首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
ABSTRACT

This paper reports results of studies using a biotrickling filter with blast-furnace slag packings (sizes = 2–4 cm and specific surface area = 120 m2/m3) for treatment of ethylether in air stream. Effects of volumetric loading, superficial gas velocity, empty bed gas retention time, recirculation liquid flow rate, and biofilm renewal on the ethylether removal efficiency and elimination capacity were tested. Results indicate that ethylether removal efficiencies of more than 95% were obtained with an empty bed retention time (EBRT) of 113 sec and loadings of lower than 70 g/m3/hr. At an EBRT of 57 sec, removal efficiencies of more than 90% could only be obtained with loadings of lower than 35 g/m3/hr. The maximum elimination capacities were 71 and 45 g/m3/hr for EBRT = 113 and 57 sec, respectively. The maximum ethylether elimination capacities were 71 and 96 g/m3/hr, respectively, before and after the renewal at EBRT = 113 sec. With an EBRT of 113 sec and a loading of lower than 38 g/m3/hr, the removal efficiency was nearly independent of the superficial liquid recirculation velocity in the range of 3.6 to 9.6 m3/m2/hr. From data regression, simplified mass-transfer limited, and reaction- and mass-transfer limited models correlating the contaminant concentration and the packing height were proposed and verified. The former model is applicable for cases of low influent contaminant concentrations or loadings, and the latter is applicable for cases of higher ones. Finally, CO2 conversion efficiencies of approximately 90% for the influent ethylether were obtained. The value is comparable to data reported from other related studies.  相似文献   

2.
研究以甲苯为驯导物的生物滴滤塔挂膜启动阶段净化性能的变化。实验结果表明,通过控制pH和湿度得到了真菌滴滤系统,启动周期为14 d,比细菌滴滤塔长7 d;在进化性能方面,在入口负荷、浓度为80 g/(m3.h)、3 000 mg/m3的条件下获得了稳定在98%以上的去除效率;对比2种填料对启动阶段的影响,在较低负荷下(≤80 g/(m3.h))对系统的启动时间和去除效率没有显著影响。  相似文献   

3.
This paper reports results of studies using a biotrickling filter with blast-furnace slag packings (sizes = 2-4 cm and specific surface area = 120 m2/m3) for treatment of ethylether in air stream. Effects of volumetric loading, superficial gas velocity, empty bed gas retention time, recirculation liquid flow rate, and biofilm renewal on the ethylether removal efficiency and elimination capacity were tested. Results indicate that ethylether removal efficieincies of more than 95% were obtained with an empty bed retention time (EBRT) of 113 sec and loadings of lower than 70 g/m3/hr. At an EBRT of 57 sec, removal efficiencies of more than 90% could only be obtained with loadings of lower than 35 g/m3/hr. The maximum elimination capacities were 71 and 45 g/m3/hr for EBRT = 113 and 57 sec, respectively. The maximum ethylether elimination capacities were 71 and 96 g/m3/hr, respectively, before and after the renewal at EBRT = 113 sec. With an EBRT of 113 sec and a loading of lower than 38 g/m3/hr, the removal efficiency was nearly independent of the superficial liquid recirculation velocity in the range of 3.6 to 9.6 m3/m2/hr. From data regression, simplified masstransfer limited, and reaction- and mass-transfer limited models correlating the contaminant concentration and the packing height were proposed and verified. The former model is applicable for cases of low influent contaminant concentrations or loadings, and the latter is applicable for cases of higher ones. Finally, CO2 conversion efficiencies of approximately 90% for the influent ethylether were obtained. The value is comparable to data reported from other related studies.  相似文献   

