首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A plant injury mathematical model, applied previously to acute and chronic leaf injury data, is used here to model National Crop Loss Assessment Network (NCLAN) data for 15 cultivars and to calculate species parameters from the cultivar analyses. Percent crop yield reduction is estimated as a function of a new parameter, the effective mean O3 concentration: me = [(Σ ch ?1/v)/n]?v, where ch is the hourly average ambient O3 concentration for each daytime hour (defined here as 9:00 A.M.–4:00 P.M., always standard time) of data available at an air sampling site for summer (defined here as June 1–August 31), n is the total number of such available hours, and v is an exposure time-concentration parameter, calculated here to be approximately –0.376. Crop yield reduction for soybean is calculated here as z = 0.478 In (tme 2-66) – 0.42, where z is the Gaussian transform of percent crop reduction, t is the hours of exposure (525 h is used here; 7 h/day for 75 days), and In indicates that the natural logarithm is taken of the quantity within parentheses. Crop yield reductions for seven plant species are estimated with similar equations for each of the 1824 site-years of 1981–1983 hourly O3 concentration data available in the National Aerometric Data Bank (NADB). County-average effective mean O3 concentrations are indicated by shading on a U.S. map. State-average O3 parameters and estimated percent crop yield reductions are tabulated. The National Ambient Air Quality Standard (NAAQS) for O3 specifies that, on the average, the second highest daily maximum 1-h average O3 concentration in a year shall not exceed 0.12 ppm. For years 1981-1983,71% of the NADB sites recorded annual second highest daily maximum 1-h average O3 concentrations below 0.125 ppm (for summer daytime hours). Ambient O3 concentrations reduced the total U.S. crop yield an estimated 5% for years 1981–1983. (Summer, daytime, and all acronyms are always used herein as defined above.)  相似文献   

2.
It has been recognized for several years that ozone in rural areas can exceed the National Ambient Air Quality Standard (NAAQS) for photochemical oxidant whirh was 0.08 ppm for one hour, not to be exceeded more than once per year. During the summer of 1973, the NAAQS was exceeded from 15 to 37% of the time at four rural monitoring sites in Maryland, Pennsylvania, Ohio, and West Virginia.1 This is a greater violation rate than is found in many urban areas. Dimitriades and Altshuller2 have enumerated four possible sources for this rural ozone: (a) transport from urban areas, (b) local photochemical generation from urban ozone precursors, (c) local photochemical generation from precursors of rural origin which may be man-made or natural, and (d) injection of stratospheric ozone into the rural area. This paper considers the chemistry pertinent to the first two of these possible sources of rural ozone, namely the long distance (overnight) transport of ozone and ozone precursors.  相似文献   

3.
In 1997, the United States National Ambient Air Quality Standard (NAAQS) for ozone was revised from a 1-h average of 0.12 parts per million (ppm) to an 8-h average of 0.08 ppm. Analysis of ozone data for the ensemble of the contiguous United States and for the period 1980–1998 shows that the average number of summer days per year in exceedance of the new standard is in the range 8–24 in the Northeast and in Texas, and 12–73 in southern California. The probability of exceedance increases with temperature and exceeds 20% in the Northeast for daily maximum temperatures above 305 K. We present the results of several different approaches to analyzing the long-term trends in the old and new standards over the continental United States from 1980 to 1998. Daily temperature data are used to resolve meteorological variability and isolate the effects of changes in anthropogenic emissions. Significant negative trends are found in the Northeast urban corridor, in the Los Angeles Basin and on the western bank of Lake Michigan. Temperature segregation enhances the detection of negative trends. Positive trends occur at isolated sites, mostly in the Southeast; a strong positive trend is found in Nashville (Tennessee). There is some evidence that, except in the Southwest, air quality improvements from the 1980s to the 1990s have leveled off in the past decade.  相似文献   

