首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This study quantified the impact of bison and cattle grazing management practices on bare ground coverage at the watershed, riparian, and forested riparian scales within the Flint Hills ecoregion in Kansas. We tested for correlations between bare ground coverage and fluvial suspended sediment concentrations during base‐flow and storm‐flow events. We used remotely sensed imagery combined with field surveys to classify ground cover and quantify the presence of bare ground. Base‐flow water samples were collected bi‐monthly during rain‐free periods and 24 h following precipitation events. Storm‐flow water samples were collected on the rising limb of the hydrograph, using single‐stage automatic samplers. Ungrazed treatments contained the lowest coverage of bare ground at the watershed, riparian, and forested riparian scales. Bison treatments contained the highest coverage of bare ground at the watershed scale, while high‐density cattle treatments contained the highest coverage of bare ground at the riparian and forested riparian scales. In bison and cattle‐grazed treatments, a majority of bare ground was located near fence lines, watershed boundaries, and third‐ and fourth‐order stream segments. Inorganic sediment concentrations at base flow were best predicted by riparian bare ground coverage, while storm‐flow sediment concentrations were best predicted by watershed scale bare ground coverage.  相似文献   

2.
Contamination of unfenced streams with P, sediments, and pathogenic bacteria from cattle (Bos taurus) activity may be affected by the availability of shade and alternative water sources. The objectives of this study were to evaluate water quality in two streams draining tall fescue (Festuca arundinacea Schreb.)-common bermudagrass (Cynodon dactylon L.) pastures with different shade distribution, and to quantify the effects of alternative water sources on stream water quality. For 3 yr, loads of dissolved reactive phosphorus (DRP), total phosphorus (TP), and total suspended solids (TSS) were measured during storm flow, and loads of DRP, TP, TSS, and Escherichia coli were measured every 14 d during base flow. We also used GPS collars to determine amount of time cattle spent in riparian areas. Our results showed that cattle-grazed pastures with unfenced streams contributed significant loads of DRP, TP, TSS, and E. coli to surface waters (p < 0.01). Time spent by cattle in riparian areas as well as storm flow loads of DRP, TP, and TSS were larger (p < 0.08) in the pasture with the smaller amount of nonriparian shade. Water trough availability decreased base flow loads of TSS and E. coli in both streams, and decreased time cattle spent in riparian areas in the pasture with the smaller amount of nonriparian shade (p < 0.08). Our results indicate that possible BMPs to reduce contamination from cattle-grazed pastures would be to develop or encourage nonriparian shade and to provide cattle with alternative water sources away from the stream.  相似文献   

3.
Headwater Influences on Downstream Water Quality   总被引:2,自引:0,他引:2  
We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality.  相似文献   

4.
Nutrient inputs generally are increased by human-induced land use changes and can lead to eutrophication and impairment of surface waters. Understanding the scale at which land use influences nutrient loading is necessary for the development of management practices and policies that improve water quality. The authors assessed the relationships between land use and stream nutrients in a prairie watershed dominated by intermittent stream flow in the first-order higher elevation reaches. Total nitrogen, nitrate, and phosphorus concentrations were greater in tributaries occupying the lower portions of the watershed, closely mirroring the increased density of row crop agriculture from headwaters to lower-elevation alluvial areas. Land cover classified at three spatial scales in each sub-basin above sampling sites (riparian in the entire catchment, catchment land cover, and riparian across the 2 km upstream) was highly correlated with variation in both total nitrogen (r2 = 53%, 52%, and 49%, respectively) and nitrate (r2 = 69%, 65%, and 56%, respectively) concentrations among sites. However, phosphorus concentrations were not significantly associated with riparian or catchment land cover classes at any spatial scale. Separating land use from riparian cover in the entire watershed was difficult, but riparian cover was most closely correlated with in-stream nutrient concentrations. By controlling for land cover, a significant correlation of riparian cover for the 2 km above the sampling site with in-stream nutrient concentrations could be established. Surprisingly, land use in the entire watershed, including small intermittent streams, had a large influence on average downstream water quality although the headwater streams were not flowing for a substantial portion of the year. This suggests that nutrient criteria may not be met only by managing permanently flowing streams.  相似文献   