4.
ABSTRACT

This study utilized a biotrickling filter with blast-furnace slag packings (sizes = 20-40 mm; specific surface area = 120 m2/m3) to treat toluene in an air stream. Also studied were the effects of volumetric loading (L), nutrient addition, and superficial gas velocity (Ug) or gas retention time on toluene elimination capacity. Experimental results indicate that, for a test period of 121 days, with no excess biomass removal, toluene removal efficiencies of over 90% were obtained with Ug < 80 m/hr and L < 30 g/m3.hr. For a test period of 49 days, with Ug < 80 m/hr and L increased from 1.2 to 81 g/m3.hr, the absence of nutrient supplementation did not limit the toluene elimination capacity. Nutrients stored in the biofilm could adequately support the microbial activity for the toluene elimination. According to data regression, a simplified mass-transfer model is proposed, which correlates the contaminant concentration with the packing height or gas empty bed retention time. As verified, the model proposed herein can be applied to cases involving low influent contaminant concentrations or loadings to the extent that none or only a trace amount of the contaminant can be found in the recirculation liquid. Although small media with larger specific surface areas can achieve a better mass transfer, the problems of frequent backwashing and relatively greater gas resistance in using this type of media probably outweigh the advantages, particularly for full-scale systems that would not be watched as closely as laboratory test systems.  相似文献   

5.
Because of the characteristics of low operating cost and convenient operation, the biotrickling filter is extensively researched and used to treat low concentration waste gas contaminated by volatile organic compounds (VOCs) and other odors. In this paper, two laboratory-scale biotrickling filters were constructed and toluene was selected as the sole carbon source, and the effects of different waste-gas flow configuration patterns on the purification capacity and the microbial community functional diversity of biotrickling filters were evaluated. The results indicated that the flow-directional-switching (FDS) biotrickling filter had better purification performance, and the maximum elimination capacity reached 480 g·m?3·hr?1, which was 17.1% higher than conventional unidirectional-flow (UF) biotrickling filter. Comparing the purification capacities of different sections in two biotrickling filters, the maximum toluene elimination capacity of section III in FDS system could reach 542 g·m?3·hr?1, which was 2.8 times as great as that in UF system, which resulted from the difference of elimination capacity in two systems. By analyzing the metabolic activity of two systems by community-level physiological profiling (CLPP) with Biolog (Biolog Inc., Hayward, CA) ECO-plate technique, metabolic activity in three sections of FDS system was higher than that of UF system. The metabolic activity was the highest in section III of FDS system and 46.8% higher than that of UF system. Shannon index and McIntosh index of section III in FDS system were 6.2% and 31.5% higher, respectively, than those of UF system.

Implications: The flow-directional-switching (FDS) biotrickling filter had a better purification performance than unidirectional-flow (UF) biotrickling filter at high inlet loadings, because FDS produced a more uniform distribution of biomass and microbial metabolic capacity along the length of the packed bed without diminishing activity and removal capacity in the inlet section.  相似文献   

6.
Biofiltration is a method of biological treatment belonging to cleaner technologies because it does not produce secondary air pollutants, but helps to integrate natural processes in microorganisms for decomposing volatile air pollutants and solving odor problems. The birch wood biochar has been chosen as a principal material for biofilter bed medium. The experiments were conducted at the temperatures of 24, 28, and 32 °C, while the concentration of acetone, xylene, and ammonium reached 300 mg/m3 and the flow rate was 100 m3/hr. Before passing through the stage of the experimental research into the packing material inside biofilters, microorganisms were introduced. Four strains of microorganisms (including micromycetes Aspergillus versicolor BF-4 and Cladosporium herbarum 7KA, as well as yeast Exophiala sp. BF1 and bacterium Bacillus subtilis B20) were selected. At the inlet loading rate of 120 g/m3/hr, the highest elimination capacity of xylene in the biochar-based biofilter with the inoculated medium was 103 g/m3/hr, whereas that of ammonia was 102 g/m3/hr and that of acetone was 97 g/m3/hr, respectively. The maximum removal efficiency reached 86%, 85%, and 81%, respectively. The temperature condition (though characterized by some rapid changes) can hardly have a considerable influence on the biological effect (i.e., microbiological activity) of biofiltration; however, it can cause the changes in physical properties (e.g., solubility) of the investigated compounds.

