首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to develop a biofilter packed only with fern chips for the removal of odorous compounds from recycled nylon melting operations. The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. A pilot-scale biofilter consisting of an acrylic column (14 cm2?×?120 cm height) packed with fern chips to a volume of around 19.6 L was used for the test. Experimental results indicate that oxygen- and nitrogen-containing hydrocarbons as well as paraffins were major volatile organic compounds (VOCs) emitted from thermal smelting of recycled nylon at 250 °C. With operation conditions of medium pH of 5.5–7.0, empty bed retention time (EBRT) of 6–12 sec, influent total hydrocarbon (THC) concentrations of 0.65–2.61 mg m?3, and volumetric organic loading of 0.05–0.85 g m?3 hr?1, the fern-chip-packed biofilter with nutrients of milk, potassium dihydrogen phosphate, and glucose could achieve an overall THC removal efficiency of around 80%. Burnt odor emitted from the smelting of the recycled nylon could be eliminated by the biofilter.

Implications: Biotreatment of contaminants in air streams offers an inexpensive and efficient alternative to conventional technologies. Biofiltration have a great potential for the degradation of gas-borne odorous compounds. THC removal efficiency of around 80% can be achieved. Burnt odor emitted from the smelting of the recycled nylon could be eliminated by the biofilter. This study provides an experimentally verified model for the design and operation of such biotreatment systems.  相似文献   

2.
Abstract

Carbonyl sulfide (COS) is an odor-causing compound and hazardous air pollutant emitted frequently from wastewater treatment facilities and chemical and primary metals industries. This study examined the effectiveness of biofiltration in removing COS. Specific objectives were to compare COS removal efficiency for various biofilter media; to determine whether hydrogen sulfide (H2S), which is frequently produced along with COS under anaerobic conditions, adversely impacts COS removal; and to determine the maximum elimination capacity of COS for use in biofilter design. Three laboratory-scale polyvinyl chlo-ride biofilter columns were filled with up to 28 in. of biofilter media (aged compost, fresh compost, wood chips, or a compost/wood chip mixture). Inlet COS ranged from 5 to 46 parts per million (ppm) (0.10–9.0 g/m3fihr). Compost and the compost/wood chip mixture produced higher COS removal efficiencies than wood chips alone. The compost and compost/wood chip mixture had a shorter stabilization times compared with wood chips alone. Fresh versus aged compost did not impact COS removal efficiency. The presence of H2S did not adversely impact COS removal for the concentration ratios tested. The maximum elimination capacity is at least 9 g/m3·hr for COS with compost media.  相似文献   

3.
This study compares the performances of fern and plastic chips as packing media for the biofiltration of a styrene-laden waste gas stream emitted in a plant for the manufacture of plastic door plates. Fern chips (with a specific surface area of 1090 m2 m?3) and plastic chips (with a specific surface area of 610 m2 m?3) were packed into a pilot-scale biotrickling filter with a total medium volume of 50 L for the performance test. Field waste gas with styrene concentrations in the range of 161–2390 mg Am?3 at 28–30 °C) was introduced to the bed and a fixed empty-bed retention time (EBRT) of 21 sec, a volumetric gas flow rate of 8.57 m3 hr?1, and superficial gas velocity of 53.6 m hr?1 were maintained throughout the experimental period. Nutrients containing metal salts, nitrogen, phosphorus, and milk were supplemented to the filters for maintaining the microbial activities. Results reveal that the biotrickling filter developed in this study had the highest styrene monomer (SM) elimination capacities (170 g m?3 hr?1 for fern-chip packing and 300 g m?3 hr?1 for plastic-chip packing) among those cited in the literature. The plastic medium is a favorable substitute for endangered fern chips. The thermal-setting nature of plastic chips limits their recycle and reuse as raw materials, and the study provides an opportunity for the utilization of the materials.

