首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Use of metal-rich sewage sludge as soil fertilizer may result in trace- metal contamination of soils. This study was conducted to evaluate the effects of long-term sludge application on trace-metal (Zn, Cu, Pb, and Ni) distribution and potential bioavailability in Nigerian soils under a tropical wet-dry climate. Total metal analyses, sequential chemical fractionation, and DTPA extractions were carried out on samples of control and sludge-amended pedons in Nigeria (a Rhodic Kandiustult and two Rhodic Kandiustalfs from Nigeria, respectively). The sewage sludge applied to the soils contained higher levels of Zn and Cu than Pb and Ni. The control pedon contained low levels of all four metals. Soil enrichment factors (EF) were calculated for each metal in the sludge-amended pedons. Compared with the control soil, the sludge-amended pedons showed elevated levels of Zn and Cu, reflecting the trace-metal composition of the sewage sludge. Zinc and Cu in the sludge-amended soils were strongly enriched at all depths in the profile, indicating that they had moved below the zone of sludge application. The sequential extraction and DTPA analyses indicated that the sludge-amended soils contained more readily extractable and bioavailable metal ions than the unamended soil.  相似文献   

2.
Papermill biosolids (PB) can provide multiple benefits to the soil system. The purpose of this study was to quantify the effects of a high C/N ratio (C/N = 100) de-inked PB on soil physical and chemical properties, including soil bulk density, infiltration rates, wet aggregate stability, total soil carbon, and heavy metal concentrations. Four rates of PB (0, 50, 100, and 150 Mg ha(-1)) were applied annually, for up to 3 yr, on four agricultural soils in Ontario, Canada. Decreases in soil bulk density between 0.27 and 0.35 g cm(-3), relative to the nonamended treatment, were observed in soils receiving PB treatments over 3 yr. Total soil carbon increased within 1 yr on PB-amended soils planted to soybeans but not on soils planted to corn. Hydraulic conductivities (K fs) were greater in all soils receiving PB amendments relative to the nonamended treatment throughout the study. Other properties measured, such as pH and electrical conductivity, were relatively unchanged after 2 yr of PB applications. While some increases in heavy metal accumulation occurred, there were no clear trends observed at any of the sites related to PB rates. The results of this study provide support to the idea that annual applications of PB can add significantly to the stability of soil structure.  相似文献   

3.
Cadmium solubility and sorption in an arable clay loam soil that had received sewage sludge for 41 years were compared to an unsludged control in batch studies. Soil pH dominated Cd sorption, explaining >92% of the variation in Kd values in both treatments. At any pH, Cd sorption was apparently slightly but significantly (p < 0.05) smaller in the sludge-amended soil compared to the control, even though the organic carbon content was 70% larger and the ammonium oxalate-extractable iron content was roughly doubled. Correction for dissolved organic carbon (DOC) complexation with the speciation model WHAM reduced the difference in sorption between treatments, but the sludged soil still had significantly smaller Kd values (p < 0.01). Batch equilibrations without addition of Cd showed that there was no significant difference in the solubility of "native" cadmium (defined as EDTA-extractable Cd) in sludged and control soils. The reason for the lack of increase in Cd sorption in the sludge-amended soil has not been established, but it may be due to competition for sorption sites on humic compounds with sludge-derived Fe and trace metals such as zinc. The fact that the pyrophosphate-extractable (i.e., organically associated) iron content was seven times larger in the sludged soil provides some supporting evidence for this hypothesis.  相似文献   