Implications: The birch biochar can be successfully used in the biofiltration system for propagation of inoculated microorganisms, biodegrading acetone, xylene, and ammonia. At the inlet loading rate of 120 g/m3/hr, the highest elimination capacity of xylene was 103 g/m3/hr, that of ammonia was 102 g/m3/hr, and that of acetone was 97 g/m3/hr, respectively. The morphological structure of biochar can be affected by the aggressive air contaminants, causing the change in the medium specific surface area, which is one of the factors controlling the biofilter performance. Although biological effects in biofiltration are typically considered to be more important than physical effects, the former may be more important for compounds with high Henry’s Law coefficient values, and the biofilter design should thus provide conditions for better compound absorption.  相似文献   


7.
Abstract

Carbonyl sulfide (COS) is an odor-causing compound and hazardous air pollutant emitted frequently from wastewater treatment facilities and chemical and primary metals industries. This study examined the effectiveness of biofiltration in removing COS. Specific objectives were to compare COS removal efficiency for various biofilter media; to determine whether hydrogen sulfide (H2S), which is frequently produced along with COS under anaerobic conditions, adversely impacts COS removal; and to determine the maximum elimination capacity of COS for use in biofilter design. Three laboratory-scale polyvinyl chlo-ride biofilter columns were filled with up to 28 in. of biofilter media (aged compost, fresh compost, wood chips, or a compost/wood chip mixture). Inlet COS ranged from 5 to 46 parts per million (ppm) (0.10–9.0 g/m3fihr). Compost and the compost/wood chip mixture produced higher COS removal efficiencies than wood chips alone. The compost and compost/wood chip mixture had a shorter stabilization times compared with wood chips alone. Fresh versus aged compost did not impact COS removal efficiency. The presence of H2S did not adversely impact COS removal for the concentration ratios tested. The maximum elimination capacity is at least 9 g/m3·hr for COS with compost media.  相似文献   

8.
在以焦炭为填料的生物滴滤塔对挥发性脂肪酸臭气的处理研究中考察了空床停留时间、臭气浓度、体积负荷以及进气温度等参数对净化效果的影响。结果表明,空床停留时间较长时对臭气降解有利。在停留时间超过97 s时,能实现完全降解;此外,净化率随臭气浓度和体积负荷的不断增加呈先增加后降低的趋势。当臭气浓度为24.29 mg/m3即臭气的体积负荷为3 g/(m3·h)时,去除率约为96%;当臭气浓度增至1 345.74 mg/m3即体积负荷增至18 g/(m3·h),去除率达100%;然而,当臭气浓度增至4 934.38 mg/m3即体积负荷增至66 g/(m3·h)时,去除率降至73.1%。另外,进气温度对净化率也有一定程度影响。当进气温度较低时,净化效率相对较高。  相似文献   

9.
Abstract

A pilot-scale rotating drum biofilter (RDB), which is a novel biofilter design that offers flexible flow-through configurations, was used to treat complex and variable volatile organic compound (VOC) emissions, including shock loadings, emanating from paint drying operations at an Army ammunition plant. The RDB was seeded with municipal wastewater activated sludge. Removal efficiencies up to 86% and an elimination capacity of 5.3 g chemical oxygen demand (COD) m?3 · hr?1 were achieved at a filter-medium contact time of 60 sec. Efficiency increased at higher temperatures that promote higher biological activity, and decreased at lower pH, which dropped down to pH 5.5 possibly as a result of carbon dioxide and volatile fatty acid production and ammonia consumption during VOC degradation. In comparison, other studies have shown that a bench-scale RDB could achieve a removal efficiency of 95% and elimination capacity of 331 g COD m?3 · hr?1. Sustainable performance of the pilot-scale RDB was challenged by the intermittent nature of painting operations, which typically resulted in 3-day long shutdown periods when bacteria were not fed. This challenge was overcome by adding sucrose (2 g/L weekly) as an auxiliary substrate to sustain metabolic activity during shutdown periods.  相似文献   