Implications: Biotreatment of contaminants in air streams offers an inexpensive and efficient alternative to conventional technologies. Biofiltration has a great potential for the degradation of gas-borne styrene and total hydrocarbon (THC) removal efficiency of around 80%. The objective of this research was to compare the performances of fern chips and a kind of plastic chips as packing media for biofiltration of the styrene-laden waste gas stream emitted from cutting operations of stripes of premixed unsaturated polyester (UP) and styrene paste before hot-pressing operations for making plastic door plates. From a practical point of view, the plastic medium can be a good substitute medium for fern chips, which has been declared as a protected plant. This study provides an experimentally verified model for the design and operation of such biotreatment systems.  相似文献   

4.
ABSTRACT

This paper presents results obtained from a performance study on the biotreatment of 1,3-butadiene in an air stream using a reactor that consisted of a two-stage, in-series biotrickling filter connected with a three-stage, in-series biofilter. Slags and pig manure-based media were used as packing materials for the biotrickling filter and the biofilter, respectively. Experimental results indicated that, for the biotrickling filter portion, the butadiene elimination capacities were below 5 g/m3/hr for loadings of less than 25 g/m3/hr, and the butadiene removal efficiency was only around 17%. For the biofilter portion, the elimination capacities ranged from 10 to 107 g/m3/hr for loadings of less than 148 g/m3/hr. The average butadiene removal efficiency was 75–84% for superficial gas velocities of 53–142 m/hr and a loading range of 10–120 g/m3/hr. The elimination capacity approached a maximum of 108 g/m3/hr for a loading of 150 g/m3/hr. The elimination rates of butadiene in both the biotrickling filter and biofilter were mass-transfer controlled for influent butadiene concentrations below about 600 ppm for superficial gas velocities of 29–142 m/hr. The elimination capacity was significantly higher in the biofilter than in the biotrickling filter. This discrepancy may be attributed to the higher mass-transfer coefficient and gas-solid interfacial area offered for transferring the gaseous butadiene in the biofilter.  相似文献   

5.
The sulfur–limestone autotrophic denitrification (SLAD) biofilter was able to remove phosphorous from wastewater during autotrophic denitrification. Parameters influencing autotrophic denitrification in the SLAD biofilter, such as hydraulic retention time (HRT), influent nitrate (NO3 ?), and influent PO4 3? concentrations, had significant effects on P removal. P removal was well correlated with total oxidized nitrogen (TON) removed in the SLAD biofilter; the more TON removed, the more efficient P removal was achieved. When treating the synthetic wastewater containing NO3 ?-N of 30 mg L?1 and PO4 3?-P of 15 mg L?1, the SLAD biofilter removed phosphorus of 45 % when the HRT was 6 h, in addition with TN removal of nearly 100 %. The optimal phosphorus removal in the SLAD biofilter was around 60 %. For the synthetic wastewater containing a PO4 3?-P concentration of 15 mg L?1, the main mechanism of phosphorus removal was the formation of calcium phosphate precipitates.  相似文献   

6.
ABSTRACT

Simultaneous removal of H2S and CS2 was studied with a peat biofilter inoculated with a Thiobacillus strain that oxidizes both compounds in an acidic environment. Both sulfurous gases at concentrations below 600 mg S/m3 were efficiently removed, and the removal efficiencies were similar, 99%, with an empty bed retention time (EBRT) of more than 60 sec. Concentrations greater than 1300-5000 mg S/m3 caused overloading of the filter material, resulting in high H2SO4 production, accumulation of elemental sulfur, and reduced removal efficiency. The highest sulfur removal rate achieved was 4500 g-S/day/m3 filter material. These results indicate that peat is suitable as a biofilter material for the removal of a mixture of H2S and CS2 when concentrations of gases to be purified are low (less than 600 mg/m3), but it is still odorous and toxic to the environment and humans.  相似文献   

7.
多层生物滤塔净化硫化氢废气研究   总被引:4,自引:2,他引:2  
以木屑为填料,采用多层生物滤塔净化H2S气体,研究其适宜的工艺条件及生物降解宏观动力学.结果表明,填料分层可提高H2S去除率,当进气容积负荷<153.2 g H2S/(m3·d)时,H2S的去除率保持在90%以上;进气浓度低于70 mg/m3,下层200mm填料对H2S总去除率的贡献在50%以上;填料含水率为50%~6...  相似文献   