4.
Soil amendments can immobilize metals in soils, reducing the risks of metal exposure and associated impacts to flora, fauna and human health. In this study, soil amendments were compared, based on "closed system" water extracts, for reducing metal mobility in metal-contaminated soil from the Broken Hill mining center, Australia. Phosphatefertilizer (bovine bone meal, superphosphate, triple superphosphate, potassium orthophosphate) and pine bark (Pinus radiata) were applied to two soils (BH1, BH2) contaminated with mining waste. Both soils had near neutral to alkaline pH values, were sulfide- or sulfate-rich, and contained metal and metalloid at concentrations that pose high environmental risks (e.g., Pb = 1.25 wt% and 0.55 wt%, Zn = 0.71 wt% and 0.47 wt% for BH1 and BH2, respectively). The addition of fertilizers and/or pine bark to both soil types increased water extractable metals and metalloids concentrations (As, Cd, Cu, Fe, Mn, Pb, Sb, Zn) compared with nonamended soils. One or more of the elements As, Cd, Cu, Mn, Pb, and Zn increased significantly in extracts of a range of different soil+pine bark and soil+fertilizer+piner+pine bark tests in response to increased pine bark doses. By contrast, Fe and Sb concentrations in extracts did not change significantly with pine bark addition. Solution pH was decreased by phosphate fertilizers (except for bovine bone meal) and pine bark, and pine bark enhanced dissolved organic carbon. At least in the short-term, the application of phosphate fertilizers and pine bark proved to be an ineffective method for controlling metal and metalloid mobility in soils that contain admixtures of polymetallic, polymineralic mine wastes.  相似文献   

5.
The behavior of the herbicide terbuthylazine (TA) was studied in a clay loam soil after the addition of different organic amendments (OAs). Addition of poultry compost (PC) and urban sewage sludge (USS) retarded degradation of TA with half-life values of 60.3 and 73.7 d, respectively. In contrast, addition of corn straw (CS) did not significantly alter the degradation of TA (half-life 55.5 d) compared with its degradation in nonamended soils (half-life 57.3 d). Sterilization of amended and nonamended soils resulted in a partial inhibition of TA degradation, indicating that biotic and abiotic processes are involved in TA degradation in soil. Degradation of TA led to the formation of desethyl-terbuthylazine, which was detected in low amounts (<8% of the initially applied TA) in all soils. Adsorption of TA was relatively low, with Kd values ranging from 2.31 L kg(-1) in the nonamended soil to 3.93 L kg(-1) in the soil amended with USS. In general, Kd values increased with increasing soil organic carbon content. The dissolved organic matter extracted from the OAs did not appear to interact with the pesticide or the soil surfaces, suggesting that it would not probably facilitate herbicide transport. Desorption studies indicated a slight hysteresis of TA desorption in the amended soils compared with TA desorption in the nonamended soil, which was entirely reversible. These findings might have practical implications for the environmental fate of TA in agricultural soils, where the studied OAs are commonly used.  相似文献   

6.
Acid weathered soils often require lime and fertilizer application to overcome nutrient deficiencies and metal toxicity to increase soil productivity. Slow-pyrolysis chicken manure biochars, produced at 350 and 700°C with and without subsequent steam activation, were evaluated in an incubation study as soil amendments for a representative acid and highly weathered soil from Appalachia. Biochars were mixed at 5, 10, 20, and 40 g kg into a Gilpin soil (fine-loamy, mixed, active, mesic Typic Hapludult) and incubated in a climate-controlled chamber for 8 wk, along with a nonamended control and soil amended with agronomic dolomitic lime (AgLime). At the end of the incubation, soil pH, nutrient availability (by Mehlich-3 and ammonium bicarbonate diethylene triamine pentaacetic acid [AB-DTPA] extractions), and soil leachate composition were evaluated. Biochar effect on soil pH was process- and rate-dependent. Biochar increased soil pH from 4.8 to 6.6 at the high application rate (40 g kg), but was less effective than AgLime. Biochar produced at 350°C without activation had the least effect on soil pH. Biochar increased soil Mehlich-3 extractable micro- and macronutrients. On the basis of unit element applied, increase in pyrolysis temperature and biochar activation decreased availability of K, P, and S compared to nonactivated biochar produced at 350°C. Activated biochars reduced AB-DTPA extractable Al and Cd more than AgLime. Biochar did not increase NO in leachate, but increased dissolved organic carbon, total N and P, PO, SO, and K at high application rate (40 g kg). Risks of elevated levels of dissolved P may limit chicken manure biochar application rate. Applied at low rates, these biochars provide added nutritional value with low adverse impact on leachate composition.  相似文献   