10.
ABSTRACT

Treatment of ethanol vapor in a peat biofilter with various initial water contents (70%, 59%, 49%, and 35%) was studied. For water contents ranging from 49% to 70%, elimination capacity was about 30 g/m3/h. For a water content of 35%, elimination capacity decreased to 4 g/m3/h. A low mean CO2 yield coefficient (0.35 g CO2 produced per g ethanol consumed) was found for all of the initial water contents. The value was only 20% of the yield coefficient (1.91 g/g) predicted by stoichiometry. When the packing material was dried from 70% to 59% water content during the biofiltration process, elimination capacity dropped from 27 g/m3/h to 4 g/m3/h. After 24 hours of drying, the biofiltration experiment was restarted and run for two more weeks. During this period, the biofilter did not recover. At 59% water content, the rate of water evaporation was estimated at 59.6 g/m3/h. A simplified mass balance permitted calculation of the biological water production rate, approximately 22.1 g/m3/h.  相似文献   

11.
Biological air filtration for reduction of emissions of volatile sulfur compounds (e.g., hydrogen sulfide, methanethiol and dimethyl sulfide) from livestock production facilities is challenged by poor partitioning of these compounds into the aqueous biofilm or filter trickling water. In this study, Henry’s law constants of reduced volatile sulfur compounds were measured for deionized water, biotrickling filter liquids (from the first and second stages of a two-stage biotrickling filter), and NaCl solutions by a dynamic method using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) at a temperature range of 3–45 °C. NaCl solutions were used to estimate salting-out constants up to an ionic strength of 0.7 M in order to evaluate the effect of ionic strength on partitioning between air and biofilter liquids. Thermodynamic parameters (enthalpy and entropy of phase exchange) were obtained from the measured partition coefficients as a function of temperature. The results show that the partition coefficients of organic sulfur compounds in the biotrickling filter liquids were generally very close to the corresponding partition coefficients in deionized water. Based on the estimated ionic strength of biofilter liquids, it is assessed that salting-out effects are of no importance for these compounds. For H2S, a higher enthalpy of air–liquid partitioning was observed for 2nd stage filter liquid, but not for 1st stage filter liquid. In general, the results show that co-solute effects for sulfur compounds can be neglected in numerical biofilter models and that the uptake of volatile sulfur compounds in biotrickling filter liquids cannot be increased by decreasing ionic strength.  相似文献   

12.
ABSTRACT

The 1990 Amendments to the Clean Air Act have stimulated strong interest in the use of biofiltration for the economical, engineered control of volatile organic compounds (VOCs) in effluent air streams. Trickle bed air biofilters (TBABs) are especially applicable for treating VOCs at high loadings. For long-term, stable operation of highly loaded TBABs, removal of excess accumulated bio-mass is essential. Our previous research demonstrated that suitable biomass control for TBABs was achievable by periodic backwashing of the biofilter medium. Backwashing was performed by fluidizing the pelletized biological attachment medium with warm water to about a 40% bed expansion. This paper presents an evaluation of the impact of backwashing on the performance of four such TBABs highly loaded with toluene. The inlet VOC concentrations studied were 250 and 500 ppmv toluene, and the loadings were 4.1 and 6.2 kg COD/m3 day (55 and 83 g toluene/m3 hr). Loading is defined as kg of chemical oxygen demand per cubic meter of medium per day. Performance deterioration at the higher loading was apparently due to a reduction of the specific surface of the attached biofilm resulting from the accumulation of excess biomass. For a toluene loading of 4.1 kg COD/m3 day, it was demonstrated that the long-term performance of biofilters with either inlet concentration could be maintained at over 99.9% VOC removal by employing a backwashing strategy consisting of a frequency of every other day and a duration of 1 hr.  相似文献   

