首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Compositions of volatile organic compound (VOC) emissions from painting applications and printing processes were sampled and measured by gas chromatography–mass spectrometry/flame ionization detection (GC–MS/FID) in Beijing. Toluene and C8 aromatics were the most abundant species, accounting for 76% of the total VOCs emitted from paint applications. The major species in printing emissions included heavier alkanes and aromatics, such as n-nonane, n-decane, n-undecane, toluene, and m/p-xylene. Measurements of VOCs obtained from furniture paint emissions in 2003 and 2007 suggest a quick decline in benzene levels associated with formulation changes in furniture paints during these years. A comparison of VOC source profiles for painting and printing between Beijing and other parts of the world showed significant region-specific discrepancies, probably because of different market demands and environmental standards. We conducted the evaluation of the source reactivities for various VOC emission sources. The ozone formation potential (OFP) for unit mass of VOCs source emissions is the highest for paint applications. Substituting solvent-based paints by water-based in Beijing will lead to an OFP reduction of 152,000 tons per year, which is more than 1/4 of the OFPs for VOCs emissions from vehicle exhaust in the city.  相似文献   

2.
Four receptor-oriented source apportionment models were evaluated by applying them to simulated personal exposure data for select volatile organic compounds (VOCs) that were generated by Monte Carlo sampling from known source contributions and profiles. The exposure sources modeled are environmental tobacco smoke, paint emissions, cleaning and/or pesticide products, gasoline vapors, automobile exhaust, and wastewater treatment plant emissions. The receptor models analyzed are chemical mass balance, principal component analysis/absolute principal component scores, positive matrix factorization (PMF), and graphical ratio analysis for composition estimates/source apportionment by factors with explicit restriction, incorporated in the UNMIX model. All models identified only the major contributors to total exposure concentrations. PMF extracted factor profiles that most closely represented the major sources used to generate the simulated data. None of the models were able to distinguish between sources with similar chemical profiles. Sources that contributed <5% to the average total VOC exposure were not identified.  相似文献   

3.
We present measurements of C1–C8 volatile organic compounds (VOCs) at four sites ranging from urban to rural areas in Hong Kong from September 2002 to August 2003. A total of 248 ambient VOC samples were collected. As expected, the urban and sub-urban sites generally gave relatively high VOC levels. In contrast, the average VOC levels were the lowest in the rural area. In general, higher mixing ratios were observed during winter/spring and lower levels during summer/fall because of seasonal variations of meteorological conditions. A variation of the air mass composition from urban to rural sites was observed. High ratios of ethyne/CO (5.6 pptv/ppbv) and propane/ethane (0.50 pptv/pptv) at the rural site suggested that the air masses over the territory were relatively fresh as compared to other remote regions. The principal component analysis (PCA) with absolute principal component scores (APCS) technique was applied to the VOC data in order to identify and quantify pollution sources at different sites. These results indicated that vehicular emissions made a significant contribution to ambient non-methane VOCs (NMVOCs) levels in urban areas (65±36%) and in sub-urban areas (50±28% and 53±41%). Other sources such as petrol evaporation, industrial emissions and solvent usage also played important roles in the VOC emissions. At the rural site, almost half of the measured total NMVOCs were due to combustion sources (vehicular and/or biomass/biofuel burning). Petrol evaporation, solvent usage, industrial and biogenic emissions also contributed to the atmospheric NMVOCs. The source apportionment results revealed a strong impact of anthropogenic VOCs to the atmosphere of Hong Kong in both urban/sub-urban and rural areas.  相似文献   

4.
Identifying the sources of volatile organic compounds (VOCs) is key to reducing ground-level ozone and secondary organic aerosols (SOAs). Several receptor models have been developed to apportion sources, but an intercomparison of these models had not been performed for VOCs in China. In the present study, we compared VOC sources based on chemical mass balance (CMB), UNMIX, and positive matrix factorization (PMF) models. Gasoline-related sources, petrochemical production, and liquefied petroleum gas (LPG) were identified by all three models as the major contributors, with UNMIX and PMF producing quite similar results. The contributions of gasoline-related sources and LPG estimated by the CMB model were higher, and petrochemical emissions were lower than in the UNMIX and PMF results, possibly because the VOC profiles used in the CMB model were for fresh emissions and the profiles extracted from ambient measurements by the two-factor analysis models were "aged".  相似文献   