4.
Soybean percent crop reduction was estimated as a function of ambient O3 concentrations for each of 80 agricultural sites in the National Aerometric Data Bank (NADB) for each available year of data for years 1981-1985. Fourteen O3 concentration statistics were calculated for each of the resulting 320 site-years of data. The two statistics that correlated best with estimated crop reduction were an effective mean O3 concentration (1 percent of variance unexplained) and an arithmetic mean O3 concentration (4 percent unexplained). The worst correlation of the 14 was for the statistic used in the present O3 National Ambient Air Quality Standard (NAAQS), the second highest daily maximum 1-h O3 concentration (42 percent unexplained). The number of site-years for estimated percent soybean yield reductions was plotted versus increasing O3 concentrations for each of the 14 O3 statistics. A maximum crop reduction line was drawn on each plot. These lines were used to estimate (and list) potential ambient O3 standards for each of the 14 statistics that would limit soybean crop reduction at agricultural. NADB sites to 5, 10, 15, or 20 percent.  相似文献   

5.
Ambient ozone, sulfur dioxide, and nitrogen dioxide data collected at 11 rural gaseous air pollution monitoring stations located throughout the Federal Republic of Germany (FRG) were characterized to provide a basis for investigating the effect these air pollutants may have on forest decline. For any given year, with the exception of the Waldhof site, the ozone monitoring sites did not experience more than 50 occurrences of hourly mean concentrations equal to or above 0.10 ppm. In most cases, the number of occurrences equal to or above 0.10 ppm at the FRG ozone monitoring sites was below the number experienced at a rural forested site located at Whiteface Mountain, New York. Several of the FRG monitoring sites experienced a large number of occurrences of hourly mean ozone concentrations between 0.08 and 0.10 ppm. Hof, Selb, Arzberg, and Waldhof experienced several occurrences of elevated levels of sulfur dioxide concentrations. The nitrogen dioxide 24-h mean concentrations were low for all sites. Because the 24-h mean data may mask the occurrence of a few high concentration events, it is not known if any of the sites that monitored nitrogen dioxide experienced short-term elevated concentrations. To gain further insight into the possible effect of pollutant mixtures on vegetation, future efforts should involve characterizing the timing of multi-pollutant exposures.  相似文献   

6.
Abstract

Ozone and several polar volatile organic compounds (VOCs) including organic acids and carbonyls (aldehydes and ketones) were measured over an approximately 24 hour period in four residences during the winter of 1993 and in nine residences during the summer of 1993. All residences were in the greater Boston, Massachusetts area. The relation of the polar VOCs to the ozone concentration was examined. Indoor carbonyl concentrations were similar between the summer and winter, with the total mean winter concentration being 31.7 ppb and the total mean summer concentration being 36.6 ppb. However, the average air exchange rate was 0.9 hr?1 during the winter and 2.6 hr?1 during the summer. Therefore, the estimated carbonyl emission rates were significantly higher during the summer. Indoor organic acid concentrations were about twice as high during the summer as during the winter. For formic acid, the indoor winter mean was 9.8 ppb, and the summer indoor mean was 17.8 ppb. For acetic acid, the indoor winter mean was 15.5 ppb, and the summer indoor mean was 28.7 ppb. The concentrations of the polar VOCs were found to be significantly correlated with one another. Also, the emission rates of the polar VOCs were found to be correlated with both the environmental variables such as temperature and relative humidity and the ozone removal rate; however, it was difficult to apportion the relative effects of the environmental variables and the ozone removal.  相似文献   

7.
H Huang  Y Akustu  M Arai  M Tamura 《Chemosphere》2001,44(2):223-230
In order to give an effective and rapid analysis of the photochemical pollution and information for emission control strategies, a photochemical box model (PBM) was applied to one moderate summer episode, 11 July 1996, and one typical winter episode, 3 December 1996, in the center of Tokyo, Japan. The box model gave a good prediction of the photochemical pollution with minimal investment. As expected, the peak ozone in summer is higher than in winter. The NOx concentrations in winter are higher than those in summer. In summer, NO and NO2 have one peak in the morning. In winter, NO and NO2 show two peaks during the day. Three model runs including no reactions, a zero ozone boundary condition and dark reactions were conducted to understand the photochemical processes. The effects of emission reduction on the formation of the photochemical pollution in the center of Tokyo have been studied. The results show that the reduction of NMHC emission can decrease the ozone, however, the reduction of NOx emission can increase the ozone. It can be concluded that if the NOx emission are reduced, the reduction of NMHC should be more emphasized in order to decrease the ozone concentration in the center of Tokyo, Japan, especially the reduction of the NMHC from stationary source emission.  相似文献   

