path and the relative importance of precipitation, deep ground water (DG) and seep water as sources of water to a riparian zone in a deeply incised glacial till valley of the Midwest. Data indicate that water table fluctuations are strongly influenced by soil texture and to a lesser extent by upland sediment stratigraphy producing seeps near the slope bottom. The occurrence of till in the upland and at 1.7‐2 m in the riparian zone contributes to maintaining flow parallel to the ground surface at this site. Lateral ground‐water fluxes at this site with a steep topography in the upland (16%) and loam soil near the slope bottom are small (<10 l/d/m stream length) and intermittent. A shift in flow path from a lateral direction to a down valley direction is observed in the summer despite the steep concave topography and the occurrence of seeps at the slope bottom. Principal component and discriminant analysis indicate that riparian water is most similar to seep water throughout the year and that DG originating from imbedded sand and gravel layers in the lower till unit is not a major source of water to riparian zones in this setting. Water quality data and the dependence of the riparian zone for recharge on seep water suggest that sites in this setting may be highly sensitive to changes in precipitation and water quality in the upland in the future. A conceptual framework describing the hydrological functioning of riparian zones on this setting is presented to generalize the finding of this study.  相似文献   

20.
We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentration of stream NO3-N and the proportion of upland area in drainage basins in both catchments. The regression slope, which we assumed to reflect the impact on water quality, was 24% lower for the Akkeshi catchment (0.012 +/- 0.001) than for the Shibetsu catchment (0.016 +/- 0.001). In the Akkeshi catchment, there was a significant negative correlation between the proportion of wetlands in the drainage basins and stream NO3-N concentration. Stream dissolved organic nitrogen (DON) and carbon (DOC) concentrations were significantly higher in the Akkeshi catchment. Upland and urban land uses were strongly linked to increases in in-stream N concentrations in both catchments, whereas wetlands and forests tended to mitigate water quality degradation. The denitrification potential of the soils was highest in wetlands, medium in riparian forests, and lowest in grasslands; and was significant in wetlands and riparian forests in the Akkeshi catchment. The solubility of soil organic carbon (SOC) and soil moisture tended to determine the denitrification potential. These results indicate that the water environment within the catchments, which influences denitrification potential and soil organic matter content, could have caused the difference in stream water quality between the two catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号