13.
Abstract

The long-term stability of a biofilter loaded with waste gases containing NH3 concentrations larger than 100 ppmv was studied in a laboratory-scale compost reactor. At an empty bed residence time (τ) of 21 sec, elimination capacities of more than 300 g NH3/m3/day were obtained at elimination efficiencies up to 87%. Because of absorption and nitrification, almost 80% of the NH3-N eliminated from the waste gas could be recovered in the compost as NH4+-N or NO2 ?/NO3 ?-N. The high elimination capacities could be maintained as long as the NH4+/NOx concentration in the carrier material was less than 4 g NH4+/NOx ?-N/kg wet compost. Above this critical value, osmotic effects inhibited the nitrifying activity, and the elimination capacity for NH3 decreased. To restore the biofilter performance, a carbon source (methanol) was added to reduce NH4+/NOx ? accumulated in the compost. Results indicate that methylotrophic microorganisms did convert NH4+/NOx ? into biomass, as long as the NO3 ? content in the compost was larger than 0.1 g NO3 ?-N/kg compost. Removal efficiencies of CH3OH of more than 90% were obtained at volumetric loads up to 11,000 g CH3OH/m3/day. It is shown that addition of CH3OH is a suitable technique for regenerating the compost material from osmotic inhibition as a result of high NH3 loading. The biofilter was operated for 4 months with alternating loading of NH3 and CH3OH.  相似文献   

14.
This study compares the performances of fern and plastic chips as packing media for the biofiltration of a styrene-laden waste gas stream emitted in a plant for the manufacture of plastic door plates. Fern chips (with a specific surface area of 1090 m2 m?3) and plastic chips (with a specific surface area of 610 m2 m?3) were packed into a pilot-scale biotrickling filter with a total medium volume of 50 L for the performance test. Field waste gas with styrene concentrations in the range of 161–2390 mg Am?3 at 28–30 °C) was introduced to the bed and a fixed empty-bed retention time (EBRT) of 21 sec, a volumetric gas flow rate of 8.57 m3 hr?1, and superficial gas velocity of 53.6 m hr?1 were maintained throughout the experimental period. Nutrients containing metal salts, nitrogen, phosphorus, and milk were supplemented to the filters for maintaining the microbial activities. Results reveal that the biotrickling filter developed in this study had the highest styrene monomer (SM) elimination capacities (170 g m?3 hr?1 for fern-chip packing and 300 g m?3 hr?1 for plastic-chip packing) among those cited in the literature. The plastic medium is a favorable substitute for endangered fern chips. The thermal-setting nature of plastic chips limits their recycle and reuse as raw materials, and the study provides an opportunity for the utilization of the materials.

Implications: Biotreatment of contaminants in air streams offers an inexpensive and efficient alternative to conventional technologies. Biofiltration has a great potential for the degradation of gas-borne styrene and total hydrocarbon (THC) removal efficiency of around 80%. The objective of this research was to compare the performances of fern chips and a kind of plastic chips as packing media for biofiltration of the styrene-laden waste gas stream emitted from cutting operations of stripes of premixed unsaturated polyester (UP) and styrene paste before hot-pressing operations for making plastic door plates. From a practical point of view, the plastic medium can be a good substitute medium for fern chips, which has been declared as a protected plant. This study provides an experimentally verified model for the design and operation of such biotreatment systems.  相似文献   

15.
ABSTRACT

Air biofiltration is now under active consideration for the removal of the volatile organic compounds (VOCs) from polluted airstreams. To optimize this emerging environmental technology and to understand compound removal mechanisms, a biofilter packed with peat was developed to treat a complex mixture of VOCs: oxygenated, aromatic, and chlorinated compounds. The removal efficiency of this process was high. The maximum elimination capacity (ECmax) obtained was ~120 g VOCs/m3 peat/hr. Referring to each of the mixture's components, the ECmax showed the limits in terms of biodegradability of VOCs, especially for the halogenated compounds and xylene.