7.
Heavy metals in soils may adversely affect environmental quality. In this study, we investigated the release of Zn, Cd, Pb, and Cu from four contaminated soils by column leaching and single and sequential batch extractions. Homogeneously packed soil columns were leached with 67 mL/g 10(-2) M CaCl2 to investigate the exchangeable metal pool and subsequently with 1400 mL/g 10(-2) M CaCl2 adjusted to pH 3 to study the potential of metal release in response to soil acidification. In two noncalcareous soils (pH 5.7 and 5.1), exchange by Ca resulted in pronounced release peaks for Zn and Cd that were coupled to the exchange of Mg by Ca, and 40 to 70% of total Zn and Cd contents were rapidly mobilized. These amounts compared well with exchangeable pools determined in single and sequential batch extractions. In two soils with near-neutral pH, the effluent concentrations of Zn and Cd were several orders of magnitude lower and no pronounced elution peaks were observed. This behavior was also observed for Cu and Pb in all four soils. When the soils were leached at pH 3, the column effluent patterns reflected the coupling of CaCO3 dissolution (if present) and other proton buffering reactions, proton-induced metal release, and metal-specific readsorption within the soil column. Varying the flow rate by a factor of five had only minor effects on the release patterns. Overall, Ca exchange and subsequent acidification to pH 3 removed between 65 and 90% of total Zn, Cd, Pb, and Cu from the four contaminated soils.  相似文献   

8.
不同粒径土壤中重金属的分布规律   总被引:4,自引:1,他引:3  
赵晶  汤旭 《四川环境》2011,(4):17-20
本文选择提钒炼钢厂内部分土壤为研究对象,测定了重金属元素(镉、铜、铬、铅、锌)的含量,并与样品粒度大小的关系进行了探讨,结果表明金属(铜、铬、铅、锌、镉)的浓度最大值出现在粒径较小(100目或160目)的样品中,同时将测定结果与土壤环境质量标准比较,结果表明镉、锌存在污染,其余元素均未超标。  相似文献   

9.
Shi J  Yu X  Zhang M  Lu S  Wu W  Wu J  Xu J 《Journal of environmental quality》2011,40(6):1695-1704
Heavy metal (copper [Cu], zinc [Zn], and cadmium [Cd]) pollution of soils from pig manures in soil-rice ( L.) systems under intensive farming was investigated, taking Nanhu, China, as the case study area. Two hundred pig manures and 154 rice straws, brown rice samples, and corresponding surface soil (0-15 cm) samples were collected in paddy fields from 150 farms in 16 major villages within the study area. The mean Cu and Zn concentrations in pig manures consistently exceeded the related standard. About 44 and 60% of soil samples exceed the Chinese Soil Cu and Cd Environmental Quality Standards, respectively. The concentration of Cu, Zn, and Cd in brown rice did not exceed the Chinese Food Hygiene Standard. There was a significant positive correlation between total Cu and Zn contents in soil and application rate of pig manures. Strong correlation was observed between the extractable Cu, Zn, and Cd in soil and the Cu, Zn, and Cd contents in the brown rice. The spatial distribution maps of Cu and Zn concentrations in brown rice, straw, and extractable soil Cu and Zn concentration also showed similar geographical trends. Further analyses on heavy metals loading flux and accumulation rates from pig manure applied suggested that Cu and Cd contents in soil currently have already exceeded the maximum permissible limit, and Zn, if still at current manure application rates, will reach the ceiling concentration limits in 9 yr. This study assists in understanding the risk of heavy metals accumulating from pig manure applications to agricultural soils.  相似文献   

10.
The amendment of soil with compost may significantly influence the mobility and persistence of pesticides and thus affect their environmental fate. Factors like adsorption, kinetics, and rate of degradation of pesticides could be altered in amended soils. The aim of this study was to determine the effects of the addition of compost made from source-separated municipal waste and green waste, on the fate of triasulfuron [(2-(2-chloroethoxy)-N-[[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide], a sulfonylurea herbicide used in postemergence treatment of cereals. Two native soils with low organic matter content were used. A series of analyses was performed to evaluate the adsorption and degradation of the herbicide in soil and in solution after the addition of compost and compost-extracted organic fractions, namely humic acids (HA), fulvic acids (FA), and hydrophobic dissolved organic matter (HoDOM). Results have shown that the adsorption of triasulfuron to soil increases in the presence of compost, and that the HA and HoDOM fractions are mainly responsible for this increase. Hydrophobic dissolved organic matter applied to the soils underwent sorption reactions with the soils, and in the sorbed state, served to increase the adsorption capacity of the soil for triasulfuron. The rate of hydrolysis of triasulfuron in solution was significantly higher at acidic pH and the presence of organic matter fractions extracted from compost also slightly increased the rate of hydrolysis. The rate of degradation in amended and nonamended soils is explained by a two-stage degradation kinetics. During the initial phase, although triasulfuron degradation was rapid with a half-life of approximately 30 d, the presence of compost and HoDOM was found to slightly reduce the rate of degradation with respect to that in nonamended soil.  相似文献   