8.
ABSTRACT

A trickle bed air biofilter (TBAB) was evaluated for the oxidation of NH3 from an airstream. Six-millimeter Celite pellets (R-635) were used for the biological attachment medium. The efficiency of the biofilter in oxidizing NH3 was evaluated using NH3 loading rates as high as 48 mol NH3/m3 hr and empty-bed residence times (EBRTs) as low as 1 min. Excess biomass was controlled through periodic backwashing of the biofilter with water at a rate sufficient to fluidize the medium. The main goal was to demonstrate that high removal efficiencies could be sustained over long periods of operation. Ammonia oxidation efficiencies in excess of 99% were consistently achieved when the pH of the liquid nutrient feed was maintained at 8.5. Quick recovery of the biofilter after backwashing was observed after only 20 min. Evaluation of biofilter performance with depth revealed that NH3 did not persist in the gas phase beyond 0.3 m into the depth of the medium (26% of total medium depth).  相似文献   

9.
Media depth (MD) and moisture content (MC) are two important factors that greatly influence biofilter performance. The purpose of this study was to investigate the combined effect of MC and MD on removing ammonia (NH3), hydrogen sulfide (H2S), and nitrous oxide (N2O) from swine barns. Biofiltration performance of different MDs and MCs in combination based on a mixed medium of wood chips and compost was monitored. A 3 × 3 factorial design was adopted, which included three levels of the two factors (MC: 45%, 55%, and 67% [wet basis]; MD: 0.17, 0.33, and 0.50 m). Results indicated that high MC and MD could improve NH3 removal efficiency, but increase outlet N2O concentration. When MC was 67%, the average NH3 removal efficiency of three MDs (0.17, 0.33, and, 0.50 m) ranged from 77.4% to 78.7%; the range of average H2S removal efficiency dropped from 68.1–90.0% (1–34 days of the test period) to 36.8–63.7% (35–58 days of the test period); and the average outlet N2O concentration increased by 25.5–60.1%. When MC was 55%, the average removal efficiency of NH3, H2S, and N2O for treatment with 0.33 m MD was 72.8 ± 5.9%, 70.9 ± 13.3%, and –18.9 ± 8.1%, respectively; and the average removal efficiency of NH3, H2S, and N2O for treatment with 0.50 m MD was 77.7 ± 4.2%, 65.8 ± 13.7%, and –24.5 ±12.1%, respectively. When MC was 45%, the highest average NH3 reduction efficiency among three MDs was 60.7% for 0.5 m MD, and the average N2O removal efficiency for three MDs ranged from –18.8% to –12.7%. In addition, the pressure drop of 0.33 m MD was significantly lower than that of 0.50 m MD (p < 0.05). To obtain high mitigation of NH3 and H2S and avoid elevated emission of N2O and large pressure drop, 0.33 m MD at 55% MC is recommended.

Implications: The performances of biofilters with three different media depths (0.17, 0.33, and 0.50 m) and three different media moisture contents (45%, 55%, and 67% [wet basis]) were compared to remove gases from a swine barn. Using wood chips and compost mixture as the biofilters media, the combination of 0.33 m media depth and 55% media moisture content is recommended to obtain good reduction of NH3 and H2S, and to simultaneously prevent elevated emission of N2O and large pressure drop across the media.  相似文献   


10.
ABSTRACT

This research investigated and compared the use of both bench- and pilot-scale biofilters to determine the effectiveness of controlling styrene, methyl ethyl ketone (MEK), and acetone emissions from an industrial gas waste stream. Critical operating parameters, including contaminant loading rate, temperature, and empty bed contact time, were manipulated in both the laboratory and field. At steady-state conditions, the bench and pilot-scale biofilters showed a 99% removal efficiency for styrene when the contaminant loading rate was less than 50 g m-3hr-1 and 40 g m-3hr-1, respectively. Although few data points were collected in the pilot-scale reactor where the styrene load was greater than 40 g m-3hr-1, the total organic contaminant load including both MEK and acetone typically ranged between 50 g m-3hr-1 and 80 g m-3hr-1. Greater than 99% removal efficiencies were observed for acetone and MEK in the pilot-scale biofilter at all evaluated loading rates. Also studied were biofilter acclimation and re-acclimation periods. In inoculated bench and pilot biofilter systems, microbial acclimation to styrene was achieved in less than five days. In comparison, no MEK degrading microbial inoculum was added, so during the first months of pilot-scale biofilter operation, MEK removal efficiencies lagged behind those noted with styrene.  相似文献   

