首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
ABSTRACT

The 1990 Amendments to the Clean Air Act have stimulated strong interest in the use of biofiltration for the economical, engineered control of volatile organic compounds (VOCs) in effluent air streams. Trickle bed air biofilters (TBABs) are especially applicable for treating VOCs at high loadings. For long-term, stable operation of highly loaded TBABs, removal of excess accumulated bio-mass is essential. Our previous research demonstrated that suitable biomass control for TBABs was achievable by periodic backwashing of the biofilter medium. Backwashing was performed by fluidizing the pelletized biological attachment medium with warm water to about a 40% bed expansion. This paper presents an evaluation of the impact of backwashing on the performance of four such TBABs highly loaded with toluene. The inlet VOC concentrations studied were 250 and 500 ppmv toluene, and the loadings were 4.1 and 6.2 kg COD/m3 day (55 and 83 g toluene/m3 hr). Loading is defined as kg of chemical oxygen demand per cubic meter of medium per day. Performance deterioration at the higher loading was apparently due to a reduction of the specific surface of the attached biofilm resulting from the accumulation of excess biomass. For a toluene loading of 4.1 kg COD/m3 day, it was demonstrated that the long-term performance of biofilters with either inlet concentration could be maintained at over 99.9% VOC removal by employing a backwashing strategy consisting of a frequency of every other day and a duration of 1 hr.  相似文献   

2.
ABSTRACT

A trickle bed air biofilter (TBAB) was evaluated for the oxidation of NH3 from an airstream. Six-millimeter Celite pellets (R-635) were used for the biological attachment medium. The efficiency of the biofilter in oxidizing NH3 was evaluated using NH3 loading rates as high as 48 mol NH3/m3 hr and empty-bed residence times (EBRTs) as low as 1 min. Excess biomass was controlled through periodic backwashing of the biofilter with water at a rate sufficient to fluidize the medium. The main goal was to demonstrate that high removal efficiencies could be sustained over long periods of operation. Ammonia oxidation efficiencies in excess of 99% were consistently achieved when the pH of the liquid nutrient feed was maintained at 8.5. Quick recovery of the biofilter after backwashing was observed after only 20 min. Evaluation of biofilter performance with depth revealed that NH3 did not persist in the gas phase beyond 0.3 m into the depth of the medium (26% of total medium depth).  相似文献   

3.
Trickle-bed air biofilters (TBABs) are suitable for treating volatile organic compounds (VOCs) at a significantly high practical loading because of their controlled environmental conditions. The application of TBAB for treating styrene-contaminated air under periodic backwashing and cyclical nonuse periods at a styrene loading of 0.64-3.17 kg chemical oxygen demand (COD)/m3 x day was the main focus of this study. Consistent long-term efficient performance of TBAB strongly depended on biomass control. A periodic in situ upflow with nutrient solution under media fluidization, that is, backwashing, was approached in this study. Two different nonuse periods were employed to simulate a shutdown for equipment repair or during weekends and holidays. The first is a starvation period without styrene loading, and the second is a stagnant period, which reflects no flow passing through the biofilter. For styrene loadings up to 1.9 kg COD/m3 x day, removal efficiencies consistently above 99% were achieved by conducting a coordinated biomass control strategy, that is, backwashing for 1 hr once per week. Under cyclical nonuse periods for styrene loadings up to 1.27 kg COD/m3 x day, stable long-term performance of the biofilter was maintained at more than 99% removal without employing backwashing. No substantial impact of nonuse periods on the biofilter performance was revealed. However, a coordinated biomass control by backwashing subsequently was unavoidable for attaining consistently high removal efficiency at a styrene loading of 3.17 kg COD/m3 x day. As styrene loading was increased, reacclimation of the biofilter to reach the 99% removal efficiency following backwashing or the nonuse periods was delayed. After the non-use periods, the response of the biofilter was a strong function of the biomass in the bed. No significant difference between the effects of the two different nonuse periods on TBAB performance was observed during the study period.  相似文献   