11.
The objective of this study was to determine the levels of major phytotoxic metals―including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)―in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.  相似文献   

12.
The effect of soil fumigation on N mineralization and nitrification needs to be better quantified to optimize N fertilizer advice and predict NO(-)(3) concentrations in crops and NO(-)(3) leaching risks. Seven soils representing a range in soil texture and organic matter contents were fumigated with Cyanamid DD 95 (a mixture of 1,3-dichloropropane and 1,3-dichloropropene). After removal of the fumigant, the fumigated soils and unfumigated controls were incubated for 20 wk and N mineralization and nitrification were monitored by destructive sampling. The average short-term N mineralization rates (k(s)) were significantly larger in the fumigated than in the unfumigated soils (P = 0.025), but the differences in k(s) between fumigated and unfumigated soils could not be related to soil properties. The average long-term N mineralization rates (k(l)) were slightly larger in the fumigated soils but the difference with the unfumigated soils was not significant. Again, the differences in k(l) values could not be related to soil properties. Nitrification was inhibited completely for at least 3 wk in all soils, and an effect on nitrification could be observed up to 17 wk in one soil. An S-shaped function was fitted to the nitrification data corrected for N mineralization, and both the rate constant (gamma) and the time at which maximum nitrification was reached (t(max)) were strongly correlated to soil pH. However, since no correlations were found between the effect of fumigation on N mineralization and soil properties, taking into account the effects of fumigation in fertilizer advice and in the prediction of NO(-)(3) leaching risks will need further research.  相似文献   

13.
Eroded roots of hot spring systems in Northland, New Zealand consist of mineralised rocks containing sulfide minerals. Marcasite and cinnabar are the dominant sulfides with subordinate pyrite. Deep weathering and leached soil formation has occurred in a warm temperate to subtropical climate with up to 3 m/year rainfall. Decomposition of the iron sulfides in natural and anthropogenic rock exposures yields acid rock drainage with pH typically between 2 and 4, and locally down to pH 1. Soils and weathered rocks developed on basement greywacke have negligible acid neutralisation capacity. Natural rainforest soils have pH between 4 and 5 on unmineralised greywacke, and pH is as low as 3.5 in soils on mineralised rocks. Roads with aggregate made from mineralised rocks have pH near 3, and quarries from which the rock was extracted can have pH down to 1. Mineralised rocks are enriched in arsenic and mercury, both of which are environmentally available as solid solution impurities in iron sulfides and phosphate minerals. Base metals (Cu, Pb, Zn) are present at low levels in soils, at or below typical basement rock background. Decomposition of the iron sulfides releases the solid solution arsenic and mercury into the acid rock drainage solutions. Phosphate minerals release their impurities only under strongly acid conditions (pH<1). Arsenic and mercury are adsorbed on to iron oxyhydroxides in soils, concentrated in the C horizon, with up to 4000 ppm arsenic and 100 ppm mercury. Waters emanating from acid rock drainage areas have arsenic and mercury below drinking water limits. Leaching experiments and theoretical predictions indicate that both arsenic and mercury are least mobile in acid soils, at pH of c. 3-4. This optimum pH range for fixation of arsenic and mercury on iron oxyhydroxides in soils is similar to natural pH at the field site of this study. However, neutralisation of acid soils developed on mineralised rocks is likely to decrease adsorption and enhance mobility of arsenic and mercury. Hence, development of farmland by clearing forest and adding agricultural lime may mobilise arsenic and mercury from underlying soils on mineralised rocks. In addition, arsenic and mercury release into runoff water will be enhanced where sediment is washed off mineralised road aggregate (pH 3) on to farm land (pH>6). The naturally acid forest soils, or even lower pH of natural acid rock drainage, are the most desirable environmental conditions to restrict dissolution of arsenic and mercury from soils. This approach is only valid where mineralised soils have low base metal concentrations.  相似文献   