5.
VOCs are important precursors of the atmospheric ozone formation species. This study investigated the airborne concentrations of 52 VOCs at two air quality monitoring stations, Daliao and Tzouying, during wintertime in southern Taiwan. Airborne VOCs samples were taken in stainless steel canisters four times per day and analyzed via gas chromatography/mass spectrometry. Maximum increment reactivity (MIR) was used to evaluate the ozone formation potential in this ozone non-attainment region. Toluene, propane, isopentane, propene, n-butane, n-pentane and isoprene contributed 78–79% of the 52 VOCs in Daliao. Toluene, 1-butene, isopentane, propene, propane, n-undecane, and n-butane contributed 71–77% of the 52 VOCs in Tzouying. The VOCs concentrations were higher in Daliao due to the high toluene emissions from a paint plant and a solvent plant in the nearby industrial district. The 24-h VOC concentrations averaged 25 ppb higher in Tzouying than in Daliao. The ozone formation potential of airborne VOCs was 1687–2730 and 1717–2261 μg-O3/g-VOCs in Daliao and Tzouying, respectively. Ozone concentrations in Tzouying were 44 ppb higher than in Daliao during the 1200–1600 sampling period.  相似文献   

6.
Volatile organic compounds (VOCs) are important precursors of tropospheric ozone formation. Isoprene contributions to ozone formation by using ambient mixing ratios are generally underestimated because of rapid chemical losses. In this study, ambient mixing ratios of major VOC species were continuously measured at Peking university (PKU) and YUFA, urban and sub-urban sites in Beijing, the city that will host 2008 Olympic Games. The observed mixing ratios of methyl vinyl ketone (MVK), methacrolein (MACR) and isoprene were used to derive the mixing ratios of initial isoprene, which means the ambient isoprene level before it undergoes any photochemical reaction with OH radicals. The average mixing ratios of initial isoprene were 3.3±1.6 and 2.9±1.5 ppbv at PKU and YUFA sites, respectively. The percentages of initial isoprene in total initial VOCs were 10.8% at PKU site and 11.4% at YUFA site, in reasonable agreement with the isoprene contribution in total VOC emissions as derived from source inventories. Maximum increment reactivity (MIR) was used to evaluate the ozone formation potential (OFP) for major VOC species. The OFP for initial isoprene accounted for 23% of the total OFPs for all measured species, compared to 11% using ambient mixing ratios of isoprene at PKU site. Similarly, at YUFA site, the ambient measured isoprene and initial isoprene contributed 10% and 22%, respectively, to the OFPs for total measured VOCs. It seems that isoprene has similar contribution to ozone formation at both sites in Beijing city.  相似文献   

7.
Revealing source signatures in ambient BTEX concentrations   总被引:2,自引:0,他引:2  
Management of ambient concentrations of Volatile Organic Compounds (VOCs) is essential for maintaining low ozone levels in urban areas where its formation is under a VOC-limited regime. The significant decrease in traffic-induced VOC emissions in many developed countries resulted in relatively comparable shares of traffic and non-traffic VOC emissions in urban airsheds. A key step for urban air quality management is allocating ambient VOC concentrations to their pertinent sources. This study presents an approach that can aid in identifying sources that contribute to observed BTEX concentrations in areas characterized by low BTEX concentrations, where traditional source apportionment techniques are not useful. Analysis of seasonal and diurnal variations of ambient BTEX concentrations from two monitoring stations located in distinct areas reveal the possibility to identify source categories. Specifically, the varying oxidation rates of airborne BTEX compounds are used to allocate contributions of traffic emissions and evaporative sources to observed BTEX concentrations.  相似文献   