A stratification of biodegradation was observed in the reactor. The oxygenated compounds were metabolized before the aromatic and halogenated ones. Two assumptions are suggested. There was a competition between bacterial communities. Different communities colonized the peat-based biofilter, one specialized for the elimination of oxygenated compounds, the others more specialized for elimination of aromatic and halogenated compounds. There was also substrate competition. Bacterial communities were the same over the height of the column, but the more easily biodegradable compounds were used first for the microorganism metabolism when they were present in the gaseous effluent.  相似文献   

16.
Abstract

Four different biofilter packing materials (two porous ceramics, perlite, and open pore polyurethane foam) were compared for the removal of toluene vapors. The focus was on evaluating performance at relatively short gas retention time (13.5 and 27 sec). The reactors were initially operated as biotrickling filters with continuous feeding and trickling of a nutrient solution. After significant plugging of the biotrickling filter beds with biomass was observed, the operation mode was switched to biofiltration with only periodic supply of mineral nutrients. This resulted in stable conditions, which allowed detailed investigations over >6 months. The reactor packed with cattle bone Porcelite (CBP), a ceramic material containing some macronutrients and micronutrients, exhibited the highest performance. The critical load (i.e., load at which 95% removal occurred) was 29 g m?3 hr?1 at a gas retention time of 13.5 sec and 66 g m?3 hr?1 at a gas retention time of 27 sec. After the long-term experiment, the packing materials were taken from the reactors and examined. The reactors were divided into three sections, top, middle, and bottom, to determine whether spatial differentiation of biomass occurred. The assays included a double-staining technique to count total and live microorganisms and determination of moisture, protein, and dry weight contents. Microbial community analysis was also conducted by denaturing gradient gel electrophoresis. The results showed that most reactors had a significant fraction of inactive biomass. Comparatively, the CBP biofilter held significantly higher densities of active biomass, which may be the reason for the higher toluene removal performance. The analyses suggest that favorable material properties and the nutrients slowly released by the CBP provided better environmental conditions for the process culture.  相似文献   

17.
ABSTRACT

The design and the construction of an actual 8.7-m3 pilot/ full-scale biotrickling filter for waste air treatment is described and compared with a previous conceptual scale-up of a laboratory reactor. The reactor construction costs are detailed and show that about one-half of the total reactor costs ($97,000 out of $178,000) was for personnel and engineering time, whereas ~20% was for monitoring and control equipment. A detailed treatment cost analysis demonstrated that, for an empty bed contact time of 90 sec, the overall treatment costs (including capital charges) were as low as $8.7/1000 m3 air in the case where a nonchlorinated volatile organic compound (VOC) was treated, and $14/ 1000 m3 air for chlorinated compounds such as CH2Cl2. Comparison of these costs with conventional air pollution control techniques demonstrates excellent perspectives for more field applications of biotrickling filters. As the specific costs of building and operating biotrickling filter reactors decrease with increasing size of the reactor, the cost benefit of biotrickling filtration is expected to increase for full technical-scale bioreactors.  相似文献   