14.
Regulations have been proposed by the United States Environmental Protection Agency to promote the proper management of sludge disposal on croplands. The application of municipal sludge to croplands raises serious questions concerning the increase in dietary levels of metals resulting from metal uptake by crops. A model is presented that affords a quantitative estimate of the dietary increase of metals when foods are derived from sludge-amended soil. If a diet or part of a diet is derived completely from sludge-amended soil, it is likely to be excessive in cadmium and pose a clear health hazard. Recommendations designed to reduce the potential health threat of excessive metals in the diet are presented.  相似文献   

15.
Heavy metal pollution of soil has been recognized as a major factor impeding soil microbial processes. From this perspective, we studied responses of the soil biological activities to metal stress simulated by soil amendment with Zn, Pb, and Cd chlorides. The amounts of heavy metal salts added to five metal-polluted soils and four nonpolluted soils were selected to match the total metal concentrations typically found in polluted soils of the Silesia region of Poland. From the perspective of soil quality, metal mobility in amended soils could not be described by simple functions of pH or organic matter. Reaction of Pb with the soil caused strong immobilization with less than 1% of the Pb amendment recovered by 0.01 M CaCl2 extractions. Immobilization of Cd was also significant, whereas immobilization of the Zn amendment was much weaker than that of Cd or Pb. The Zn amendment had substantial inhibitory effect on soil dehydrogenase, acid and alkaline phosphatase, arylsulfatase, urease, and nitrification potential. Generally, Cd and Pb had limited or stimulatory effect on most of these biological activities, with an exception of Pb strongly inhibiting soil urease. The effect of the metal amendments on biological activities could not be satisfactorily accounted for by metal toxicity because no strong relationship was observed between extractable metal content and the degree of inhibition. The Zn amendment had a significant effect on soil pH, resulting in confounding effects of pH and Zn toxicity on activities. Metal amendment experiments seem to be of limited utility for meaningful assessment of metal contamination effects on soil quality.  相似文献   

16.
Pulverized refuse fines (PRF) are the residual fine screenings from refuse-derived fuel plants after the removal of metals and oversize material from domestic refuse, and the extraction of the light fraction as fuel. It appears to be a potential soil amendment, but currently it is disposed of by landfilling. The glasshouse experiment described in this paper therefore evaluated its effectiveness as a soil amendment or soil material for plant growth.PRF had a slightly alkaline pH and was high in organic carbon and soluble salts. Unamended PRF supported significantly higher yields of ryegrass than PRF mixed with a sandy soil at 2 and 10% (w/w), and was comparable to that of sewage sludge and sludge-amended PRF. On the other hand, PRF supplemented with inorganic nitrogen or phosphorus resulted in better yields than PRF alone. Despite the high C/N ratio of PRF, nitrogen recovery in ryegrass suggested that mineralization was sufficiently high to allow adequate plant uptake and sustained plant growth, although there was initial inhibition. Tissue contents of zinc, copper and cadmium from pure PRF treatment were not excessive and were lower than those from sewage sludge.High rate applications of PRF, which are desirable from the viewpoint of disposal, should not cause environmental degradation. PRF is not as good as commercial fertilizers or potting media, but it can be an excellent soil substitute in horticulture and land reclamation.  相似文献   

17.
酸雨条件下城市农业土壤镉的释放研究   总被引:1,自引:0,他引:1  
本文选取成都市典型农业土壤为研究对象,根据成都市降雨特征,模拟一定范围pH及主要阴、阳离子浓度配制成母液开展酸雨淋滤实验,以确定酸雨中影响土壤重金属元素镉溶解度的关键因素,探明其对镉释放的影响程度。研究结果表明,总体上酸雨加速了土壤镉的释放。不同类型土壤在同一酸雨条件下,镉的释放速度和最大释放量也不同。酸雨pH值和主要阴、阳离子浓度对镉释放的影响有明显的规律。  相似文献   