8.
The characteristics of volatile organic compounds (VOCs) and their annual trends in Seoul, Korea were investigated, with their optimal control strategy suggested. The annual concentration of VOCs (96.2–121.1 ppbC) has shown a decreasing trend from 2004 to 2008, suggesting the control strategy via the “Special Measures for Metropolitan Air Quality Improvement,” which was implemented in 2005, has been successful. The contributions of individual VOC to the production of ambient ozone and secondary organic aerosol (SOA) are discussed to assess the adequacy of current control strategies. The contribution of aromatics (C6–C10) to the production of ozone accounted for 38.7–46.3 % of the total ozone production, followed by low carbon alkanes (C2–C6) (27.0–35.9 %). The total SOA formation potential of VOCs was found to range from 2.5 to 3.5 μg m?3, mainly as a result of aromatics (C6–C10) (over 85 %). Considering the contributions from ozone and SOA production, it was concluded that solvent use was the most important emission source, followed by vehicle exhaust emissions. Thus, the current emission control strategy focused on these two emission sources is appropriate to reduce the VOCs related pollution level of the Seoul Metropolitan Region. Still, an additional control strategy, such as controlling the emissions from meat cooking, which is an emission source of high carbon alkanes (C7–C10), needs to be considered to further reduce the VOCs related pollution level in Seoul.  相似文献   

9.
The Positive Matrix Factorization (PMF) receptor model and the Observation Based Model (OBM) were combined to analyze volatile organic compound (VOC) data collected at a suburban site (WQS) in the PRD region. The purposes are to estimate the VOC source apportionment and investigate the contributions of these sources and species of these sources to the O3 formation in PRD. Ten VOC sources were identified. We further applied the PMF-extracted concentrations of these 10 sources into the OBM and found "solvent usage 1", "diesel vehicular emissions" and "biomass/biofuel burning" contributed most to the O3 formation at WQS. Among these three sources, higher Relative Incremental Reactivity (RIR)-weighted values of ethene, toluene and m/p-xylene indicated that they were mainly responsible for local O3 formation in the region. Sensitivity analysis revealed that the sources of "diesel vehicular emissions", "biomass/biofuel burning" and "solvent usage 1" had low uncertainties whereas "gasoline evaporation" showed the highest uncertainty.  相似文献   

10.

Introduction

The effect of diurnal changes in strengths of volatile organic compound (VOC) sources on the performances of positive matrix factorization (PMF) and principal component analysis (PCA) was investigated using ambient measurement results that were taken during daytime and nighttime hours between March 24 and May 14, 2011, within Davutpasa Campus of Yildiz Technical University (Istanbul, Turkey).

Methods

Forty-five VOC species, ranging from C5 to C11 in volatility, were measured in the samples, 40 of which are included in the analyses. Ambient samples were grouped as daytime, nighttime, and all day datasets, and both PMF and PCA were applied to each dataset. A total of six source groups were extracted from each dataset: solvent use, general industrial paint use, gasoline and diesel vehicle exhausts, and biogenic as well as evaporative emissions. Estimated source contributions showed great diurnal variations.

Results

The results suggested that extraction of possible sources by PCA depends greatly on the number of samples and the strength of the sources, while PMF produced stable results regardless of number of samples and source strengths.

Conclusion

Although PMF was unable to resolve gasoline vehicle and evaporative emissions, it was found to be successful in explaining diurnal fluctuations in source strengths, while the performance of PCA depends on the strength of emission source.  相似文献   

11.
12.
Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong   总被引:21,自引:0,他引:21  
Lee SC  Chiu MY  Ho KF  Zou SC  Wang X 《Chemosphere》2002,48(3):375-382
The assessment of volatile organic compounds (VOCs) has become a major issue of air quality network monitoring in Hong Kong. This study is aimed to identify, quantify and characterize volatile organic compounds (VOCs) in different urban areas in Hong Kong. The spatial distribution, temporal variation as well as correlations of VOCs at five roadside sampling sites were discussed. Twelve VOCs were routinely detected in urban areas (Mong Kok, Kwai Chung, Yuen Long and Causeway Bay). The concentrations of VOCs ranged from undetectable to 1396 microg/m3. Among all of the VOC species, toluene has the highest concentration. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the major constituents (more than 60% in composition of total VOC detected), mainly contributed from mobile sources. Similar to other Asian cities, the VOC levels measured in urban areas in Hong Kong were affected both by automobile exhaust and industrial emissions. High toluene to benzene ratios (average T/B ratio = 5) was also found in Hong Kong as in other Asian cities. In general, VOC concentrations in the winter were higher than those measured in the summer (winter to summer ratio > 1). As toluene and benzene were the major pollutants from vehicle exhausts, there is a necessity to tighten automobile emission standards in Hong Kong.  相似文献   

