首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Municipal solid waste incinerators (MSWIs) have long been the major contributors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to ambient air in Taiwan. After stringent MSWI emission standards were introduced in 2001, the long-term continuous monitoring of flue gas and ambient air quality became necessary to ensure the effectiveness of the related control strategies. Three MSWIs and the surrounding ambient air were investigated in the current study for PCDD/F characteristics during 2006 to 2011. The average concentrations in the flue gas ranged from 0.008?~?0.0488 ng I-TEQ/Nm3, which is much less than the emission standard in Taiwan (0.1 ng I-TEQ/Nm3) (I-TEQ is the abbreviation of International Toxic Equivalent). This led to extremely low levels in the ambient air, 0.0255 pg I-TEQ/Nm3, much less than the levels seen in most urban areas around the world. Additionally, the results obtained using the Industrial Source Complex Short-Term Dispersion Model (ISCST3) indicate that the PCDD/F contributions from the three MSWIs to the ambient air were only in the range from 0.164?~?0.723 %. Principal component analysis (PCA) showed that the PCDD/Fs in the air samples had very similar characteristics to those from mobile sources. The results thus show that stringent regulations have been an effective control strategy, especially for urban areas, such as Taipei City.  相似文献   

2.
It is important in the implementation of the air quality standard for ozone/oxidants and non-methane hydrocarbons to develop quantitative relationships between these pollutants in air quality regions. Analyses for ambient air non-methane hydrocarbon give a direct measure of the progress in control of hydrocarbon emissions and in the reduction of oxidant/ozone concentration levels. Total hydrocarbon concentrations are much more available than non-hydrocarbon levels. An empirical relationship between total hydrocarbons and non-methane hydrocarbons has been obtained from measurements at both west and east coast sites in the U. S. The comparability of measurements from flame ionization analyzers and gas chromatography has been demonstrated. Either analytical technique can be applied to samples collected at monitoring sites to provide the 6-9 A.M. non-methane hydrocarbon aerometric results specified in the air quality standards.  相似文献   

3.
An electrochemical instrument of the type commonly used to monitor total oxidants was adapted to measure acid gases such as SO2, HCI, and HCO2H. By using chemical methods of treating the air sample prior to absorption, it is possible to monitor for specific oxidants and acids. Measurements of NO, NOx, and SO2 during smog-chamber experiments were found to be in good agreement with measurements made by other methods.  相似文献   

4.
Atmospheric concentrations of and personal exposure to benzene have been measured in four French metropolitan areas for 210 subjects over two seasons. Half of the volunteers were 6–13-year-old children. The adult subjects were non-smokers, not occupationally exposed and they live and work in the monitored areas. Measurements were performed using diffusive samplers followed by GC-FID analysis. The average values for ambient air concentrations (μg m−3) were: Rouen: 1.5; Île de France (Paris area): 1.6; Grenoble: 2.3 and Strasbourg: 2.6, showing that benzene concentrations in the ambient air of the four cities satisfy the requirements of the European Directive 2000/69EC of the European Parliament which stipulates a limit value of 5 μg m−3. However, the 48 h exposures measured were found to be between 2.7 and 3.5 times higher than ambient air concentrations. As a consequence, 60% of the subjects investigated, including children, were exposed to concentrations higher than the ambient air limit value. This work confirms that air monitoring data collected by fixed stations should be used with caution when assessing population exposure to benzene, especially given the influence of indoor sources and other polluted microenvironments where people spend part of their time.  相似文献   

