首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Characterising sources and sinks of rural VOC in eastern France   总被引:2,自引:0,他引:2  
Fifty non-methane hydrocarbons (NMHC) and seventeen carbonyl compounds were measured at a French rural site from 1997 to 2001, as part of the EMEP programme. Data handling was based on an original source-receptor approach. First, the examination of the levels and trends was completed by the comparison of the seasonal distribution of rural and urban VOC/acetylene ambient ratios. This analysis has shown that most of the compounds derived from mixing and photochemical transformation of mid-range transported urban pollutants from the downwind urban area. Then, identified sources and sinks were temporally apportioned. Urban air masses mixing explains, at least, 80% of the wintertime levels of anthropogenic NMHC and isoprene. In summer, photochemistry dominates the day-to-day distribution of anthropogenic NMHC whilst summertime isoprene is also controlled by in-situ biogenic emissions. Then, the results of C(1)-C(3) carbonyls were discussed with respect to their direct biogenic and anthropogenic emissions and photochemical production through the [carbonyl/auto-exhaust tracers] emission ratio. Diluted vehicle exhaust emissions mainly contribute to the total content of lower aldehydes in winter while other processes control lower ketones. Secondary production is predominant in summer with at least a 50% high intensity. Its dependence upon temperature and radiation is also demonstrated. Finally, the importance of the primary and secondary biogenic production of acetone and formaldehyde is assessed. In particular, biogenic contribution would explain 37 +/- 25% of acetone levels in summer.  相似文献   

2.
We present measurements of C1–C8 volatile organic compounds (VOCs) at four sites ranging from urban to rural areas in Hong Kong from September 2002 to August 2003. A total of 248 ambient VOC samples were collected. As expected, the urban and sub-urban sites generally gave relatively high VOC levels. In contrast, the average VOC levels were the lowest in the rural area. In general, higher mixing ratios were observed during winter/spring and lower levels during summer/fall because of seasonal variations of meteorological conditions. A variation of the air mass composition from urban to rural sites was observed. High ratios of ethyne/CO (5.6 pptv/ppbv) and propane/ethane (0.50 pptv/pptv) at the rural site suggested that the air masses over the territory were relatively fresh as compared to other remote regions. The principal component analysis (PCA) with absolute principal component scores (APCS) technique was applied to the VOC data in order to identify and quantify pollution sources at different sites. These results indicated that vehicular emissions made a significant contribution to ambient non-methane VOCs (NMVOCs) levels in urban areas (65±36%) and in sub-urban areas (50±28% and 53±41%). Other sources such as petrol evaporation, industrial emissions and solvent usage also played important roles in the VOC emissions. At the rural site, almost half of the measured total NMVOCs were due to combustion sources (vehicular and/or biomass/biofuel burning). Petrol evaporation, solvent usage, industrial and biogenic emissions also contributed to the atmospheric NMVOCs. The source apportionment results revealed a strong impact of anthropogenic VOCs to the atmosphere of Hong Kong in both urban/sub-urban and rural areas.  相似文献   

3.
Volatile organic compounds (VOCs) are important precursors of tropospheric ozone formation. Isoprene contributions to ozone formation by using ambient mixing ratios are generally underestimated because of rapid chemical losses. In this study, ambient mixing ratios of major VOC species were continuously measured at Peking university (PKU) and YUFA, urban and sub-urban sites in Beijing, the city that will host 2008 Olympic Games. The observed mixing ratios of methyl vinyl ketone (MVK), methacrolein (MACR) and isoprene were used to derive the mixing ratios of initial isoprene, which means the ambient isoprene level before it undergoes any photochemical reaction with OH radicals. The average mixing ratios of initial isoprene were 3.3±1.6 and 2.9±1.5 ppbv at PKU and YUFA sites, respectively. The percentages of initial isoprene in total initial VOCs were 10.8% at PKU site and 11.4% at YUFA site, in reasonable agreement with the isoprene contribution in total VOC emissions as derived from source inventories. Maximum increment reactivity (MIR) was used to evaluate the ozone formation potential (OFP) for major VOC species. The OFP for initial isoprene accounted for 23% of the total OFPs for all measured species, compared to 11% using ambient mixing ratios of isoprene at PKU site. Similarly, at YUFA site, the ambient measured isoprene and initial isoprene contributed 10% and 22%, respectively, to the OFPs for total measured VOCs. It seems that isoprene has similar contribution to ozone formation at both sites in Beijing city.  相似文献   