4.
Removal of ammonia from contaminated air by trickle bed air biofilters   总被引:6,自引:0,他引:6  
A trickle bed air biofilter (TBAB) was evaluated for the oxidation of NH3 from an airstream. Six-millimeter Celite pellets (R-635) were used for the biological attachment medium. The efficiency of the biofilter in oxidizing NH3 was evaluated using NH3 loading rates as high as 48 mol NH3/m3 hr and empty-bed residence times (EBRTs) as low as 1 min. Excess biomass was controlled through periodic backwashing of the biofilter with water at a rate sufficient to fluidize the medium. The main goal was to demonstrate that high removal efficiencies could be sustained over long periods of operation. Ammonia oxidation efficiencies in excess of 99% were consistently achieved when the pH of the liquid nutrient feed was maintained at 8.5. Quick recovery of the biofilter after backwashing was observed after only 20 min. Evaluation of biofilter performance with depth revealed that NH3 did not persist in the gas phase beyond 0.3 m into the depth of the medium (26% of total medium depth).  相似文献   

5.
Kim D  Sorial GA 《Chemosphere》2007,66(9):1758-1764
The effects of temporal and spatial changes in biological activity and biomass amount on biofilter performance were investigated in a lab-scale trickle-bed air biofilter at a toluene loading of 46.9gm(-3)h(-1) under two different experimental strategies, namely, periodic backwashing at a rate of 1h once a week and 2d starvation. Analysis of the overall reaction for toluene metabolism revealed that cell synthesis was relatively favored over toluene oxidation in the inlet section of the biofilter, but over time its oxidation became favored throughout the biofilter bed. Periodic in situ backwashing with media fluidization effectively made even spatial distribution of biomass along the bed media, by which consistent high removal performance in the biofilter has been attained. After 2d starvation, the ratio of the biofilm EPS to the total biomass increased along the media bed depth, while the total biomass in the media bed subsequently decreased. The presence of sufficient biomass and microbial activity favorably influenced biofilter reacclimation after restart-up following starvation.  相似文献   

6.
Cai Z  Kim D  Sorial GA 《Chemosphere》2007,68(6):1090-1097
Two independent parallel trickling bed air biofilters (TBABs) ("A" and "B") with two different typical VOC mixtures were investigated. Toluene, styrene, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK) were the target VOCs in the mixtures. Biofilter "A" was fed equal molar ratio of the VOCs and biofilter "B" was fed a mixture based on EPA 2003 emission report. Backwashing and substrate starvation operation were conducted as biomass control. Biofilter "A" and "B" maintained 99% overall removal efficiency for influent concentration up to 500 and 300 ppmv under backwashing operating condition, respectively. The starvation study indicated that it can be an effective biomass control for influent concentrations up to 250 ppmv for biofilter "A" and 300 ppmv for "B". Re-acclimation of biofilter performance was delayed with increase of influent concentration for both biofilters. Starvation operation helped the biofilter to recover at low concentrations and delayed re-acclimation at high concentrations. Furthermore, re-acclamation for biofilter "B" was delayed due to its high toluene content as compared to biofilter "A". The pseudo first-order removal rate constant decreased with increase of volumetric loading rate for both biofilters. MEK and MIBK were completely removed in the upper 3/8 media depth. While biofilter depth utilization for the removal of styrene and toluene increased with increase of influent concentrations for both biofilters. However, toluene removal utilized more biofilter depth for biofilter "B" as compared to biofilter "A".  相似文献   

7.
Abstract

Two biofilters were operated to treat a waste gas stream intended to simulate off-gases generated during the manufacture of reformulated paint. The model waste gas stream consisted of a five-component solvent mixture containing acetone (450 ppmv), methyl ethyl ketone (12 ppmv), toluene (29 ppmv), ethylbenzene (10 ppmv), and p-xylene (10 ppmv). The two biofilters, identical in construction and packed with a polyurethane foam support medium, were inoculated with an enrichment culture derived from compost and then subjected to different loading conditions during the startup phase of operation. One biofilter was subjected to intermittent loading conditions with contaminants supplied only 8 hr/day to simulate loading conditions expected at facilities where manufacturing operations are discontinuous. The other biofilter was subjected to continuous contaminant loading during the initial start period, and then was switched to intermittent loading conditions. Experimental results demonstrate that both startup strategies can ultimately achieve high contaminant removal efficiency (>99%) at a target contaminant mass loading rate of 80.3 g m?3 hr?1 and an empty bed residence time of 59 sec. The biofilter subjected to intermittent loading conditions at startup, however, took considerably longer to reach high performance. In both biofilters, ketone components (acetone and methyl ethyl ketone) were more rapidly degraded than aromatic hydrocarbons (toluene, ethylbenzene, and p-xylene). Scanning electron microscopy and plate count data revealed that fungi, as well as bacteria, populated the biofilters.  相似文献   