18.
Copper sulfate (CuSO4) is applied periodically to commercial channel catfish (Ictalurus panctatus) ponds as an algicide or parasiticide. Current understanding of the chemistry of copper in soil-water systems suggests that copper may accumulate in pond sediments, although the forms and potential bioavailability of copper in catfish pond sediments are not known. This study investigated the accumulation and distribution of copper in the sediment of catfish ponds receiving periodic additions of CuSO4.5H2O. All ponds were constructed in Sharkey (very-fine, smectitic, thermic Chromic Epiaquert) soil. Nine 0.40-ha ponds received 59 applications of 2.27 kg CuSO4.5H2O per application per pond over 3 yr; no CuSO4.5H2O applications were made to nine additional ponds. Total Cu concentration in the sediments of CuSO4.5H2O-amended catfish ponds (172.5 mg kg(-1)) was four to five times higher than that in the sediments of nonamended ponds (36.1 mg kg(-1)). Copper accumulated in catfish pond sediments at a rate of 41 microg kg(-1) dry sediment for each 1 kg ha(-1) of CuSO4. 5H2O applied to ponds. Copper in the sediments of amended ponds was mainly in the organic matter-bound (30.7%), carbonate-bound (31.8%), and amorphous iron oxide-bound (22.1%) fractions with a considerable fraction (3.4%; 3 to 8 mg kg(-1)) in soluble and exchangeable fractions. This indicates that Cu accumulates differentially in various fractions, with proportionally greater initial accumulation in potentially bioavailable forms. However, toxicity bioassays with amphipods (Hyallela azteca) and common cattail (Typha latifolia L.) indicated that the effect of exposure to amended or nonamended pond sediments was not different.  相似文献   

19.
Reactions of heavy metals with soil are important in determining metal fates in the environment. Sorption characteristics of two heavy metals, Cd and Pb, in three tropical soils (Mollisol, Oxisol, and Ultisol) from Puerto Rico were assessed at varying metal concentrations (0 to 1.2 mM) and pH values (approximately 2 to 7). All soils sorbed more Pb than Cd. Sorption maxima were obtained for each metal for the Oxisol and Ultisol soils, but not the Mollisol. Sorption appeared to depend more on soil mineralogy than organic matter content. Sorption isotherms were linear within the sorption envelope with similar slopes for each soil-metal curve, when plotting metal sorption as a function of pH. Cadmium and Pb isotherms yielded average slopes of approximately 36+/-1 and 28+/-1 units (percent increase in metal sorption per 1-unit increase in pH), respectively. Metal sorption depended more on metal type than soil composition. Cadmium sorption displayed a greater pH dependence than Pb. Cadmium sorption was less than or equal to the amount of negative surface charge except at pH values greater than the point of zero net charge (PZNC). This suggests that Cd was probably sorbed via electrostatic surface reactions and/or possible inner-sphere complexation at pH > 3.7. However, the amount of Pb sorbed by the Oxisol was greater than the amount of negative surface charge, suggesting that Pb participates in inner-sphere surface reactions. Lead was sorbed more strongly than Cd in our soils and poses less of a threat to underlying ground water systems due to its lower mobility and availability.  相似文献   

20.
To anticipate a possible hazard resulting from the plant uptake of metals from slag-contaminated soils, it is useful to study whether vegetables exist that are able to mobilize a given metal in the slag to a larger proportion than in an uncontaminated control soil. For this purpose, we studied the soil to plant transfer of arsenic, copper, lead, thallium, and zinc by the vegetables bean (Phaseolus vulgaris L. 'dwarf bean Modus'), kohlrabi (Brassica oleracea var. gongylodes L.), mangold (Beta vulgaris var. macrorhiza ), lettuce (Lactuca sativa L. 'American gathering brown'), carrot (Daucus carota L. 'Rotin', 'Sperlings's'), and celery [Apium graveiolus var. dulce (Mill.) Pers.] from a control soil (Ap horizon of a Entisol) and from a contaminated soil (1:1 soil-slag mixtures). Two types of slags were used: an iron-rich residue from pyrite (FeS2) roasting and a residue from coal firing. The metal concentrations in the slags, soils, and plants were used to calculate for each metal and soil-slag mixture the plant-soil fractional concentration ratio (CRfractional,slag), that is, the concentration ratio of the metal that results only from the slag in the soil. With the exception of TI, the resulting values obtained for this quantity for As, Cu, Pb, and Zn and for all vegetables were significantly smaller than the corresponding plant-soil concentration ratios (CRcontrol soil) for the uncontaminated soil. The results demonstrate quantitatively that the ability of a plant to accumulate a given metal as observed for a control soil might not exist for a soil-slag mixture, and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号