5.
We investigated whether fish assemblage structure in southern Appalachian streams differed with historical and contemporary forest cover. We compared fish assemblages in 2nd–4th order streams draining watersheds that had increased forest cover between 1950 and 1993 (i.e., reforesting watersheds). We sampled fish in 50 m reaches during August 2001 and calculated catch-per-unit-effort (CPUE) by taxonomic, distributional, trophic, reproductive, and thermal metrics. We assigned streams to reforestation categories based on cluster analysis of years 1950 and 1993 near-stream forest cover. The relationship between forest cover and assemblage structure was assessed using analysis of variance to identify differences in fish CPUE in five forest cover categories. Streams contained 23 fish species representing six families, and taxa richness ranged from 1 to 13 at 30 stream sites. Streams with relatively low near-stream forest cover were different from streams having moderate to high near-stream forest cover in 1950 and 1993. Fish assemblages in streams having the lowest amount of forest cover (53–75%) were characterized by higher cosmopolitan, brood hider, detritivore/herbivore, intermediate habitat breadths, run-pool dweller, and warm water tolerant fish CPUE compared to streams with higher riparian forest cover. Our results suggest that fish assemblage’s structural and functional diversity and/or richness may be lower in streams having lower recent or past riparian forest cover compared to assemblages in streams having a high degree of near-stream forest cover.  相似文献   

6.
ABSTRACT: We surveyed first‐to third‐order streams (channel widths from 1.4 to 10 m) in the southeastern slopes of the Cascade Range of Washington and found two distinct endpoints of riparian vegetation. Where the forest overstory is dominated by park‐like Ponderosa pine (Pinus ponderosa), channels are commonly bordered with a dense scrub‐shrub vegetation community. Where fire suppression and/or lack of active riparian zone management have resulted in dense encroachment of fir forests that create closed forest canopies over the channel, scrub‐shrub vegetation communities are virtually absent near the channel. Other factors being equal, distinct differences in channel morphology exist in streams flowing thru each riparian community. The scrub‐shrub channels have more box‐like cross‐sections, lower width‐to‐depth ratios, more pools, more undercut banks, more common sand‐dominated substrates, and similar amounts of woody debris (despite lower tree density). Temperature comparisons of forest and scrub‐shrub sections of two streams indicate that summer water temperatures are slightly lower in the scrub‐shrub streams. We surmise that these morphology and temperature effects are driven by differences in root density and canopy conditions that alter dynamic channel processes between each riparian community. We suspect that the scrub‐shrub community was more common in the landscape prior to the 20th century and may have been the dominant native riparian community for these stream types. We therefore suggest that managing these streams for dense riparian conifer does not mimic natural conditions, nor does it provide superior in‐stream habitat.  相似文献   

7.
Relationships between riparian land cover, in-stream habitat, water chemistry, and macroinvertebrates were examined in headwater streams draining an agricultural region of Illinois. Macroinvertebrates and organic matter were collected monthly for one year from three intensively monitored streams with a gradient of riparian forest cover (6, 22, and 31% of riparian area). Bioassessments and physical habitat analyses were also performed in these three streams and 12 other nearby headwater streams. The intensively monitored site with the least riparian forest cover had significantly greater percent silt substrates than the sites with medium and high forest cover, and significantly higher very fine organics in substrates than the medium and high forested sites. Macroinvertebrates were abundant in all streams, but communities reflected degraded conditions; noninsect groups, mostly oligochaetes and copepods, dominated density and oligochaetes and mollusks, mostly Sphaerium and Physella, dominated biomass. Of insects, dipterans, mostly Chironomidae, dominated density and dipterans and coleopterans were important contributors to biomass. Collector-gatherers dominated functional structure in all three intensively monitored sites, indicating that functional structure metrics may not be appropriate for assessing these systems. The intensively monitored site with lowest riparian forest cover had significantly greater macroinvertebrate density and biomass, but lowest insect density and biomass. Density and biomass of active collector-filterers (mostly Sphaerium) decreased with increasing riparian forest. Hilsenhoff scores from all 15 sites were significantly correlated with in-stream habitat scores, percent riparian forest, and orthophosphate concentrations, and multiple regression indicated that in-stream habitat was the primary factor influencing biotic integrity. Our results show that these "drainage ditches" harbor abundant macroinvertebrates that are typical of degraded conditions, but that they can reflect gradients of conditions in and around these streams.  相似文献   