8.
Modeling variations of medium porosity in rotating drum biofilter   总被引:1,自引:0,他引:1  
Yang C  Chen H  Zeng G  Yu G  Liu X  Zhang X 《Chemosphere》2009,74(2):245-249
Rotating drum biofilters (RDBs) mounted with reticulated polyurethane sponge media has showed high removal efficiencies over a long period of time when used for volatile organic compound (VOC) removal. Due to the accumulation of biomass within the sponge medium, the porosity of a filter bed usually changes dynamically, which makes it difficult to predict and to control. In this paper, the porosity of a multi-layer RDB bed was investigated by a diffusion-reaction model in which biofilm growth and decay were taken into account at the pore scale of the sponge medium. Temporal and spatial changes of porosity were studied under various organic loadings and gas empty bed contact times (EBCTs). The porosity of the biofilter bed was assumed to be a function of biofilm thickness, and all the pores were assumed to be uniform. Toluene was selected as the model VOC. The model was solved using numerical methods through the MATLAB software. Results show that the porosity decreased with increased time of operation, increased toluene loading, or decreased gas EBCT value. The porosity in the outermost medium layer was less than that in the inner medium layers. Toluene removal efficiencies and porosities calculated from this model correlated with the experimental data well. Porosity variation was proposed to be an indicator for prediction of biofilter performance in biofilters as a consequence.  相似文献   

9.
ABSTRACT

This research investigated and compared the use of both bench- and pilot-scale biofilters to determine the effectiveness of controlling styrene, methyl ethyl ketone (MEK), and acetone emissions from an industrial gas waste stream. Critical operating parameters, including contaminant loading rate, temperature, and empty bed contact time, were manipulated in both the laboratory and field. At steady-state conditions, the bench and pilot-scale biofilters showed a 99% removal efficiency for styrene when the contaminant loading rate was less than 50 g m-3hr-1 and 40 g m-3hr-1, respectively. Although few data points were collected in the pilot-scale reactor where the styrene load was greater than 40 g m-3hr-1, the total organic contaminant load including both MEK and acetone typically ranged between 50 g m-3hr-1 and 80 g m-3hr-1. Greater than 99% removal efficiencies were observed for acetone and MEK in the pilot-scale biofilter at all evaluated loading rates. Also studied were biofilter acclimation and re-acclimation periods. In inoculated bench and pilot biofilter systems, microbial acclimation to styrene was achieved in less than five days. In comparison, no MEK degrading microbial inoculum was added, so during the first months of pilot-scale biofilter operation, MEK removal efficiencies lagged behind those noted with styrene.  相似文献   

10.
This study aimed to develop a biofilter packed only with fern chips for the removal of odorous compounds from recycled nylon melting operations. The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. A pilot-scale biofilter consisting of an acrylic column (14 cm2?×?120 cm height) packed with fern chips to a volume of around 19.6 L was used for the test. Experimental results indicate that oxygen- and nitrogen-containing hydrocarbons as well as paraffins were major volatile organic compounds (VOCs) emitted from thermal smelting of recycled nylon at 250 °C. With operation conditions of medium pH of 5.5–7.0, empty bed retention time (EBRT) of 6–12 sec, influent total hydrocarbon (THC) concentrations of 0.65–2.61 mg m?3, and volumetric organic loading of 0.05–0.85 g m?3 hr?1, the fern-chip-packed biofilter with nutrients of milk, potassium dihydrogen phosphate, and glucose could achieve an overall THC removal efficiency of around 80%. Burnt odor emitted from the smelting of the recycled nylon could be eliminated by the biofilter.