4.
A spatially and temporally resolved biogenic hydrocarbon and nitrogen oxides (NOx) emissions inventory has been developed for a region along the Mexico-U.S. border area. Average daily biogenic non-methane organic gases (NMOG) emissions for the 1700 x 1000 km2 domain were estimated at 23,800 metric tons/day (62% from Mexico and 38% from the United States), and biogenic NOx was estimated at 1230 metric tons/day (54% from Mexico and 46% from the United States) for the July 18-20, 1993, ozone episode. The biogenic NMOG represented 74% of the total NMOG emissions, and biogenic NOx was 14% of the total NOx. The CIT photochemical airshed model was used to assess how biogenic emissions impact air quality. Predicted ground-level ozone increased by 5-10 ppb in most rural areas, 10-20 ppb near urban centers, and 20-30 ppb immediately downwind of the urban centers compared to simulations in which only anthropogenic emissions were used. A sensitivity analysis of predicted ozone concentration to emissions was performed using the decoupled direct method for three dimensional air quality models (DDM-3D). The highest positive sensitivity of ground-level ozone concentration to biogenic volatile organic compound (VOC) emissions (i.e., increasing biogenic VOC emissions results in increasing ozone concentrations) was predicted to be in locations with high NOx levels, (i.e., the urban areas). One urban center--Houston--was predicted to have a slight negative sensitivity to biogenic NO emissions (i.e., increasing biogenic NO emissions results in decreasing local ozone concentrations). The highest sensitivities of ozone concentrations to on-road mobile source VOC emissions, all positive, were mainly in the urban areas. The highest sensitivities of ozone concentrations to on-road mobile source NOx emissions were predicted in both urban (either positive or negative sensitivities) and rural (positive sensitivities) locations.  相似文献   

5.
Volatile organic compounds (VOCs) were measured from 2007 to 2010 at the center of Shanghai, China. Because VOCs are important precursors for ozone photochemical formation, detailed information of VOC sources needs to be investigated. The results show that the measured VOC concentrations in Shanghai are dominated by alkanes (43%) and aromatics (30%), following by halo-hydrocarbons (14%) and alkenes (6%). Based on the measured VOC concentrations, a receptor model (PMF; positive matrix factorization) coupled with the information related to VOC sources (the distribution of major industrial complex, meteorological conditions, etc.) is applied to identify the major VOC sources in Shanghai. The result shows that seven major VOC sources are identified by the PMF method, including (1) vehicle related source which contributes to 25% of the measured VOC concentrations, (2) solvent based industrial source to 17%, (3) fuel evaporation to 15%, (4) paint solvent usage to 15%, (5) steel related industrial production to 12%, (6) biomass/biofuel burning to 9%, and (7) coal burning to 7%. Furthermore, ozone formation potential related to VOC sources is calculated by the MIR (maximum incremental reactivity) technique. The most significant VOC source for ozone formation potential is solvent based industrial sources (27%), paint solvent usage (24%), vehicle related emissions (17%), steel related industrial productions (14%), fuel evaporations (9%), coal burning (6%), and biomass/biofuel burning (3%). The weekend effect on the VOC concentrations shows that VOC concentrations are generally higher in the weekdays than in the weekends at the sampling site, suggesting that traffic conditions and human activities have important impacts on the VOC emissions in Shanghai.  相似文献   