8.
To determine useful metrics for assessing stream water quality in the Southeastern Coastal Plain, we examined differences among two buffered and three unbuffered streams in an agricultural landscape in southwestern Georgia. Potential indicators included amphibian diversity and abundance, aquatic macroinvertebrate populations, riparian vegetative structure, water quality, and stream physical parameters. Variability among sites and treatments (buffered vs. unbuffered) existed, with sites in the same treatment as most similar, and disturbances from a nearby eroding gully strongly affecting one unbuffered site. Of the invertebrate metrics examined, percentages of clingers, Ephemeroptera-Plecoptera-Trichoptera (EPT), Elmidae (Coleoptera), Crustacea (Decapoda and Amphipoda), and dipterans were found to be possible indicators of stream health for perennial streams within this region. Overall, buffered sites showed higher percentages of sensitive invertebrate groups and showed lower and more stable concentrations of nitrate N, suspended solids, and fecal coliforms (FCs). Percent canopy cover was similar among sites; however, riparian vegetative coverage and percent leaf litter were greatest at buffered sites. No differences in amphibian abundance, presence, and absence within the riparian area were apparent between sites; however, instream larval salamanders were more abundant at buffered streams. In this study, stream buffers appeared to decrease nutrient and sediment loads to adjacent streams, enhancing overall water quality. Selected benthic macroinvertebrate metrics and amphibian abundance also appeared sensitive to agricultural influences. Amphibians show potential as indicator candidates, however further information is needed on their responses and tolerances to disturbances from the microhabitat to landscape levels.  相似文献   

9.
Sejkora, Patrick, Mary Jo Kirisits, and Michael Barrett, 2011. Colonies of Cliff Swallows on Highway Bridges: A Source of Escherichia coli in Surface Waters. Journal of the American Water Resources Association (JAWRA) 47(6):1275–1284. DOI: 10.1111/j.1752‐1688.2011.00566.x Abstract: Animals, such as birds, are a source of fecal indicator bacteria and pathogens in the environment. Our objective was to determine whether a colony of cliff swallows nesting underneath a bridge would yield a measurable increase in fecal indicator bacteria (specifically Escherichia coli) in the underlying creek. When the swallows were absent, dry‐weather concentrations of E. coli upstream and downstream of the bridge (in Austin, Texas) were below the Texas contact recreation criteria. When the swallows were present, dry‐weather geometric‐mean E. coli concentrations increased significantly from upstream (43 most probable number [MPN]/100 ml) to downstream (106 MPN/100 ml) of the bridge. One exceedance and one near‐exceedance of the Texas single‐sample contact recreation criterion were observed during the swallows’ nesting phase. When the swallows were present, the downstream E. coli geometric‐mean concentration in storm events (875 MPN/100 ml) was significantly higher than the upstream concentration (356 MPN/100 ml), suggesting that runoff flushes swallow feces from the ground into the creek. Although the loading of E. coli from cliff swallows nesting under bridges can be significant (e.g., dry‐weather loading of 3.1 × 108 MPN/day/nest), the zoonotic potential of the cliff swallow must be examined to determine the risk to human health from contact recreation in waters contaminated with cliff swallow feces.  相似文献   

10.
ABSTRACT: The relation offish community composition to riparian cover at two spatial scales was compared at 18 streams in the agricultural Minnesota River Basin. The two spatial scales were: (1) local riparian zone (a 200 meter wide buffer extending 2 to 3 kilometers upstream of the sampling reach); and (2) the upstream riparian zone (a 200 m wide buffer on the mainstem and all perennial tributaries upstream of the sampling reach). Analysis of variance indicated that streams with wooded‐local riparian zones had greater fish species richness (means = 20 and 15, respectively) and Index of Biotic Integrity (IBI) scores (means = 40 and 26, respectively) than streams with open‐local riparian zones. Streams with wooded‐upstream riparian zones tended (were not statistically significant) to have greater numbers of species (means = 19 and 15, respectively) and IBI scores (means = 33 and 28, respectively) than streams with open‐upstream riparian zones. There was no significant interaction between the riparian zone conditions at the two scales. This study suggests that maintenance of wooded riparian cover along streams could be effective in maintaining or improving fish community composition in streams draining heavily agricultural areas.  相似文献   