5.
Real-time chemical measurements have been made as part of a field study of air quality in the city and harbour of Cork, Ireland. The data relate to the year 2008, with particular attention paid to the period between May and August. Eight air quality parameters were measured: NO, O3, NO2, SO2, EC, OC, particulate SO42? and PM2.5. The data have been used in a novel way involving wind and temporal averaging, along with Principal Component Analysis (PCA) and Positive Matrix Factorisation (PMF) methodologies to extrapolate major source contributions for PM2.5. It is demonstrated that continuous monitoring of standard air quality parameters, such as NO, NO2, SO2, along with EC, OC and particulate SO42?, can be used to provide relevant, cost-effective initial estimates of source contributions to ambient PM2.5 levels. It is also shown that the benefit of including OC and particulate SO42? in the monitoring protocol is considerable. Three major source groups of ambient PM2.5 mass in Cork were identified and quantified using this combined monitoring and modelling approach; road transport (19%), domestic solid fuel burning (14%) and oil-fired domestic and industrial boilers, including power generation plants (31%).  相似文献   

6.
The associations of personal carbon monoxide (CO) exposures with ambient air CO concentrations measured at fixed monitoring sites, were studied among 194 children aged 3–6 yr in four downtown and four suburban day-care centers in Helsinki, Finland. Each child carried a personal CO exposure monitor between 1 and 4 times for a time period of between 20 and 24 h. CO concentrations at two fixed monitoring sites were measured simultaneously. The CO concentrations measured at the fixed monitoring sites were usually lower (mean maximum 8-h concentration: 0.9 and 2.6 mg m−3) than the personal CO exposure concentrations (mean maximum 8-h concentration: 3.3 mg m−3). The fixed site CO concentrations were poor predictors of the personal CO exposure concentrations. However, the correlations between the personal CO exposure and the fixed monitoring site CO concentrations increased (−0.03–−0.12 to 0.13–0.16) with increasing averaging times from 1 to 8 h. Also, the fixed monitoring site CO concentrations explained the mean daily or weekly personal CO exposures of a group of simultaneously measured children better than individual exposure CO concentrations. This study suggests that the short-term CO personal exposure of children cannot be meaningfully assessed using fixed monitoring sites.  相似文献   

7.
Abstract

The Houston-Galveston metropolitan area has a relatively high density of point and mobile sources of air toxics, and determining and understanding the relationship between emissions and ambient air concentrations of air toxics is important for evaluating potential impacts on public health and formulating effective regulatory policies to control this impact, both in this region and elsewhere. However, conventional ambient air monitoring approaches are limited with regard to expense, siting limitations, and representative sampling necessary for adequate exposure assessment. The overall goal of this multiphase study is to evaluate the use of simple passive air samplers to determine temporal and spatial variability of the ambient air concentrations of selected volatile organic compounds (VOCs) in urban areas. Phase 1 of this study, reported here, was a field evaluation of 3M organic vapor monitors (OVMs) involving limited comparisons with commonly used active sampling methods, an assessment of sampler precision, a determination of optimal sampling duration, and an investigation of the utility of a simple modification of the commercial sampler. The results indicated that a sampling duration of 72 hr exhibited generally low bias relative to automated continuous gas chromatography measurements, good overall precision, and an acceptable number of measurements above detection limits. The modified sampler showed good correlation with the commercial sampler, with higher sampling rates, although lower than expected.  相似文献   