6.
Guo H  Lee SC  Louie PK  Ho KF 《Chemosphere》2004,57(10):1363-1372
Ambient air quality measurements of 156 species including 39 alkanes, 32 alkenes, 2 alkynes, 24 aromatic hydrocarbons, 43 halocarbons and 16 carbonyls, were carried out for 120 air samples collected at two sampling stations (CW and TW) in 2001 throughout Hong Kong. Spatial variations of volatile organic compounds (VOCs) in the atmosphere were investigated. Levels of most alkanes and alkenes at TW site were higher than that at the CW site, while the BTEX concentrations at the two sites were close. The BTEX ratios at CW and TW were 1.6:10.1:1.0:1.6 and 2.1:10.8:1.0:2.0, respectively. For major halogenated hydrocarbons, the mean concentrations of chloromethane, CFCs 12 and 22 did not show spatial variations at the two sites. However, site-specific differences were observed for trichloroethene and tetrachloroethene. Furthermore, there were no significant differences for carbonyls such as formaldehyde, acetaldehyde and acetone between the two sites. The levels of selected hydrocarbons in winter were 1-5 times that in summer. There were no common seasonal trends for carbonyls in Hong Kong. The ambient level of formaldehyde, the most abundant carbonyl, was higher in summer. However, levels of acetaldehyde, acetone and benzaldehyde in winter were 1.6-3.8 times that in summer. The levels of CFCs 11 and 12, and chloromethane in summer were higher than that in winter. Strong correlation of most hydrocarbons with propene and n-butane suggested that the primary contributors of hydrocarbons were vehicular emissions in Hong Kong. In addition, gasoline evaporation, use of solvents, leakage of liquefied petroleum gas (LPG), natural gas leakage and other industrial emissions, and even biogenic emissions affected the ambient levels of hydrocarbons. The sources of halocarbons were mainly materials used in industrial processes and as solvents. Correlation analysis suggested that photochemical reactions made significant contributions to the ambient levels of carbonyls in summer whereas in winter motor vehicle emissions would be the major sources of the carbonyls. The photochemical reactivity of selected VOCs was estimated in this study. The largest contributors to ozone formation were formaldehyde, toluene, propene, m,p-xylene, acetaldehyde, 1-butene/i-butene, isoprene and n-butane, suggesting that motor vehicles, gasoline evaporation, use of solvents, leakage of LPG, photochemical processes and biogenic emission are sources in the production of ozone. On the other hand, VOCs from vehicles and gasoline evaporation were predominant with respect to reactions with OH radical.  相似文献   

7.
Human breath emissions of VOCs.   总被引:5,自引:0,他引:5  
The medical community has long recognized that humans exhale volatile organic compounds (VOCs). Several studies have quantified emissions of VOCs from human breath, with values ranging widely due to variation between and within individuals. The authors have measured human breath concentrations of isoprene and pentane. The major VOCs in the breath of healthy individuals are isoprene (12-580 ppb), acetone (1.2-1,880 ppb), ethanol (13-1,000 ppb), methanol (160-2,000 ppb) and other alcohols. In this study, we give a brief summary of VOC measurements in human breath and discuss their implications for indoor concentrations of these compounds, their contributions to regional and global emissions budgets, and potential ambient air sampling artifacts. Though human breath emissions are a negligible source of VOCs on regional and global scales (less than 4% and 0.3%, respectively), simple box model calculations indicate that they may become an important (and sometimes major) indoor source of VOCs under crowded conditions. Human breath emissions are generally not taken into account in indoor air studies, and results from this study suggest that they should be.  相似文献   

8.
ABSTRACT

The medical community has long recognized that humans exhale volatile organic compounds (VOCs). Several studies have quantified emissions of VOCs from human breath, with values ranging widely due to variation between and within individuals. The authors have measured human breath concentrations of isoprene and pentane. The major VOCs in the breath of healthy individuals are isoprene (12580 ppb), acetone (1.2-1,880 ppb), ethanol (13-1,000 ppb), methanol (160-2,000 ppb) and other alcohols. In this study, we give a brief summary of VOC measurements in human breath and discuss their implications for indoor concentrations of these compounds, their contributions to regional and global emissions budgets, and potential ambient air sampling artifacts. Though human breath emissions are a negligible source of VOCs on regional and global scales (less than 4% and 0.3%, respectively), simple box model calculations indicate that they may become an important (and sometimes major) indoor source of VOCs under crowded conditions. Human breath emissions are generally not taken into account in indoor air studies, and results from this study suggest that they should be.  相似文献   