11.
采用中试规模复合生物滤池处理城市高污染水体,考察了滤池的最佳运行参数以及对氮和有机物的去除效果。结果表明:滤池容积负荷宜控制为0.3~0.5 kg COD/(m3.d),水力负荷4.5~5 m3/(m2.d),适宜的通风比为9%,当C/N为5~8时,滤池COD、NH4+-N和TN平均去除率分别为80%、83%和63%,达到高效同步硝化反硝化状态。  相似文献   

12.
Methane (CH4) removal in the presence of ethanol vapors was performed by a stone-based bed and a hybrid packing biofilter in parallel. In the absence of ethanol, a methane removal efficiency of 55 ± 1% was obtained for both biofilters under similar CH4 inlet load (IL) of 13 ± 0.5 gCH4 m?3 h?1 and an empty bed residence time (EBRT) of 6 min. The results proved the key role of the bottom section in both biofilters for simultaneous removal of CH4 and ethanol. Ethanol vapor was completely eliminated in the bottom sections for an ethanol IL variation between 1 and 11 gethanol m?3 h?1. Ethanol absorption and accumulation in the biofilm phase as well as ethanol conversion to CO2 contributed to ethanol removal efficiency of 100%. In the presence of ethanol vapor, CO2 productions in the bottom section increased almost fourfold in both biofilters. The ethanol concentration in the leachate of the biofilter exceeding 2200 gethanol m?3 leachate in both biofilters demonstrated the excess accumulation of ethanol in the biofilm phase. The biofilters responded quickly to an ethanol shock load followed by a starvation with 20% decrease of their performance. The return to normal operations in both biofilters after the transient conditions took less than 5 days. Unlike the hybrid packing biofilter, excess pressure drop (up to 1.9 cmH2O m?1) was an important concern for the stone bed biofilter. The biomass accumulation in the bottom section of the stone bed biofilter contributed to 80% of the total pressure drop. However, the 14-day starvation reduced the pressure drop to 0.25 cmH2O m?1.  相似文献   

13.
Four subsurface horizontal-flow constructed wetlands (CWs) at a pilot scale planted with a polyculture of the tropical plants Gynerium sagittatum (Gs), Colocasia esculenta (Ce) and Heliconia psittacorum (He) were evaluated for 7 months. The CW cells with an area of 17.94 m2 and 0.60 m (h) each and 0.5 m of gravel were operated at continuous gravity flow (Q?=?0.5 m3 day?1) and a theoretical HRT of 7 days each and treating landfill leachate for the removal of filtered chemical oxygen demand (CODf), BOD5, TKN, NH4 +, NO3 ?, PO4 3?–P and Cr(VI). Three CWs were divided into three sections, and each section (5.98 m2) was seeded with 36 cuttings of each species (plant density of six cuttings per square metre). The other unit was planted randomly. The final distributions of plants in the bioreactors were as follows: CW I (He-Ce-Gs), CW II (randomly), CW III (Ce-Gs-He) and CW IV (Gs-He-Ce). The units received effluent from a high-rate anaerobic pond (BLAAT®). The results show a slightly alkaline and anoxic environment in the solid-liquid matrix (pH?=?8.0; 0.5–2 mg L?1 dissolved oxygen (DO)). CODf removal was 67 %, BOD5 80 %, and TKN and NH4 + 50–57 %; NO3 ? effluents were slightly higher than the influent, PO4 3?–P (38 %) and Cr(VI) between 50 and 58 %. CW IV gave the best performance, indicating that plant distribution may affect the removal capacity of the bioreactors. He and Gs were the plants exhibiting a translocation factor (TF) of Cr(VI) >1. The evaluated plants demonstrated their suitability for phytoremediation of landfill leachate, and all of them can be categorized as Cr(VI) accumulators. The CWs also showed that they could be a low-cost operation as a secondary system for treatment of intermediated landfill leachate (LL).  相似文献   