11.
We assessed the relationship between riparian management and stream quality along five southeastern Minnesota streams in 1995 and 1996. Specifically, we examined the effect of rotationally and continuously grazed pastures and different types of riparian buffer strips on water chemistry, physical habitat, benthic macroinvertebrates, and fish as indicators of stream quality. We collected data at 17 sites under different combinations of grazing and riparian management, using a longitudinal design on three streams and a paired watershed design on two others. Continuous and rotational grazing were compared along one longitudinal study stream and at the paired watershed. Riparian buffer management, fenced trees (wood buffer), fenced grass, and unfenced rotationally grazed areas were the focus along the two remaining longitudinal streams. Principal components analysis (PCA) of water chemistry, physical habitat, and biotic data indicated a local management effect. The ordinations separated continuous grazing from sites with rotational grazing and sites with wood buffers from those with grass buffers or rotationally grazed areas. Fecal coliform and turbidity were consistently higher at continuously grazed than rotationally grazed sites. Percent fines in the streambed were significantly higher at sites with wood buffers than grass and rotationally grazed areas, and canopy cover was similar at sites with wood and grass buffers. Benthic macroinvertebrate metrics were significant but were not consistent across grazing and riparian buffer management types. Fish density and abundance were related to riparian buffer type, rather than grazing practices. Our study has potentially important implications for stream restoration programs in the midwestern United States. Our comparisons suggest further consideration and study of a combination of grass and wood riparian buffer strips as midwestern stream management options, rather than universally installing wood buffers in every instance. RID=" ID=" The Unit is jointly sponsored by the US Geological Survey, Biological Resources Division; the Minnesota Department of Natural Resources; the University of Minnesota; and the Wildlife Management Institute.  相似文献   

12.
Sediments can be both a source and a sink of dissolved phosphorus (P) in surface water and shallow groundwater. Using laboratory mesocosms, we studied the influence of flooding with deionized water and simulated river water on P release to solution using sediment columns taken from a riparian wetland. The mesocosm incubation results showed that rather than retaining nutrients, sediments in the riparian zone may be a significant source of P. Concentrations of dissolved P in porewater reached more than 3 mg L(-1) and in surface water over 0.8 mg L(-1) within a month of sediment inundation. The reductive dissolution of P-bearing iron (Fe) oxides was the likely mechanism responsible for P release. Dissolved P to Fe molar ratios in anaerobic samples were approximately 0.45 when columns were flooded with water that simulated the chemistry of the adjacent river. This suggests there was insufficient Fe in the anaerobic samples to precipitate all P if the solutions were oxygenated or transported to an aerobic environment. If the anaerobic wetland solutions were delivered to oxygenated rivers and streams adjacent to the riparian zone, the equilibrium concentration of P in these systems could rise. The timing of P release was inversely related to the nitrate (NO3-) concentration in floodwater. This indicates that in riparian zones receiving low nitrate loads, or where NO3- loads are being progressively reduced, the risk of dissolved P release may increase. These findings present particular challenges for restoration and management in riparian areas.  相似文献   

13.
Riparian areas of large streams provide important habitat to many species and control many instream processes — but is the same true for the margins of small streams? This review considers riparian areas alongside small streams in forested, mountainous areas of the Pacific Northwest and asks if there are fundamental ecological differences from larger streams and from other regions and if there are consequences for management from any differences. In the moist forests along many small streams of the Pacific Northwest, the contrast between the streamside and upslope forest is not as strong as that found in drier regions. Small streams typically lack floodplains, and the riparian area is often constrained by the hillslope. Nevertheless, riparian‐associated organisms, some unique to headwater areas, are found along small streams. Disturbance of hillslopes and stream channels and microclimatic effects of streams on the riparian area provide great heterogeneity in processes and diversity of habitats. The tight coupling of the terrestrial riparian area with the aquatic system results from the closed canopy and high edge‐to‐area ratio for small streams. Riparian areas of the temperate, conifer dominated forests of the Pacific Northwest provide a unique environment. Forest management guidelines for small streams vary widely, and there has been little evaluation of the local or downstream consequences of forest practices along small streams.  相似文献   