8.
Hunt GT  Lihzis MF 《Chemosphere》2011,85(11):1664-1671
The Connecticut Department of Environmental Protection (CTDEP) commenced monitoring for PCDDs/PCDFs (polychlorinated dibenzodioxins and polychlorinated dibenzofurans) in ambient air in 1987 and adopted the long term (30 d) sampling approach in 1993. The CTDEP method represents the first use of isotopically labeled PCDDs/PCDFs as field surrogates to monitor the behavior of native PCDDs/PCDFs present in actual ambient air samples. This feature first introduced in 1987 was later adopted by US EPA in revisions to sampling methods for PCDDs/PCDFs in ambient air (EPA Method TO9A) as well as development of EPA Reference Method 23 for measurement of PCDDs/PCFDs in stationary source emissions. Results are provided here for a total of twenty-three (23) samples (reported as pairs) representing twelve (12) 30 d sampling events conducted at a site located in metropolitan Hartford CT. Samples were collected in winter months during calendar years 2002-2008. PCDDs/PCDFs concentration data (pg m−3) are reported as both congener sums (Cl4-Cl8) and 2378-substitued congeners. Total PCDDs/PCDFs concentrations for these twelve (12) sampling events ranged from 0.68 pg m−3 (2003) to 4.18 pg m−3 (2004) with a mean concentration of 2.04 pg m−3.Method performance was monitored through use of collocated samples, in field isotopically labeled compounds, isotopically labeled laboratory applied internal standards and field blank samples. Method performance consistently exceeded goals established in USEPA Method TO9A for these same parameters. Average recoveries of in field labeled PCDDs/PCDFs ranged from 97.5% to 104.2%. Average (mean) recoveries for each of the ten (10) isotopically labeled internal standards ranged from 77.0% (13C-OCDF) to 95.5% (13C-2,3,7,8-TCDF). Method precision defined as % RPD data for collocated sampler pairs ranged from 8% to 14% for PCDDs and from 5% to 12% for PCDFs. The mean RPD for all PCDDs/PCDFs combined is 9.6%. Field monitoring results demonstrate method sensitivity for all PCDDs/PCDFs congeners and 2378-substituted congeners to be well below concentrations typically found for these compounds in ambient air (all reported data represent measured concentrations). Quantities (pg) found in field blanks represent the major determinant to achieving further enhancements in method sensitivity for selected congeners (OCDD < 42 fg m−3; 1,2,3,4,6,7,8-HpCDD < 5.7 fg m−3; and 1,2,3,4,6,7,8-HpCDF < 2.1 fg m−3). The CTDEP method represents a highly sensitive and reliable technique for monitoring of PCDDs/PCDFs congeners and other persistent organic pollutants (POPs) at ultra trace levels in ambient air (fg m−3).  相似文献   

9.
The Houston-Galveston metropolitan area has a relatively high density of point and mobile sources of air toxics, and determining and understanding the relationship between emissions and ambient air concentrations of air toxics is important for evaluating potential impacts on public health and formulating effective regulatory policies to control this impact, both in this region and elsewhere. However, conventional ambient air monitoring approaches are limited with regard to expense, siting limitations, and representative sampling necessary for adequate exposure assessment. The overall goal of this multiphase study is to evaluate the use of simple passive air samplers to determine temporal and spatial variability of the ambient air concentrations of selected volatile organic compounds (VOCs) in urban areas. Phase 1 of this study, reported here, was a field evaluation of 3M organic vapor monitors (OVMs) involving limited comparisons with commonly used active sampling methods, an assessment of sampler precision, a determination of optimal sampling duration, and an investigation of the utility of a simple modification of the commercial sampler. The results indicated that a sampling duration of 72 hr exhibited generally low bias relative to automated continuous gas chromatography measurements, good overall precision, and an acceptable number of measurements above detection limits. The modified sampler showed good correlation with the commercial sampler, with higher sampling rates, although lower than expected.  相似文献   

10.
A diffusion scrubber (DS) was developed to measure trace levels of gaseous ammonia in ambient air. The sampling resolution time for this method is 10 min and the detection limit is estimated to be 0.01 ppbv. The response to the NI-I3 concentrations is found to be dependent on the relative humidity in the ambient air and the temperature. The method is calibrated by using a diluted NH3 cylinder gas, and the concentrations of the calibration gas were in the range 0.02–2 ppbv during the test. Sampling performed with the DS-method is compared to sampling performed by a filter pack and a continuous flow denuder (AMANDA). The DS-method shows good agreement with the continuous flow denuder and the filter pack.  相似文献   

11.
There is a lack of data for health risk assessment of long term personal exposure to certain ubiquitous air pollutants present particularly in urban atmospheres. The relationship between ambient background concentrations and personal exposure is often unknown. A pilot campaign to measure indoor concentrations, outdoor concentrations and personal exposure to benzene, formaldehyde and acetaldehyde was conducted in a medium sized French town. A strong contribution to total personal exposure was observed from indoor sources, especially for formaldehyde and acetaldehyde, suggesting that indoor sources are dominant for these compounds. For benzene, the average personal exposure exceeded a 10 μgm?3 limit value, although this was not the case for the ambient background concentration. For formaldehyde, the limit level was also exceeded. Observations suggest that true personal exposure cannot be determined directly from measurements pertaining from fixed ambient background monitoring stations. It is hoped that this will be taken into consideration by the bodies responsible for monitoring air pollution and the future European Air Quality Directive.  相似文献   