8.
Ambient surface ozone was monitored for one year at a series of seven sites along an elevation gradient from 1600 m to 3500 m above sea level (ASL) in Boulder County, Colorado. Spatial variability of ozone, quantified as the root mean squared deviation of hourly ozone per kilometer horizontal separation, decreased with elevation and distance from local sources, validating the assumption that (except at the City of Boulder (BO) site) the results of the study are representative of the Colorado Front Range. The northern hemisphere (NH) tropospheric spring ozone peak was clearly apparent in late April and early May and affected ozone at all elevations. Ozone consistently increased with elevation during winter, with a mean monthly rate of 1.5 ppbv per 100 m elevation. In summer, this monotonic increase in ozone with elevation was not observed; instead mean monthly ozone increased in two steps, by ~15 ppbv between 1610 m and 1940 m ASL and by ~10 ppbv between 3350 m and 3530 m ASL to a maximum of 60 ppbv. The amplitude of the diurnal ozone cycle decreased with increasing elevation. Average summertime diurnal swings in ozone concentration had a magnitude of 29 ppbv at 1610 m ASL, and 7–16 ppbv at the mid-elevation sites. In winter a diurnal cycle was observed only at the BO site, ozone concentrations at the remaining six locations changed on a multi-day timescale, indicating regional background behavior as the primary factor for wintertime ozone. Even the highest elevation site was influenced by transported urban air pollution in summer, indicated by the average 5 ppbv diurnal increase in ozone. Ozone exposure at the mid- to high-elevation sites in many instances approached and exceeded the 8-h National Ambient Air Quality Standard of 75 ppbv. The elevated ozone levels along this transect were interpreted to be caused by the confounding effects of the high elevation of these sites, increased ozone in long-range transported air, and anthropogenic ozone production in air transported from the nearby urban and suburban areas east of the Colorado Front Range Mountains.  相似文献   

9.
This paper describes, compares and evaluates selected Oxidant Prediction Relationships {OPRs) in terms of projections of hydrocarbon emission reductions required for attainment of the former 0.08 ppm standard and the new 0.12 ppm standard in the San Francisco Bay Area in 1985. The OPRs analyzed are the LIRAQ physicochemical model, EPA’s Empirical Kinetic Modeling Approach (EKMA), linear and Appendix J rollback, and an empirical OPR based on local observations.

LIRAQ simulations indicated that to achieve the 0.12 ppm ozone standard, 1985 hydrocarbon emissions must be reduced by 27% from projected levels. The equivalent reductions derived from simple linear rollback, linear rollback with 0.04 ppm background, and the local empirical OPR were 32%, 45% and 37%, respectively. The LIRAQ simulations also showed that reduction of both hydrocarbon and NOx emissions is less effective than reduction of hydrocarbons only. The attempt to apply EKMA failed because the Bay Area’s low hydrocarbon/NOx ratios and observed ozone levels are not consistent with the standard EKMA isopleth curves.

For planning, proper OPR selection is important because the wide range in the projections of various OPRs translates into a correspondingly wide range in control costs. Physicochemical OPRs are preferred because they are verifiable; they account for complex topography, meteorology, and source distributions; and because they can treat a variety of control strategies. In the future, the uncertainties associated with the projections can be resolved by assessing trends in air quality on a regular basis and by upgrading and reapplying the prediction methodologies as new information becomes available.  相似文献   

10.
Ozone concentrations at a rural-remote site in a forested region of north-central West Virginia were monitored during 1988 and 1989, a drought and wet year, respectively. During 1988, the absolute maximum average concentration for a single hour was 156 ppb, while it was only 107 ppb in 1989. Overall, the frequency of high concentrations was greater during 1988; the 120 ppb National Ambient Air Quality Standard was exceeded 17 times. The 7-h period encompassing the highest growing season concentrations for this site over the 2-yr period is 1100- 1759 h EST, rather than the period 0900-1559 h originally used by the National Crop Loss Assessment Network. The 7-h growing season means (0900-1559 h) of 52.6 ppb and 47.1 ppb for 1988 and 1989, respectively, compare well to those reported for the Piedmont/Mountain/Ridge-Valley area, but are higher than those for other surrounding areas. The diurnal ozone patterns, as well as the distribution of concentration ranges and timing of seasonal maxima, suggest that long-range transport of ozone and its precursors probably is an important factor at this site, given its remote and rural character.  相似文献   