Implications: Biotreatment of contaminants in air streams offers an inexpensive and efficient alternative to conventional technologies. Biofiltration have a great potential for the degradation of gas-borne odorous compounds. THC removal efficiency of around 80% can be achieved. Burnt odor emitted from the smelting of the recycled nylon could be eliminated by the biofilter. This study provides an experimentally verified model for the design and operation of such biotreatment systems.  相似文献   

11.
Excessive accumulation of biomass within gas-phase biofilters often results in the deterioration of removal performance. Compared with chemical and biological technologies, physical technologies are more effective in removing biomass and inducing less inhibition of the biofilter performance. This study applied different physical technologies, namely, air sparging, mechanical mixing, and washing with water at various temperatures, to remove excess biomass in biofilters treating toluene. Filter pressure drop, removed dry biomass, biofilter performance, and microbial metabolic characteristics were analyzed to evaluate the effectiveness of the methods. Results showed that air sparging was inefficient for biomass removal (1 kg dry biomass/m3 filter), whereas mechanical mixing significantly inhibited removal efficiencies (<30%). Washing of the packing with fluids was feasible, and hot fluids can remove a large amount of biomass. However, hot fluids reduce microbial activity and inhibit removal performance. Washing of the packing with either 20°C or 50°C water showed efficiency as >3 kg dry biomass/m3 filter can be removed at both temperatures with removal efficiencies at approximately 40% after treatment. Finally, different technologies were compared and summarized to propose an optimized strategy of biomass control for industrial biofilters.

Implications: This study is to apply different physical technologies, namely, air sparging, mechanical mixing, and washing with water of different temperatures, to remove the excess biomass in biofilters treating toluene. The filter pressure drop, removed dry biomass, biofilter performance, and microbial metabolic characteristics were all analyzed to evaluate the effectiveness of the methods. The results of this study provide useful information regarding biomass control of industrial biofilters.  相似文献   


12.
Biofiltration of gasoline vapor by compost media   总被引:2,自引:0,他引:2  
Gasoline vapor was treated using a compost biofilter operated in upflow mode over 4 months. The gas velocity was 6 m/h, yielding an empty bed retention time (EBRT) of 10 min. Benzene, toluene, ethylbenzene and xylene (BTEX) and total petroleum hydrocarbon (TPH) removal efficiencies remained fairly stable approximately 15 days after biofilter start-up. The average removal efficiencies of TPH and BTEX were 80 and 85%, respectively, during 4 months of stable operation. Biodegradation portions of the treated TPH and BTEX were 60 and 64%, respectively. When the influent concentration of TPH was less than 7800 mg TPH/m3, approximately 50% of TPH in the gas stream was removed in the lower half of the biofilter. When the influent concentration of BTEX was less than 720 mg BTEX/m3, over 75% of BTEX in the gas stream was removed in the lower half of the biofilter. Benzene removal efficiency was the lowest among BTEX. A pressure drop could not be detected over a 1-m bed height at a gas velocity of 6 m/h after approximately 4 months of operation. Results demonstrated that BTEX in gasoline vapor could be treated effectively using a compost biofilter.  相似文献   

13.
Abstract

A laboratory-scale compost-based biofilter was operated over a six-month period to study the requirements for removal of n-hexane from air. Hexane is a relatively short chain aliphatic hydrocarbon with a high Henry's coefficient and a low water solubility. Acclimation of the biofilter was slow, but removal efficiencies around 80% were achieved after one month of operation. However, performance decreased during the next two months of operation to 50% removal efficiency. Nutrient limitation was proposed as a reason for the decrease in reactor performance. After the addition of a concentrated nitrogen solution, reactor performance increased almost immediately to >99%. Removal efficiency remained above 99% for the following two months of operation at inlet concentrations of 0.7 g/m3 (200 ppmv), at superficial bed velocities approaching 50 m/h, and empty bed residence times of about one minute. Thus, nutrient availability may well limit biofilter performance even in compost- based units. It was shown that nutrients can be added effectively in a soluble form if compost quality is poor and a method is proposed for the evaluation of compost quality.  相似文献   