13.
Air quality impacts of volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from major sources over the northwestern United States are simulated. The comprehensive nested modeling system comprises three models: Community Multiscale Air Quality (CMAQ), Weather Research and Forecasting (WRF), and Sparse Matrix Operator Kernel Emissions (SMOKE). In addition, the decoupled direct method in three dimensions (DDM-3D) is used to determine the sensitivities of pollutant concentrations to changes in precursor emissions during a severe smog episode in July of 2006. The average simulated 8-hr daily maximum O3 concentration is 48.9 ppb, with 1-hr O3 maxima up to 106 ppb (40 km southeast of Seattle). The average simulated PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) concentration at the measurement sites is 9.06 μg m?3, which is in good agreement with the observed concentration (8.06 μg m?3). In urban areas (i.e., Seattle, Vancouver, etc.), the model predicts that, on average, a reduction of NOx emissions is simulated to lead to an increase in average 8-hr daily maximum O3 concentrations, and will be most prominent in Seattle (where the greatest sensitivity is??0.2 ppb per % change of mobile sources). On the other hand, decreasing NOx emissions is simulated to decrease the 8-hr maximum O3 concentrations in remote and forested areas. Decreased NOx emissions are simulated to slightly increase PM2.5 in major urban areas. In urban areas, a decrease in VOC emissions will result in a decrease of 8-hr maximum O3 concentrations. The impact of decreased VOC emissions from biogenic, mobile, nonroad, and area sources on average 8-hr daily maximum O3 concentrations is up to 0.05 ppb decrease per % of emission change, each. Decreased emissions of VOCs decrease average PM2.5 concentrations in the entire modeling domain. In major cities, PM2.5 concentrations are more sensitive to emissions of VOCs from biogenic sources than other sources of VOCs. These results can be used to interpret the effectiveness of VOC or NOx controls over pollutant concentrations, especially for localities that may exceed National Ambient Air Quality Standards (NAAQS).

Implications: The effect of NOx and VOC controls on ozone and PM2.5 concentrations in the northwestern United States is examined using the decoupled direct method in three dimensions (DDM-3D) in a state-of-the-art three-dimensional chemical transport model (CMAQ). NOx controls are predicted to increase PM2.5 and ozone in major urban areas and decrease ozone in more remote and forested areas. VOC reductions are helpful in reducing ozone and PM2.5 concentrations in urban areas. Biogenic VOC sources have the largest impact on O3 and PM2.5 concentrations.  相似文献   

14.
This study identified sources of mercury (Hg) in downtown Toronto, Canada by analyzing gaseous elemental mercury (GEM), mercury associated with particles with sizes less than 2.5 microns (PHg < 2.5), and gaseous oxidized inorganic mercury (GOIM), commonly referred to as reactive gaseous mercury (RGM), and air pollutants (CO, NOx, O3, PM2.5, SO2) concentrations between Dec 2003 and Nov 2004. The data were analyzed using Positive Matrix Factorization (PMF) model, Principal Components Analysis (PCA), ratio analysis, back trajectories, and correlation analyses. The analyses suggest industrial sources (chemical production, metal production, sewage treatment), rather than coal combustion, were the major contributors to measured Hg levels. Overlap in source profiles for the Hg sources listed in the Canadian National Pollutant Release Inventory (NPRI) and lack of source profiles for urban sources were the major limitations to positively identifying sources from the PMF and PCA factors. Correlation analyses revealed direct emissions were the sources of GOIM in spring, summer, and fall, and the occurrence of GEM oxidation by ozone in the summer. Elevated Hg events are attributed to emissions from urban sources near the sampling site, regional point sources, and photochemical processes involving ozone.  相似文献   