14.
研究了有氧条件下氮氧化物在生物滤塔内的传质机理,结果表明,当含NOx废气中氧气含量为20%、氧化度为80%时,被生物滤塔内微生物吸附分解的NOx仅占被净化的NOx的12%左右,而88%左右的NOx没有被微生物及时分解,而是转入液相中形成NO3-和NO2-.在此基础上,提出了采用生物滤塔和硝酸盐脱除反应器(nitrate...  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs) associated with the inhalable fraction of particulate matter were determined for 1 year (2009–2010) at a school site located in proximity of industrial and heavy traffic roads in Delhi, India. PM10 (aerodynamic diameter ≤10 μm) levels were ~11.6 times the World Health Organization standard. Vehicular (59.5 %) and coal combustion (40.5 %) sources accounted for the high levels of PAHs (range 38.1–217.3 ng m?3) with four- and five-ring PAHs having ~80 % contribution. Total PAHs were dominated by carcinogenic species (~75 %) and B[a]P equivalent concentrations indicated highest exposure risks during winter. Extremely high daily inhalation exposure of PAHs was observed during winter (439.43 ng day?1) followed by monsoon (232.59 ng day?1) and summer (171.08 ng day?1). Daily inhalation exposure of PAHs to school children during a day exhibited the trend school hours?>?commuting to school?>?resting period in all the seasons. Vehicular source contributions to daily PAH levels were significantly correlated (r?=?0.94, p?<?0.001) with the daily inhalation exposure level of school children. A conservative estimate of ~11 excess cancer cases in children during childhood due to inhalation exposure of PAHs has been made for Delhi.  相似文献   

16.
采用酸性洗涤塔、生物滤塔和生物曝气池的组合工艺处理NH3、H2S恶臭混合气体,研究表明,该组合工艺对NH3和H2S有很好的去除效果,在进气流量为35 L/min,喷淋量45 L/h时,NH3进气浓度50.15~525.4 mg/m3,H2S进气浓度10.23~110.36 mg/m3时,NH3单一进气去除率稳定在99%以上,H2S单一进气去除率90%以上。混合进气后,NH3去除率几乎为100%,H2S的去除率提高至98%以上。在一定的浓度范围内,NH3和H2S之间的相互作用对两者的去除效果没有明显的影响,而且起到了相互促进降解的作用。同时,进气流量和填料层高度都会影响NH3、H2S的去除率。系统对进气容积负荷变化的缓冲能力强,在偶尔超负荷条件下运行并不能使系统崩溃,并且微生物对高负荷逐渐表现出适应性。大部分溶于水的氨由生物曝气池去除,去除率达到96.9%。  相似文献   

17.
Propylene and butylene are highly reactive volatile organic compounds (HRVOCs) in terms of ground-level ozone formation. This study examined the effectiveness of biofiltration in removing propylene and butylene as separate compounds. Specific objectives were (1) to measure maximum removal efficiencies for propylene and butylene and the corresponding microbial acclimation times, which will be useful in the design of future biofilters for removal of these compounds; (2) to compare removal efficiencies of propylene and butylene for different ratios of compost/hard wood-chip media; and (3) to identify the microorganisms responsible for propylene and butylene degradation. Two laboratory-scale polyvinyl chloride biofilter columns were filled with 28 in. of biofilter media (compost/wood-chip mixtures of 80:20 and 50:50 ratios). Close to 100% removal efficiency was obtained for propylene for inlet concentrations ranging from 2.9 x 10(4) to 6.3 x 10(4) parts per million (ppm) (232-602 g/m3-hr) and for butylene for inlet concentrations ranging from 91 to 643 ppm (1.7-13.6 g/m3-hr). The microbial acclimation period to attain 100% removal efficiency was 12-13 weeks for both compounds. The lack of similar microbial species in the fresh and used media likely accounts for the long acclimation time required. Both ratios of compost/wood chips (80:20 and 50:50) gave similar results. During the testing, media pH increased slightly from 7.1 to 7.5-7.7. None of the species in the used media that treated butylene were the same as those in the used media that treated propylene, indicating that different microbes are adept at degrading the two compounds.  相似文献   