12.
This investigation used an acid medium for sampling atmospheric oxidants. The acid iodide oxidant procedure was unaffected by air or oxygen, temperature variance, and reducing gases (sulfur dioxide and hydrogen sulfide.) The method possessed good color stability. The method also agreed favorably with the 1 or 2% neutral buffered iodide method when a chromium trioxide scrubber was required to remove the reducing gases from the latter procedure.

The acid oxidant absorption solution of 1 3 ml in a midget impinger contained 10 ml of 1.5% potassium iodide in a 0.1 N sodium hydroxide solution and 3 ml of acetic acid (1:5) which produced a solution of approximately 3.8 pH. Particulate matter was removed by a glass wool attachment to the midget impinger. The air was sampled with a Gelman Sequential Sampler at the rate of 1.41 liters per minute. After the oxidant sample was collected, the absorbing solution was transferred to a graduated cylinder and the volume was adjusted to 25 ml with distilled water. The absorbance was read at 355 millimicrons wavelength by a spectrophotometer in a 1 cm cell. The acid oxidant method was effective between 1 to 70 pphm of ozone.  相似文献   

13.
High ozone concentrations, often in excess of the national ambient air quality standard for photochemical oxidants, have been measured simultaneously in urban and rural areas of New York State. Average daily rural ozone concentrations were found to correlate well with daily maximum urban ozone concentrations suggesting a common source. Estimations of the quantity of ozone advectively transported into New York State are more than an order of magnitude greater than estimations of the potential photochemical generation of ozone from hydrocarbon emissions within New York State. It is suggested thai the high rural ozone levels are not primarily due to the transport of ozone and ozone precursors from olher urban areas, but are rather due to natural phenomena such as photochemical generation from naturally occurring precursors or transport of ozone from the stratosphere to the troposphere. The effectiveness of a hydrocarbon control strategy for New York State to meet the ambient air quality standard for photochemical oxidants when background levels themselves may be above the standard is questioned.  相似文献   

14.
The Federal Clean Air Act (FCAA) framework envisions a federal-state partnership whereby the development of regulations may be at the federal level or state level with federal oversight. The U.S. Environmental Protection Agency (EPA) establishes National Ambient Air Quality Standards to describe “safe” ambient levels of criteria pollutants. For air toxics, the EPA establishes control technology standards for the 187 listed hazardous air pollutants (HAPs) but does not establish ambient standards for HAPs or other air toxics. Thus, states must ensure that ambient concentrations are not at harmful levels. The Texas Clean Air Act authorizes the Texas Commission on Environmental Quality (TCEQ), the Texas state environmental agency, to control air pollution and protect public health and welfare. The TCEQ employs three interactive programs to ensure that concentrations of air toxics do not exceed levels of potential health concern (LOCs): air permitting, ambient air monitoring, and the Air Pollutant Watch List (APWL). Comprehensive air permit reviews involve the application of best available control technology for new and modified equipment and ensure that permits protect public health and welfare. Protectiveness may be demonstrated by a number of means, including a demonstration that the predicted ground-level concentrations for the permitted emissions, evaluated on a case-by-case and chemical-by-chemical basis, do not cause or contribute to a LOC. The TCEQ's ambient air monitoring program is extensive and provides data to help assess the potential for adverse effects from all operational equipment in an area. If air toxics are persistently monitored at a LOC, an APWL area is established. The purpose of the APWL is to reduce ambient air toxic concentrations below LOCs by focusing TCEQ resources and heightening awareness. This paper will discuss examples of decreases in air toxic levels in Houston and Corpus Christi, Texas, resulting from the interactive nature of these programs.