11.
Acute leaf injury data are analyzed for 19 plant species exposed to ozone or sulfur dioxide. The data can be depicted by a new leaf injury mathematical model with two characteristics: (1) a constant percentage of leaf surface is injured by an air pollutant concentration that is inversely proportional to exposure duration raised to an exponent; (2) for a given exposure duration, the percent leaf injury as a function of pollutant concentration tends to fit a lognormal frequency distribution. Leaf injury as a function of laboratory exposure duration is modeled and compared with ambient air pollutant concentration measurements for various averaging times to determine which exposure durations are probably most important for setting ambient air quality standards to prevent or reduce visible leaf injury. The 8 hour average appears to be most important for most of the plants investigated for most sites, 1 hr concentrations are important for most plants at a few sites, and 3 hr S02 concentrations are important for some plants, especially those exposed to isolated point sources of the pollutant. The 1, 3, and 8 hr threshold injury concentrations are listed for each of the 19 plant species studied. To prevent or reduce acute leaf injury, fixed, nonoverlapping ambient air quality measurements and standards are recommended for averaging times of 1, 3, and 8hr.  相似文献   

12.
The objective of this study was to determine if the incidence or severity of foliar injury induced by regional, ambient ozone was influenced by local emissions from a complex of coal-burning power plants in southwestern Pennsylvania. Plantings of an ozonesensitive hybrid poplar clone {Populus maximowizii x trichocarpa, clone NE 388) were established in 1972 at various distances and directions from the power plants. Foliar injury caused by ambient ozone was evaluated annually from 1973 to 1990 in early to mid- August. Data are presented for the 12-year period, 1979 to 1990 inclusive, for which the most complete data sets were available. Injury from ambient ozone varied spatially and temporally, but with little relationship to power plant location. There was an apparent negative relationship between emission trends and ozone-induced symptoms, but only for one power plant. The correlation between annual mean levels of ozone-induced stipple and frequency of days (per year) with a 1-hr ozone maximum exceeding 0.04 ppm was weak, but significant. Ozone-induced bifacial necrosis was not observed on the foliage of the hybrid poplar during the drought year of 1988 in spite of record high levels of ozone; however, ozoneinduced stipple was observed.  相似文献   

13.
This study considers the characteristics of ground-level ozone (O3) in five Korean cities over a time period of 6-8 years. The focus of this study is daily maximum 1-hr and 8-hr concentrations. For all the study cities in the period examined, the mean and most of the percentiles (5, 10, 25, 50, 75, 90, and 95) for the daily maximum 1-hr and 8-hr concentrations showed increasing trends, although not all trends were statistically significant. The daily maximum 1-hr and 8-hr concentrations slowly increased during late winter, and peaks were attained during the summer season (from May to September). All the selected cities exhibited a high degree of correlation between their daily maximum 8-hr and 1-hr concentrations. The daily maximum 8-hr concentrations, which were climatologically equivalent to the Korean 1 hr/100 parts per billion (ppb) standard, were higher than the current 8 hr/60 ppb by a difference of 8-16 ppb. Compared with other cities in Korea, Seoul recorded a substantially higher frequency of days and hours with concentrations above 1 hr/100 ppb, and a higher frequency of days with concentrations above 8 hr/60 ppb and 8 hr/80 ppb. Seoul also recorded a substantially higher frequency of hours with concentrations above 1 hr/100 ppb than days with concentrations above 1 hr/100 ppb, implying that on some days severe exceedances persisted for more than one hour per day. During multiple-day episodes a North Pacific High dominated Korea, which is quite typical in Korea during the summer season.  相似文献   

14.
Forced expiratory volume in 1 second (FEV1) was measured in 21 men exercising while exposed to four O3 concentrations (0.0,0.08,0.10, and 0.12 ppm). A lognormal multiple linear regression model was fitted to their mean FEV1 measurements to predict FEV1 percent decrease as a function of O3 concentration and exposure duration. The exercise level used was probably comparable to heavy manual labor. The longest O3, exposure studied was 6 h. Extrapolating cautiously to an 8-h workday of heavy manual labor, the model predicts that O3 concentrations of 0.08, 0.10, and 0.12 ppm would decrease FEV1 by 9,15, and 20 percent, respectively.  相似文献   