9.
During the TRAMP field campaign in August–September 2006, C2–C10 volatile organic compounds (VOCs) were measured continuously and online at the urban Moody Tower (MT) site. This dataset was compared to corresponding VOC data sets obtained at six sites located in the highly industrialized Houston Ship Channel area (HSC). Receptor modeling was performed by positive matrix factorization (PMF) at all sites. Conditional probability functions (CPF) were used to determine the origin of the polluted air masses in the Houston area. A subdivision into daytime and nighttime was carried out to discriminate photochemical influences. Eight main source categories of industrial, mobile, and biogenic emissions were identified at the urban receptor site, seven and six, respectively, at the different HSC sites. At MT natural gas/crude oil contributed most to the VOC mass (27.4%), followed by liquefied petroleum gas (16.7%), vehicular exhaust (15.3%), fuel evaporation (14.3%), and aromatics (13.4%). Also petrochemical sources from ethylene (4.7%) and propylene (3.6%) play an important role. A minor fraction of the VOC mass can be attributed to biogenic sources mainly from isoprene (4.4%). Based on PMF analyses of different wind sectors, the total VOC mass was estimated to be twofold at MT with wind directions from HSC compared to air from a typical urban sector, for petrochemical compounds more than threefold. Despite the strong impact of air masses influenced by industrial sources at HSC, still about a third of the total mass contributions at MT can be apportioned to other sources, mainly motor vehicles and aromatic solvents. The investigation of diurnal variation in combination with wind directional frequencies revealed the greatest HSC impact at the urban site during the morning, and the least during the evening.  相似文献   

10.
Research over the past ten years has created a more detailed and coherent view of the relation between O3 and its major anthropogenic precursors, volatile organic compounds (VOC) and oxides of nitrogen (NOx). This article presents a review of insights derived from photochemical models and field measurements. The ozone–precursor relationship can be understood in terms of a fundamental split into a NOx-senstive and VOC-sensitive (or NOx-saturated) chemical regimes. These regimes are associated with the chemistry of odd hydrogen radicals and appear in different forms in studies of urbanized regions, power plant plumes and the remote troposphere. Factors that affect the split into NOx-sensitive and VOC-sensitive chemistry include: VOC/NOx ratios, VOC reactivity, biogenic hydrocarbons, photochemical aging, and rates of meteorological dispersion. Analyses of ozone–NOx–VOC sensitivity from 3D photochemical models show a consistent pattern, but predictions for the impact of reduced NOx and VOC in indivdual locations are often very uncertain. This uncertainty can be identified by comparing predictions from different model scenarios that reflect uncertainties in meteorology, anthropogenic and biogenic emissions. Several observation-based approaches have been proposed that seek to evaluate ozone–NOx–VOC sensitivity directly from ambient measurements (including ambient VOC, reactive nitrogen, and peroxides). Observation-based approaches have also been used to evaluate emission rates, ozone production efficiency, and removal rates of chemically active species. Use of these methods in combination with models can significantly reduce the uncertainty associated with model predictions.  相似文献   

11.
An extensive dataset of VOC measurements was collected at the Sonnblick Observatory, Austria (3106 m) in Fall/Winter 1999/2000, showing high mixing ratios of anthropogenic and biogenic VOCs at this high altitude site due to upward mixing of air masses (Geophys. Res. Lett. 2F (2001) 507). Here we give an interpretation of proton-transfer-reaction (PTR-MS) mass scans obtained in November 1999 based on fragmentation data, GC-PTR-MS analysis and the variability-lifetime relationship, described by the power law, σ(ln(x))=b. The variability-lifetime plot of anthropogenic VOCs gave a proportionality factor A of 1.40 and a,b exponent (sink term) of 0.44 and allowed an estimate of average HO-densities on the order of (1.5±0.4)×105 molecules cm−3. Additionally we were able to indirectly determine a diurnal HO-profile with peak values of (1.3±0.5)×106 molecules cm−3 around midday. HO-reaction rate coefficients for higher aldehydes (heptanal to nonanal) were estimated due to photochemical losses during a stagnant air episode (27 November) and from the variability-lifetime relationship. Combining long term PTR-MS analysis of VOCs and the variability-lifetime method provides a valuable tool for assessing the dominant cause of the variability in VOC concentrations. This information is essential in understanding the sources and photochemical processing of VOCs detected in ambient air at field measurement sites.  相似文献   