Implications: Texas recognized through the collection of ambient monitoring data that additional measures beyond federal regulations must be taken to ensure that public health is protected. Texas integrates comprehensive air permitting, extensive ambient air monitoring, and the Air Pollutant Watch List (APWL) to protect the public from hazardous air toxics. Texas issues air permits that are protective of public health and also assesses ambient air to verify that concentrations remain below levels of concern in heavily industrialized areas. Texas developed the APWL to improve air quality in those areas where monitoring indicates a potential concern. This paper illustrates how Texas engaged its three interactive programs to successfully address elevated air toxic levels in Houston and Corpus Christi.  相似文献   

15.
The U.S. Environmental Protection Agency (EPA) is in the process of designing a national network to monitor hazardous air pollutants (HAPs), also known as air toxics. The purposes of the expanded monitoring are to (1) characterize ambient concentrations in representative areas; (2) provide data to support and evaluate dispersion and receptor models; and (3) establish trends and evaluate the effectiveness of HAP emission reduction strategies. Existing air toxics data, in the form of an archive compiled by EPA's Office of Air Quality Planning and Standards (OAQPS), are used in this paper to examine the relationship between estimated annual average (AA) HAP concentrations and their associated variability. The goal is to assess the accuracy, or bias and precision, with which the AA can be estimated as a function of ambient concentration levels and sampling frequency. The results suggest that, for several air toxics, a sampling schedule of 1 in 3 days (1:3) or 1:6 days maybe appropriate for meeting some of the general objectives of the national network, with the more intense sampling rate being recommended for areas expected to exhibit relatively high ambient levels.  相似文献   

16.
Abstract

The U.S. Environmental Protection Agency (EPA) is in the process of designing a national network to monitor hazardous air pollutants (HAPs), also known as air toxics. The purposes of the expanded monitoring are to (1) characterize ambient concentrations in representative areas; (2) provide data to support and evaluate dispersion and receptor models; and (3) establish trends and evaluate the effectiveness of HAP emission reduction strategies. Existing air toxics data, in the form of an archive compiled by EPA’s Office of Air Quality Planning and Standards (OAQPS), are used in this paper to examine the relationship between estimated annual average (AA) HAP concentrations and their associated variability. The goal is to assess the accuracy, or bias and precision, with which the AA can be estimated as a function of ambient concentration levels and sampling frequency. The results suggest that, for several air toxics, a sampling schedule of 1 in 3 days (1:3) or 1:6 days may be appropriate for meeting some of the general objectives of the national network, with the more intense sampling rate being recommended for areas expected to exhibit relatively high ambient levels.  相似文献   

17.
随着工业化、城镇化的深入推进,二氧化硫、氮氧化物、烟粉尘和挥发性有机物等各类污染物排放到环境中,致使中国大气受到严重污染,给人体的健康、动植物的生长、发育和繁殖等带来负面的影响。为实时监测环境空气质量,建立环境空气质量自动监测站逐渐成为大气污染防治的主要手段。文中以环境空气质量自动监测站为研究对象,提出环境空气质量自动监测站管理与维护面临的问题,探讨相应的解决措施,以期为环境空气质量自动监测站的管理与维护提供参考依据。  相似文献   

18.
This investigation studied the concentrations of ambient air total gaseous mercury (TGM) during the rainy periods at the Hung-Kuang traffic sampling site in central Taiwan from May 26 to June 16, 2014. The results were compared with those of a previous study for ambient air TGM during non-rainy daytime and nighttime periods at the Hung-Kuang traffic sampling site, which was conducted during March 21 to July 20, 2012. The observed mean concentration of ambient air TGM was 1.16 ng/m3 during the rainy periods at the Hung-Kuang traffic sampling site. The mean ambient air TGM concentrations were higher in the non-rainy sampling period in daytime than in the rainy sampling period from this study. The mean ratio of non-rainy sampling period in daytime to that of rainy sampling period for ambient air TGM were 3.15. Furthermore, the mean ambient air TGM concentrations were higher in the non-rainy sampling period in nighttime in than in the rainy sampling period for this study. The mean rations for non-rainy sampling period in nighttime to that of the rainy sampling period for ambient air TGM were 2.70. The results obtained in this study also revealed that the ambient air TGM concentrations during the rainy period had the lowest concentrations when compared with the other sampling sites in other world regions.  相似文献   

19.
The body of information presented in this paper is directed to policy makers and administrators involved in the evaluation and assessment of damages caused by oxidant air pollution on human health and welfare and of possible benefits of control.