18.
Abstract

Two types of media, a natural medium (wood chips) and a commercially engineered medium, were evaluated for sulfur inhibition and capacity for removal of hydrogen sulfide (H2S). Sulfate was added artificially (40, 65, and 100 mg of S/g of medium) to test its effect on removal efficiency and the media. A humidified gas stream of 50 ppm by volume H2S was passed through the media-packed columns, and effluent readings for H2S at the outlet were measured continuously. The overall H2S baseline removal efficiencies of the column packed with natural medium remained >95% over a 2-day period even with the accumulated sulfur species. Added sulfate at a concentration high enough to saturate the biofilter moisture phase did not appear to affect the H2S removal process efficiency. The results of additional experiments with a commercial granular medium also demonstrated that the accumulation of amounts of sulfate sufficient enough to saturate the moisture phase of the medium did not have a significant effect on H2S removal.

When the pH of the biofilter medium was lowered to 4, H2S removal efficiency did drop to 36%. This work suggests that sulfate mass transfer through the moisture phase to the biofilm phase does not appear to inhibit H2S removal rates in biofilters. Thus, performance degradation for odor-removing biofilters or H2S breakthrough in field applications is probably caused by other consequences of high H2S loading, such as sulfur precipitation.  相似文献   

19.
Abstract

Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organometallic compound used as an octane improver in unleaded gasoline. The combustion of MMT leads to the formation of manganese (Mn) oxides, mainly Mn3O4. The objective of this study is to assess the variations over time and space of respirable (MnR) and total (MnT) Mn in the urban atmosphere and to evaluate human exposure by inhalation. Two sampling sites were selected on the island of Montreal based on their local traffic density (municipal botanical garden, C-= 10,000–15,000 vehicles d-1; Montreal Waterworks, C+= 100,000–130,000 vehicles d-1). Air samplings were made during the day at stations located 10 m from the road using portable pumps, some of which were equipped with a cyclone. MnR and MnT and other metals were measured on Teflon filters by neutron activation. Mn exposure doses by inhalation were calculated using Monte–Carlo simulations. MnR and MnT average concentrations were significantly higher at site C+ (MnR = 0.024 µg m-3; MnT = 0.050 µg m-3) than at site C- (MnR= 0.015 µg m-3; MnT= 0.027 µg m-3). Temporal profiles at sites C+ and site C-were similar, with a coefficient of correlation of 0.24 for MnR and 0.26 for MnT. Trend analyses (ARIMA) also showed that the period of the week (work days vs. off days) was significantly related to MnR and MnT variations at both sites. The average exposure dose by inhalation to MnR and MnT ranged from 0.001 to 0.030 µg kg-1 day-1 and 0.001 to 0.05 µg kg-1 day-1. MnR and MnT concentrations reflected a positive relationship with traffic density. However, it remains difficult to attribute these results directly to the combustion of MMT in unleaded gasoline. On average, the MnR and MnT inhalation doses were 2 to 15 times lower than the reference dose (RfC) proposed by the U.S. Environmental Protection Agency (EPA) for the general population.  相似文献   

20.
Intensive agricultural land use imposes multiple pressures on streams. More specifically, the loading of streams with nutrient-enriched soil from surrounding crop fields may deteriorate the sediment quality. The current study aimed to find out whether stream restoration may be an effective tool to improve the sediment quality of agricultural headwater streams. We compared nine stream reaches representing different morphological types (forested meandering reaches vs. deforested channelized reaches) regarding sediment structure, sedimentary nutrient and organic matter concentrations, and benthic microbial respiration. Main differences among reach types were found in grain sizes. Meandering reaches featured larger mean grain sizes (50–70 μm) and a thicker oxygenated surface layer (8 cm) than channelized reaches (40 μm, 5 cm). Total phosphorous amounted for up to 1,500 μg?g?1 DW at retentive channelized reaches and 850–1,050 μg?g?1 DW at the others. While N-NH4 accumulated in the sediments (60–180 μg?g?1 DW), N-NO3 concentrations were generally low (2–5 μg?g?1 DW). Benthic respiration was high at all sites (10–20 g O2 m?2?day?1). Our study shows that both hydromorphology and bank vegetation may influence the sediment quality of agricultural streams, though effects are often small and spatially restricted. To increase the efficiency of stream restoration in agricultural landscapes, nutrient and sediment delivery to stream channels need to be minimized by mitigating soil erosion in the catchment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号