15.
Three modeling approaches, the U.S. Environmental Protection Agency’s (EPA) Community Multiscale Air Quality (CMAQ) zero-out, the Comprehensive Air quality Model with extensions (CAMx) zero-out, and the CAMx probing tools ozone source apportionment tool (OSAT), were used to project the contributions of various source categories to future year design values for summer 8-hr average ozone concentrations at selected U.S. monitors. The CMAQ and CAMx zero-out or brute-force approaches predicted generally similar contributions for most of the source categories, with some small differences. One of the important findings from this study was that both the CMAQ and CAMx zero-out approaches tended to apportion a larger contribution to the “other” category than the OSAT approach. For the OSAT approach, this category is the difference between the total emissions and the sum of the tracked emissions and consists of non-U.S. emissions. For the zero-out approach, it also includes the effects of nonlinearities in the system because the sum of the sensitivities of all sources is not necessarily equal to the sum of their contributions in a nonperturbed environment. The study illustrates the strengths and weaknesses of source apportionment approaches, such as OSAT, and source sensitivity approaches, such as zero-out. The OSAT approach is suitable for studying source contributions, whereas the zero-out approach is suitable for studying response to emission changes. Future year design values of summer 8-hr average ozone concentrations were projected to decrease at all the selected monitors for all the simulations in each city, except at the downtown Los Angeles monitor. Both the CMAQ and CAMx results showed all modeled locations project attainment in 2018 and 2030 to the current National Ambient Air Quality Standards (NAAQS) level of 75 ppb, except the selected Los Angeles monitor in 2018 and the selected San Bernardino monitor in 2018 and 2030.
Implications:This study illustrates the strengths and weaknesses of three modeling approaches, CMAQ zero-out, CAMx zero-out, and OSAT to project contributions of various source categories to future year design values for summer 8-hr average ozone concentrations at selected U.S. monitors. The OSAT approach is suitable for studying source contributions, whereas the zero-out approach is suitable for studying response to emission changes. Future year design values of summer 8-hr average ozone concentrations were projected to decrease, except at the downtown Los Angeles monitor. Comparing projections with the current NAAQS (75 ppb) show attainment everywhere, except two locations in 2018 and one location in 2030.  相似文献   

16.
An attempt has been made to examine the seasonal variation of the surface ozone mixing ratio in Athens, Greece during the periods 1901–1940 and 1987–1998. The first finding is that in July and August while the daytime surface ozone mixing ratio from the beginning until the end of the 20th century has increased by approximately 1.8 times, the nighttime surface ozone mixing ratio remained approximately at the same level. The second finding is that the increase in the mean daytime mixing ratio during the transition period from winter to summer is equal to the increase in the maximum daytime mixing ratios, whilst the enhancement of the nighttime surface ozone maxima is stronger than that of the nighttime mean surface ozone mixing ratio. Plausible explanation for this finding is given through mechanisms like long-range transport and photochemical processes occurring in the boundary layer, free troposphere and lower stratosphere.  相似文献   

17.
Abstract

A research site for atmospheric chemistry and air pollution measurements was established at Pinnacle State Park in Addison, NY, in 1995. This paper presents an overview of the site characteristics and measurement program, as well as monthly average concentrations for many of the trace gas and aerosol pollutants over the full measurement period. Monthly averaged ozone concentrations range from values as low as 15 parts per billion (ppb) during cold-season months, to values approaching 50 ppb during some spring and summer months. Sulfur dioxide (SO2), oxides of nitrogen (NOx), and reactive odd nitrogen (NOy) all show distinct seasonal variation, with summertime monthly averages as low as 1–3 ppb, and wintertime monthly averages from 6–12 ppb. The variation in carbon monoxide (CO) is much smaller, with minimums of approximately 150 ppb and maximums only rarely exceeding 250 ppb. Data for three hydrocarbon species propane, benzene, and isoprene—are presented. Propane and benzene show higher monthly averaged concentrations in the winter and lower values in the summer, with values ranging over a factor of 4–5. Isoprene, on the other hand has much higher values during the summer season, sometimes a factor of 10 or more greater than concentrations measured in the winter. Monthly averaged plots for fine particulate matter (PM2.5) beginning in 1999 show a robust summer maximum and winter minimum, and roughly a factor of two difference between the two. An empirical measure of ozone production using the correlation of hour-averaged ozone and NOy data illustrates relatively robust ozone production during some, but not all, summertime months over the time period. Also, an analysis of the frequency distribution of the hours of maximum ozone concentration shows a strong mid-afternoon peak, as expected, but also a prominent secondary maximum centered around midnight. The secondary peak is interpreted as ozone transported from ozone-producing areas to the west, including Buffalo, Cleveland, Pittsburgh, and the Ohio Valley. Finally, SO2 concentrations as a function of wind direction clearly indicate maximum impacts when the winds are out of the south (Pittsburgh and Philadelphia), with a secondary peak when the winds are from the north-northeast, consistent with the locations of major SO2 emission sources in the region.  相似文献   