15.
ABSTRACT

Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Alkyd paint may represent a significant source of volatile organic compounds (VOCs) indoors because of the frequency of use and amount of surface painted. The U.S. Environmental Protection Agency (EPA) is conducting research to characterize VOC emissions from paint and to develop source emission models that can be used for exposure assessment and risk management. The technical approach for this research involves both analysis of the liquid paint to identify and quantify the VOC contents and dynamic small chamber emissions tests to characterize the VOC emissions after application. The predominant constituents of the primer and two alkyd paints selected for testing were straight-chain alkanes (C9–C12); C8–C9 aromatics were minor constituents. Branched chain alkanes were the predominant VOCs in a third paint. A series of tests were performed to evaluate factors that may affect emissions following application of the coatings. The type of substrate (glass, wallboard, or pine board) did not have a substantial impact on the emissions with respect to peak concentrations, the emissions profile, or the amount of VOC mass emitted from the paint. Peak concentrations of total volatile organic compounds (TVOCs) as high as 10,000 mg/m3 were measured during small chamber emissions tests at 0.5 air exchanges per hour (ACH). Over 90% of the VOCs were emitted from the primer and paints during the first 10 hr following application. Emissions were similar from paint applied to bare pine board, a primed board, or a board previously painted with the same paint. The impact of other variables, including film thickness, air velocity at the surface, and air-exchange rate (AER) were consistent with theoretical predictions for gas-phase, mass transfer-controlled emissions. In addition to the alkanes and aromatics, aldehydes were detected in the emissions during paint drying. Hexanal, the predominant aldehyde in the emissions, was not detected in the liquid paint and was apparently an oxidation product formed during drying. This paper summarizes the results of the product analyses and a series of small chamber emissions tests. It also describes the use of a mass balance approach to evaluate the impact of test variables and to assess the quality of the emissions data.  相似文献   

16.
A chemical mass balance (CMB) receptor model was used for estimating the diurnal contributions of VOC emission sources to the ambient C2–C9 VOC concentration in Seoul, Korea. For this purpose, the VOC concentrations were measured in the morning, the afternoon, and the evening. The samples were collected using a 2-h integrated SUMMA canister. The source profiles were developed for the CMB calculation in the Seoul area. To investigate the effect of the chemical reaction loss of VOCs on the CMB calculation, the modified model employing a decay factor and the standard model that considers no loss were compared. The modified model estimated that the vehicle exhaust (52%) was the largest leading source of VOCs in the Seoul atmosphere, followed by the use of solvents (26%), gasoline evaporation (15%), the use of liquefied petroleum gas (LPG) (5%), and the use of liquefied natural gas (LNG) (2%). Relative source contribution for vehicle exhaust showed a clear diurnal variation with a high in the morning and evening and a low in the afternoon, while the contribution of evaporative emissions (gasoline evaporation and solvent usage) showed a different diurnal pattern from that of the vehicle exhaust, exhibiting a high in the afternoon and evening and a low in the morning. It was found that the difference between the total source contribution (μg m−3) estimated from these two models was not statistically significant. However, when the paired-sample t-test is applied to the individual sources, a significant difference was found for the vehicle exhaust and the solvent use. In addition, the modified model brought forth a better performance with high R2 and low χ2 as compared to those obtained from the standard model in the CMB calculation. The vehicle exhaust and solvent use were estimated to be the largest and the second largest contributors to ambient benzene as well as ozone formation potential (OFP), respectively. Based on above results we believe that incorporating the reaction loss in the CMB calculations helps to better fit the source profile to the ambient VOC concentrations. However, the reaction loss does not significantly affect the estimation of source contributions.  相似文献   