18.
ABSTRACT

Xylene is the main component of many volatile industrial pollution sources, and the use of biotechnology to remove volatile organic compounds (VOCs) has become a growing trend. In this study, a biotrickling filter for gaseous xylene treatment was developed using activated sludge as raw material to study the biodegradation process of xylene. Reaction conditions were optimized, and long-term operation was performed. The optimal pH was 7.0, gas-liquid ratio was 15:1 (v/v), and temperature was 25 °C. High-throughput sequencing technique was carried out to analyze microbial communities in the top, middle, and bottom layers of the reactor. Characteristics of microbial diversity were elucidated, and microbial functions were predicted. The result showed that the removal efficiency (RE) was stable at 86%–91%, the maximum elimination capacity (EC) was 303.61 g·m?3·hr?1, residence time was 33.75 sec, and the initial inlet xylene concentration was 3000 mg·m?3, which was the highest known degradation concentration reported. Kinetic analysis of the xylene degradation indicated that it was a very high-efficiency-activity bioprocess. The rmax was 1059.8 g·m?3·hr?1, and Ks value was 4.78 g·m?3 in stationary phase. In addition, microbial community structures in the bottom and top layers were significantly different: Pseudomonas was the dominant genus in the bottom layer, whereas Sphingobium was dominant in the top layer. The results showed that intermediate metabolites of xylene could affect the distribution of community structure. Pseudomonas sp. can adapt to high concentration xylene–contaminated environments.

Implications: We combined domesticated active sludge and reinforced microbial agent on biotrickling filter. This system performed continuously under a reduced residence time at 33.75 sec and high elimination capacity at 303.61 g·m?3·hr?1 in the biotrickling reactor for about 260 days. In this case, predomestication combined with reinforcing of microorganisms was very important to obtaining high-efficiency results. Analysis of microbial diversity and functional prediction indicated a gradient distribution along with the concentration of xylene. This implied a rational design of microbial reagent and optimizing the inoculation of different sites of reactor could reduce the preparation period of the technology.  相似文献   

19.
The system performance of a trickle bed biofilter for treating single and mixed benzene, toluene, ethylbenzene, and o-xylene (BTEX) vapors from waste gases was investigated under different gas flow rates and influent BTEX concentrations. When a single substrate was fed, removal efficiencies of greater than 90% could be achieved for the loads below 64 g benzene/m3/hr, 110 g toluene/m3/hr, 53 g ethylbenzene/m3/hr, and 55 g o-xylene/m3/hr. When a mixed substrate was fed, removal efficiencies of each compound could be above 90% at BTEX loads below 96 g/m3/hr. The trickle bed biofilter appears to be an effective treatment process for removing both single and mixed BTEX vapors with low to high loads. Under similar substrate loads, BTEX vapors were preferentially biodegraded in the order of toluene, benzene, o-xylene, and ethylbenzene. The volumetric removal rates (elimination capacities) of BTEX vapors for a single-substrate feed were higher than those for a mixed-substrate feed under similar substrate loads; these differences were enhanced at higher substrate loads and less significant for a preferred substrate.  相似文献   

20.
Abstract

This study aimed to develop a biofilter packed only with fern chips for the removal of airborne propylene glycol monomethyl ether acetate (PGMEA). Fern chips could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. In addition, the fern chip medium has the following merits: (1) simplicity in composition; (2) low pressure drop for gas ?ow (<20 mmH2O?m-1); (3) simple in humidification, nutrient addition, pH control, and metabolite removal; (4) economical (US$174–385?m-3), and (5) low weight (wet basis around 290 kg?m-3). A two-stage down?ow biofilter (2.18 m in height and 0.4×0.4 m in cross-sectional area) was constructed for the performance test. Both stages were packed with fern chips of 0.30 m in height and 0.40×0.40 m in cross-section. Results indicate that with operation conditions of media moisture content controlled in the range of 50–74%, media pH of 6.5–8.3, empty bed retention time (EBRT) of 0.27–0.4 min, in?uent PGMEA concentrations of 100–750 mg?m-3, volu-metric organic loading of <170 ?m-3 ?hr-1, and nutrition rates of Urea-nitrogen 66 g?m-3 ?day-3, potassium dihydrogen phosphate (KH2PO4)-phosphorus 13.3 g ?m-3 ?day-3, and milk powder 1.00 g?m-3?day-1, the fern-chip-packed biofilter could achieve an overall PGMEA removal efficacy of around 94%. Instant milk powder or liquid milk was essential to the good and stable performance of the biofilter for PGMEA removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号