14.
Methane (CH4) removal in the presence of ethanol vapors was performed by a stone-based bed and a hybrid packing biofilter in parallel. In the absence of ethanol, a methane removal efficiency of 55 ± 1% was obtained for both biofilters under similar CH4 inlet load (IL) of 13 ± 0.5 gCH4 m?3 h?1 and an empty bed residence time (EBRT) of 6 min. The results proved the key role of the bottom section in both biofilters for simultaneous removal of CH4 and ethanol. Ethanol vapor was completely eliminated in the bottom sections for an ethanol IL variation between 1 and 11 gethanol m?3 h?1. Ethanol absorption and accumulation in the biofilm phase as well as ethanol conversion to CO2 contributed to ethanol removal efficiency of 100%. In the presence of ethanol vapor, CO2 productions in the bottom section increased almost fourfold in both biofilters. The ethanol concentration in the leachate of the biofilter exceeding 2200 gethanol m?3 leachate in both biofilters demonstrated the excess accumulation of ethanol in the biofilm phase. The biofilters responded quickly to an ethanol shock load followed by a starvation with 20% decrease of their performance. The return to normal operations in both biofilters after the transient conditions took less than 5 days. Unlike the hybrid packing biofilter, excess pressure drop (up to 1.9 cmH2O m?1) was an important concern for the stone bed biofilter. The biomass accumulation in the bottom section of the stone bed biofilter contributed to 80% of the total pressure drop. However, the 14-day starvation reduced the pressure drop to 0.25 cmH2O m?1.  相似文献   

15.
Two biofilters were operated to treat a waste gas stream intended to simulate off-gases generated during the manufacture of reformulated paint. The model waste gas stream consisted of a five-component solvent mixture containing acetone (450 ppm(v)), methyl ethyl ketone (12 ppm(v)), toluene (29 ppm(v)), ethylbenzene (10 ppm(v)), and p-xylene (10 ppm(v)). The two biofilters, identical in construction and packed with a polyurethane foam support medium, were inoculated with an enrichment culture derived from compost and then subjected to different loading conditions during the startup phase of operation. One biofilter was subjected to intermittent loading conditions with contaminants supplied only 8 hr/day to simulate loading conditions expected at facilities where manufacturing operations are discontinuous. The other biofilter was subjected to continuous contaminant loading during the initial start period, and then was switched to intermittent loading conditions. Experimental results demonstrate that both startup strategies can ultimately achieve high contaminant removal efficiency (>99%) at a target contaminant mass loading rate of 80.3 g m(-3) hr(-1) and an empty bed residence time of 59 sec. The biofilter subjected to intermittent loading conditions at startup, however, took considerably longer to reach high performance. In both biofilters, ketone components (acetone and methyl ethyl ketone) were, more rapidly degraded than aromatic hydrocarbons (toluene, ethylbenzene, and p-xylene). Scanning electron microscopy and plate count data revealed that fungi, as well as bacteria, populated the biofilters.  相似文献   

16.
Abstract

This study aimed to develop a biofilter packed only with fern chips for the removal of airborne propylene glycol monomethyl ether acetate (PGMEA). Fern chips could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. In addition, the fern chip medium has the following merits: (1) simplicity in composition; (2) low pressure drop for gas ?ow (<20 mmH2O?m-1); (3) simple in humidification, nutrient addition, pH control, and metabolite removal; (4) economical (US$174–385?m-3), and (5) low weight (wet basis around 290 kg?m-3). A two-stage down?ow biofilter (2.18 m in height and 0.4×0.4 m in cross-sectional area) was constructed for the performance test. Both stages were packed with fern chips of 0.30 m in height and 0.40×0.40 m in cross-section. Results indicate that with operation conditions of media moisture content controlled in the range of 50–74%, media pH of 6.5–8.3, empty bed retention time (EBRT) of 0.27–0.4 min, in?uent PGMEA concentrations of 100–750 mg?m-3, volu-metric organic loading of <170 ?m-3 ?hr-1, and nutrition rates of Urea-nitrogen 66 g?m-3 ?day-3, potassium dihydrogen phosphate (KH2PO4)-phosphorus 13.3 g ?m-3 ?day-3, and milk powder 1.00 g?m-3?day-1, the fern-chip-packed biofilter could achieve an overall PGMEA removal efficacy of around 94%. Instant milk powder or liquid milk was essential to the good and stable performance of the biofilter for PGMEA removal.  相似文献   