14.
One of the problems associated with the use of ambient water quality standards in surface water regulation is the difficulty of identifying and regulating nonpoint source pollution, making such standards unenforceable, especially at the local level. We used the Escherichia coli indicator to locate the most contaminated reaches in rural South Carolina's Bush River watershed (297 km(2), 186 stream-km). We divided the watershed into 20 smaller reaches and sampled each reach multiple times, but restricted each sampling round to one day. We located four low order creek reaches, representing just nine stream-km, where we observed geometric mean E. coli densities of over 1250 E. coli/100 mL; in each case, the source of the contamination (riparian grazing of cattle) was easily identifiable. On the Bush River itself, we observed a step change in one reach where geometric means increased from 106 E. coli/100 mL to 565 E. coli/100 mL over the reach's 10 km length. In this case, the sources of contamination were not as obvious as in the lower order streams; in this case, more advanced Microbial Source Tracking techniques will be required to identify the sources. Nevertheless, this sampling protocol helped locate polluted reaches and provided decision-makers with reasonable justifications for concrete action in deciding where (or where not) to install conservation practices and where more sophisticated (and expensive) MST techniques were warranted.  相似文献   

15.
Buffer strips alongside watercourses are a widely accepted method of reducing nutrient and sediment run-off from agricultural land thereby improving water quality. Little attention, however, has been paid to the ecological status of these areas despite the fact that riparian habitats in good condition can provide multiple benefits. We investigated vegetation patterns and plant-environment relationships within three categories of riparian margins in northeast Scotland. The margins were categorized as unbuffered, buffered, or reference (target), the latter representing the best sites available within the catchments. Vascular plant and soil data were collected from 41 sites along the tributaries of two rivers during 2008 and 2009. Ellenberg indicator values revealed trends of decreasing light availability ( < 0.05) and decreasing pH ( < 0.01) from unbuffered sites to buffered sites to reference sites. Multivariate analysis showed that soil parameters and channel morphology, together with canopy cover and bryophyte abundance, were discriminatory in separating species assemblages. The presence of a tree canopy layer appears to be the key instigator of change in soil conditions and corresponding plant species assemblages. An understanding of the underlying processes is important if vegetation characteristics are to be used effectively as indicators of riparian and water quality and to aid the restoration of riparian habitats.  相似文献   

16.
Well-established perennial vegetation in riparian areas of agricultural lands can stabilize the end points of gullies and reduce their overall erosion. The objective of this study was to investigate the impacts of riparian land management on gully erosion. A field survey documented the number of gullies and cattle access points in riparian forest buffers, grass filters, annual row-cropped fields, pastures in which the cattle were fenced out of the stream, and continuously, rotationally and intensive rotationally grazed pastures in three regions of Iowa. Gully lengths, depths and severely eroding bank areas were measured. Gullies exhibited few significant differences among riparian management practices. The most significant differences were exhibited between conservation and agricultural management practices, an indication that conservation practices could reduce gully erosion. Changes in pasture management from continuous to rotational or intensive rotational grazing showed no reductions in gully erosion. It is important to recognize that more significant differences among riparian management practices were not exhibited because the conservation and alternative grazing practices had recently been established. As gully formation is more impacted by upland than riparian management, gully stabilization might require additional upland conservation practices. The existence of numerous cattle access points in pastures where cattle have full access to the stream also indicates that these could be substantial sources of sediment for streams. Finally, the gully banks were less important sediment contributors to streams than the streambanks. The severely eroding bank areas in streams were six times greater than those in the gullies in the monitored reaches.  相似文献   

17.
In the present study, Amaravati, the proposed city of India is considered to assess the impacts of urbanization on water quality of the Krishna River in the vicinity. Long-term surface water quality data of various parameters of Krishna River are obtained from Central Water Commission (CWC). Trends of various parameters are analyzed using a modified version of Mann-Kendall (M-K) test; bootstrapped M-K trend test with optional bias corrected pre-whitening and R programming are used affecting water quality prior to and at the commencement of urbanization. During the onset of urbanization, minimum BOD is decreased from 0.49 to 0.2 mg/L, while the maximum BOD is increased by 67.7%. Dissolved oxygen's (DO) minimum value is decreased by 29.33% while maximum DO value is decreased by 4.47% at the beginning of urbanization. During the process of urbanization, total coliform's minimum count is increased to 330 from 2 MPN/100 ml while the maximum count of total coliforms is increased to 16,000 from 2400 MPN/100 ml. Faecal coilform's minimum count is increased from 2 to 80 MPN/100 ml while maximum count is increased to 16,000 from 800 MPN/100 ml during urbanization. It is found that due to urbanization, pH, DO values exceed the allowable limit.  相似文献   