To provide a comparison of some of the benefits that can be obtained by reducing photochemical oxidant levels, estimated health costs were derived from data relating adverse health effects to hourly oxidant concentrations. Hourly oxidant or ozone concentrations were measured at approximately 400 monitoring stations scattered throughout the U.S. Most of these sites were located in major urban areas or in other areas where high oxidant concentrations prevailed. Estimates of populations at risk and per capita health costs were generated for those areas where oxidant data was available.

During the period 1971-1973, nearly two-thirds of the U.S. population resided in areas where the hourly primary standard for oxidants of 160 µg/m3 was exceeded. The total annual health cost attributable to oxidants was estimated to range from $120 to over $240 million in the U.S.  相似文献   

20.
《Chemosphere》2012,86(11):1664-1671
The Connecticut Department of Environmental Protection (CTDEP) commenced monitoring for PCDDs/PCDFs (polychlorinated dibenzodioxins and polychlorinated dibenzofurans) in ambient air in 1987 and adopted the long term (30 d) sampling approach in 1993. The CTDEP method represents the first use of isotopically labeled PCDDs/PCDFs as field surrogates to monitor the behavior of native PCDDs/PCDFs present in actual ambient air samples. This feature first introduced in 1987 was later adopted by US EPA in revisions to sampling methods for PCDDs/PCDFs in ambient air (EPA Method TO9A) as well as development of EPA Reference Method 23 for measurement of PCDDs/PCFDs in stationary source emissions. Results are provided here for a total of twenty-three (23) samples (reported as pairs) representing twelve (12) 30 d sampling events conducted at a site located in metropolitan Hartford CT. Samples were collected in winter months during calendar years 2002–2008. PCDDs/PCDFs concentration data (pg m−3) are reported as both congener sums (Cl4–Cl8) and 2378-substitued congeners. Total PCDDs/PCDFs concentrations for these twelve (12) sampling events ranged from 0.68 pg m−3 (2003) to 4.18 pg m−3 (2004) with a mean concentration of 2.04 pg m−3.Method performance was monitored through use of collocated samples, in field isotopically labeled compounds, isotopically labeled laboratory applied internal standards and field blank samples. Method performance consistently exceeded goals established in USEPA Method TO9A for these same parameters. Average recoveries of in field labeled PCDDs/PCDFs ranged from 97.5% to 104.2%. Average (mean) recoveries for each of the ten (10) isotopically labeled internal standards ranged from 77.0% (13C-OCDF) to 95.5% (13C-2,3,7,8-TCDF). Method precision defined as % RPD data for collocated sampler pairs ranged from 8% to 14% for PCDDs and from 5% to 12% for PCDFs. The mean RPD for all PCDDs/PCDFs combined is 9.6%. Field monitoring results demonstrate method sensitivity for all PCDDs/PCDFs congeners and 2378-substituted congeners to be well below concentrations typically found for these compounds in ambient air (all reported data represent measured concentrations). Quantities (pg) found in field blanks represent the major determinant to achieving further enhancements in method sensitivity for selected congeners (OCDD < 42 fg m−3; 1,2,3,4,6,7,8-HpCDD < 5.7 fg m−3; and 1,2,3,4,6,7,8-HpCDF < 2.1 fg m−3). The CTDEP method represents a highly sensitive and reliable technique for monitoring of PCDDs/PCDFs congeners and other persistent organic pollutants (POPs) at ultra trace levels in ambient air (fg m−3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号