17.
ABSTRACT

Simultaneous removal of H2S and CS2 was studied with a peat biofilter inoculated with a Thiobacillus strain that oxidizes both compounds in an acidic environment. Both sulfurous gases at concentrations below 600 mg S/m3 were efficiently removed, and the removal efficiencies were similar, 99%, with an empty bed retention time (EBRT) of more than 60 sec. Concentrations greater than 1300-5000 mg S/m3 caused overloading of the filter material, resulting in high H2SO4 production, accumulation of elemental sulfur, and reduced removal efficiency. The highest sulfur removal rate achieved was 4500 g-S/day/m3 filter material. These results indicate that peat is suitable as a biofilter material for the removal of a mixture of H2S and CS2 when concentrations of gases to be purified are low (less than 600 mg/m3), but it is still odorous and toxic to the environment and humans.  相似文献   

18.
ABSTRACT

This paper reports results of studies using a biotrickling filter with blast-furnace slag packings (sizes = 2–4 cm and specific surface area = 120 m2/m3) for treatment of ethylether in air stream. Effects of volumetric loading, superficial gas velocity, empty bed gas retention time, recirculation liquid flow rate, and biofilm renewal on the ethylether removal efficiency and elimination capacity were tested. Results indicate that ethylether removal efficiencies of more than 95% were obtained with an empty bed retention time (EBRT) of 113 sec and loadings of lower than 70 g/m3/hr. At an EBRT of 57 sec, removal efficiencies of more than 90% could only be obtained with loadings of lower than 35 g/m3/hr. The maximum elimination capacities were 71 and 45 g/m3/hr for EBRT = 113 and 57 sec, respectively. The maximum ethylether elimination capacities were 71 and 96 g/m3/hr, respectively, before and after the renewal at EBRT = 113 sec. With an EBRT of 113 sec and a loading of lower than 38 g/m3/hr, the removal efficiency was nearly independent of the superficial liquid recirculation velocity in the range of 3.6 to 9.6 m3/m2/hr. From data regression, simplified mass-transfer limited, and reaction- and mass-transfer limited models correlating the contaminant concentration and the packing height were proposed and verified. The former model is applicable for cases of low influent contaminant concentrations or loadings, and the latter is applicable for cases of higher ones. Finally, CO2 conversion efficiencies of approximately 90% for the influent ethylether were obtained. The value is comparable to data reported from other related studies.  相似文献   

19.
采用中试规模复合生物滤池处理城市高污染水体,考察了滤池的最佳运行参数以及对氮和有机物的去除效果。结果表明:滤池容积负荷宜控制为0.3~0.5 kg COD/(m3.d),水力负荷4.5~5 m3/(m2.d),适宜的通风比为9%,当C/N为5~8时,滤池COD、NH4+-N和TN平均去除率分别为80%、83%和63%,达到高效同步硝化反硝化状态。  相似文献   

20.
ABSTRACT

This study utilized a biotrickling filter with blast-furnace slag packings (sizes = 20-40 mm; specific surface area = 120 m2/m3) to treat toluene in an air stream. Also studied were the effects of volumetric loading (L), nutrient addition, and superficial gas velocity (Ug) or gas retention time on toluene elimination capacity. Experimental results indicate that, for a test period of 121 days, with no excess biomass removal, toluene removal efficiencies of over 90% were obtained with Ug < 80 m/hr and L < 30 g/m3.hr. For a test period of 49 days, with Ug < 80 m/hr and L increased from 1.2 to 81 g/m3.hr, the absence of nutrient supplementation did not limit the toluene elimination capacity. Nutrients stored in the biofilm could adequately support the microbial activity for the toluene elimination. According to data regression, a simplified mass-transfer model is proposed, which correlates the contaminant concentration with the packing height or gas empty bed retention time. As verified, the model proposed herein can be applied to cases involving low influent contaminant concentrations or loadings to the extent that none or only a trace amount of the contaminant can be found in the recirculation liquid. Although small media with larger specific surface areas can achieve a better mass transfer, the problems of frequent backwashing and relatively greater gas resistance in using this type of media probably outweigh the advantages, particularly for full-scale systems that would not be watched as closely as laboratory test systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号