18.
Riparian functions such as the recruitment of wood to streams take decades to recover after a clear-fell harvest to the stream edge. The implications of two sets of riparian management scenarios on the short- and long-term recruitment of wood to a hypothetical stream (central North Island, New Zealand) were compared through simulation modeling. In the first set (native forest buffer), a designated treeless riparian buffer was colonized by native forest species after a pine crop (Pinus radiata) had been harvested to the stream bank. In the second set (pine to native forest buffer), native forest species were allowed to establish under the pine canopy in a designated riparian buffer. In general, the volume of wood was greater in streams with wider buffers (5-m to 50-m) and this effect increased with forest age (800 years). The pine to native forest buffer supplied more wood to the stream more quickly, and matched the long-term supply to the stream from the native forest buffer. For the native forest buffer, total wood volume was minimal for the first 70 years and then increased uniformly for the remainder of the simulation. In contrast, the pine to native forest buffer produced a bimodal response in total wood volume with the initial sharp peak at year 100 attributed to pine recruitment and a second more gradual peak lasting for the rest of the simulation, which was similar to levels in the native forest simulations. These results suggest that existing plantations could be an important source of wood to the stream during the first 100+ years of native forest development.  相似文献   

19.
This study examined the relative influence of nutrients (nitrogen and phosphorus) and habitat on algal biomass in five agricultural regions of the United States. Sites were selected to capture a range of nutrient conditions, with 136 sites distributed over five study areas. Samples were collected in either 2003 or 2004, and analyzed for nutrients (nitrogen and phosphorous) and algal biomass (chlorophyll a). Chlorophyll a was measured in three types of samples, fine-grained benthic material (CHLFG), coarse-grained stable substrate as in rock or wood (CHLCG), and water column (CHLS). Stream and riparian habitat were characterized at each site. TP ranged from 0.004–2.69 mg/l and TN from 0.15–21.5 mg/l, with TN concentrations highest in Nebraska and Indiana streams and TP highest in Nebraska. Benthic algal biomass ranged from 0.47–615 mg/m2, with higher values generally associated with coarse-grained substrate. Seston chlorophyll ranged from 0.2–73.1 μg/l, with highest concentrations in Nebraska. Regression models were developed to predict algal biomass as a function of TP and/or TN. Seven models were statistically significant, six for TP and one for TN; r 2 values ranged from 0.03 to 0.44. No significant regression models could be developed for the two study areas in the Midwest. Model performance increased when stream habitat variables were incorporated, with 12 significant models and an increase in the r 2 values (0.16–0.54). Water temperature and percent riparian canopy cover were the most important physical variables in the models. While models that predict algal chlorophyll a as a function of nutrients can be useful, model strength is commonly low due to the overriding influence of stream habitat. Results from our study are presented in context of a nutrient-algal biomass conceptual model.  相似文献   

20.
An observational study was conducted at the watershed scale using land cover (vegetation) data to assess the absence or presence of riparian buffers in three northeastern Missouri watersheds. Forests and grasslands lying within a 61 m (200 ft) parallel band directly adjacent to streams were considered “buffers” for improving or protecting water quality and were characterized according to their length, width, and vegetation type. Results indicated that riparian buffers were abundant throughout the watersheds but were typically narrow along first‐order and second‐order streams; in many cases they may not have been wide enough to provide adequate stream protection. At least 90 percent of all streams had buffer vegetation immediately adjacent to the streambanks, but as few as 31 percent of first‐order streams had buffers extending to 61 m from the stream on at least one side. On‐site evaluations are needed to determine the condition of these forests and grasslands and their ability to process nonpoint source pollutants. The results will be useful for providing natural resource managers with knowledge of current watershed conditions as well as in identifying specific locations for future conservation efforts within each watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号