18.
ABSTRACT

This study considers the characteristics of ground-level ozone (O3) in five Korean cities over a time period of 6-8 years. The focus of this study is daily maximum 1-hr and 8-hr concentrations. For all the study cities in the period examined, the mean and most of the percentiles (5, 10, 25, 50, 75, 90, and 95) for the daily maximum 1-hr and 8hr concentrations showed increasing trends, although not all trends were statistically significant. The daily maximum 1-hr and 8-hr concentrations slowly increased during late winter, and peaks were attained during the summer season (from May to September). All the selected cities exhibited a high degree of correlation between their daily maximum 8-hr and 1-hr concentrations. The daily maximum 8-hr concentrations, which were climatologi-cally equivalent to the Korean 1 hr/100 parts per billion (ppb) standard, were higher than the current 8 hr/60 ppb by a difference of 8-16 ppb. Compared with other cities in Korea, Seoul recorded a substantially higher frequency of days and hours with concentrations above 1 hr/100 ppb, and a higher frequency of days with concentrations above 8 hr/60 ppb and 8 hr/80 ppb. Seoul also recorded a substantially higher frequency of hours with concentrations above 1 hr/100 ppb than days with concentrations above 1 hr/100 ppb, implying that on some days severe exceedances persisted for more than one hour per day. During multiple-day episodes a North Pacific High dominated Korea, which is quite typical in Korea during the summer season.  相似文献   

19.
Two- and three-year old green ash (Fraxinus americana L.) and white ash (Fraxinus pennsylvanica Marsh.) seedlings were exposed to combinations of ambient ozone and acidic ambient rainfall in New Brunswick, New Jersey. During the 3-year study the potted seedlings did not develop typical foliar ozone toxicity symptoms, despite the occurrence of as many as 78 h in exceedance of the National Ambient Air Quality Standard of 0.12 ppm. Although the pH of the rainfall was as low as 3.6 and averaged 4.1, no symptoms were observed resulting from the ambient precipitation. The rate of shoot growth in terms of height and diameter was generally not affected by either of the pollutants during the growing season. Although the chlorophyll content of white ash foliage was low following frequent rainfall in the early summer of 1984, there was no statistically significant evidence that acid raid or ambient ozone decreased chlorophyll in ash seedlings during the 3-year study.  相似文献   

20.
Present evidence suggests that ozone is the most damaging of all air pollutants affecting vegetation. It is the principal oxidant in the photochemical smog complex. Concentrations of ozone have exceeded 0.5 part per million (ppm) in the Los Angeles area. One-tenth of this level for 8 hours is known to injure very sensitive tobacco varieties. Many plant species are visibly affected after a few hours exposure at concentrations much lower than 0.5 ppm. There is also some evidence that ozone reduces plant growth. Many factors must be taken into account when considering standards to protect vegetation from ozone damage. These include ozone concentration and methods of measurement, time of exposure, possible additive effects of other pollutants, sensitivity of plant species, their economic value, and the extent of injury which can be tolerated. The response of a species to the pollutant is conditioned by genetic factors and environmental conditions. Lack of specific routine methods for measuring ozone in ambient air is a handicap. California and Colorado established standards for oxidants at 0.15 and 0.10 ppm, respectively, for 1 hour. How these standards relate to the ozone dosage causing acute and chronic injury to various plant species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号