17.
During the TRAMP field campaign in August–September 2006, C2–C10 volatile organic compounds (VOCs) were measured continuously and online at the urban Moody Tower (MT) site. This dataset was compared to corresponding VOC data sets obtained at six sites located in the highly industrialized Houston Ship Channel area (HSC). Receptor modeling was performed by positive matrix factorization (PMF) at all sites. Conditional probability functions (CPF) were used to determine the origin of the polluted air masses in the Houston area. A subdivision into daytime and nighttime was carried out to discriminate photochemical influences. Eight main source categories of industrial, mobile, and biogenic emissions were identified at the urban receptor site, seven and six, respectively, at the different HSC sites. At MT natural gas/crude oil contributed most to the VOC mass (27.4%), followed by liquefied petroleum gas (16.7%), vehicular exhaust (15.3%), fuel evaporation (14.3%), and aromatics (13.4%). Also petrochemical sources from ethylene (4.7%) and propylene (3.6%) play an important role. A minor fraction of the VOC mass can be attributed to biogenic sources mainly from isoprene (4.4%). Based on PMF analyses of different wind sectors, the total VOC mass was estimated to be twofold at MT with wind directions from HSC compared to air from a typical urban sector, for petrochemical compounds more than threefold. Despite the strong impact of air masses influenced by industrial sources at HSC, still about a third of the total mass contributions at MT can be apportioned to other sources, mainly motor vehicles and aromatic solvents. The investigation of diurnal variation in combination with wind directional frequencies revealed the greatest HSC impact at the urban site during the morning, and the least during the evening.  相似文献   

18.
In order to study the daily, weekly, and seasonal patterns and possible origins of air concentrations of volatile organic compounds (VOCs), measurements were taken on a minute-by-minute basis with a PTR-MS in the vicinity of a highway in a semi-urban site near Barcelona. Four periods of the year were chosen and samples were taken under different meteorological conditions and at different phenological stages of the surrounding vegetation. None of the measured VOCs concentrations exceeded air-quality guidelines. The results showed that diurnal, weekly, and seasonal fluctuations in measured VOC concentrations depended on variations in the strength of sources, as well as on photochemical activity and meteorological conditions. There was a decrease in concentrations in most VOCs when mixing depth, photochemical destruction, and wind speed increased at midday. On the other hand, high values of some VOCs occurred at night when the strength of their sinks and the mixing layer decreased. Interestingly, in June, night emissions and concentration peaks of methanol and acetone occurred in periods with dew formation and no wind. VOCs related to anthropogenic emissions presented a weekly pattern of variation with a clear distinction being found between working days and the weekend. The seasonal variation showed higher levels in December for all VOCs, except for isoprene. The thinning of the mixing layer leading to greater concentrations of volatiles and lower wind speeds in winter could account for those higher VOC levels. Benzene and toluene originated mainly from anthropogenic emissions. The sources of acetaldehyde, methanol, and acetone appeared to be mainly biogenic and these compounds were the most abundant of all the measured VOCs. Isoprene concentration patterns suggest a predominantly anthropogenic origin in December and March and a mainly biogenic origin in June and October. All these data provide useful information on the dynamics of VOCs in an area where ozone levels in summer exceed quite often the standard protection thresholds for O3.  相似文献   

19.
Human breath emissions of VOCs.   总被引:5,自引:0,他引:5  
The medical community has long recognized that humans exhale volatile organic compounds (VOCs). Several studies have quantified emissions of VOCs from human breath, with values ranging widely due to variation between and within individuals. The authors have measured human breath concentrations of isoprene and pentane. The major VOCs in the breath of healthy individuals are isoprene (12-580 ppb), acetone (1.2-1,880 ppb), ethanol (13-1,000 ppb), methanol (160-2,000 ppb) and other alcohols. In this study, we give a brief summary of VOC measurements in human breath and discuss their implications for indoor concentrations of these compounds, their contributions to regional and global emissions budgets, and potential ambient air sampling artifacts. Though human breath emissions are a negligible source of VOCs on regional and global scales (less than 4% and 0.3%, respectively), simple box model calculations indicate that they may become an important (and sometimes major) indoor source of VOCs under crowded conditions. Human breath emissions are generally not taken into account in indoor air studies, and results from this study suggest that they should be.  相似文献   

20.
We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the “Ratio”) from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios <1 and NOx at Ratios >2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria, the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2, and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g., Chicago), the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号