12.
Nonmethane hydrocarbons (NMHCs) are important precursors of ozone and other photo oxidants. We presented continuous hourly average concentrations of 45 C2–C10 NMHCs measured in urban area of Dallas, USA from 1996 to 2004. Most of the selected compounds are good variables with less noise. The top 10 species with high ozone-generating potential were identified according to their concentrations and reactivities. The ambient concentrations of abundant anthropogenic emission hydrocarbons measured in Dallas were about 2–4 times of the background values measured in the remote areas with adjacent latitude. The time series for anthropogenic emission hydrocarbons showed an obvious seasonal cycle with relatively high concentration in winter and low concentration in summer. The sinusoidal function with a linearly decreasing factor could well fit the time series of NMHCs. The phase of seasonal cycle for the aromatic hydrocarbons of toluene, m/p xylene and o-xylene that might come from both vehicle emission and solvent utilities evaporation was about 1 month earlier than that for alkanes and alkenes that mainly came from vehicle emission. Ambient NMHCs in Dallas decreased with a stable rate during 1996–2004. For most of compounds with high ozone-generating potential, the rate of ambient concentration decrease was higher or much higher than the rate of volatile organic compounds (VOCs) source emission reduction estimated by EPA's National Emission Inventory. On weekdays, the morning hydrocarbon concentration peak was coincident with morning traffic rush time in Dallas. Another concentration peak was delayed to afternoon traffic rush time. The characteristics of VOCs sources, photochemical removal processes and atmospheric dilution could be interpreted by the diurnal variations of benzene/ethylbenzene (B/E), toluene/ethylbenzene (T/E) and xylene/ethylbenzene (X/E). The ratio of VOC/NOx measured in Dallas was substantially smaller than that calculated for USA cities. Ozone formation in Dallas was VOC sensitive.  相似文献   

13.
To study the impact of emissions at an airport on local air quality, a measurement campaign at the Zurich airport was performed from 30 June 2004 to 15 July 2004. Measurements of NO, NO2, CO and CO2 were conducted with open path devices to determine real in-use emission indices of aircraft during idling. Additionally, air samples were taken to analyse the mixing ratios of volatile organic compounds (VOC). Temporal variations of VOC mixing ratios on the airport were investigated, while other air samples were taken in the plume of an aircraft during engine ignition. CO concentrations in the vicinity of the terminals were found to be highly dependent on aircraft movement, whereas NO concentrations were dominated by emissions from ground support vehicles. The measured emission indices for aircraft showed a strong dependence upon engine type. Our work also revealed differences from emission indices published in the emission data base of the International Civil Aviation Organisation. Among the VOC, reactive C2–C3 alkenes were found in significant amounts in the exhaust of an engine compared to ambient levels. Also, isoprene, a VOC commonly associated with biogenic emissions, was found in the exhaust, however it was not detected in refuelling emissions. The benzene to toluene ratio was used to discriminate exhaust from refuelling emission. In refuelling emissions, a ratio well below 1 was found, while for exhaust this ratio was usually about 1.7.  相似文献   

14.
Frequent smog episodes occur during spring, summer, and autumn in Insubria, Northern Italy. On a test site in this area the atmospheric concentration of the photo-oxidants ozone and peroxyacetyl nitrate has been monitored over a year (2000) together with ozone precursors listed in the European Union Air Quality Directive 2002/3/EC, such as nitrous oxides (NOX) and volatile organic compounds (VOC) including hydrocarbons and carbonyls. The results of this study revealed a strong impact of biogenic isoprene on the air quality.In winter isoprene was detected at the ppt level and correlated with anthropogenic VOC. However, during the growing season isoprene exhibited a distinct diurnal variation with maximum concentrations late in the afternoon reaching up 70 ppbC attributed to strong emissions from the abundant vegetation of broad-leaf deciduous trees in this area. A new HPLC-MS method was developed for the determination of isoprene's primary atmospheric oxidation products methacrolein as its 2,4-dinitrophenylhydrazone and methyl vinyl ketone as an unusual double derivative with 2,4-dinitrophenylhydrazine. Methacrolein and methyl vinyl ketone followed the same diurnal and annual trends as isoprene. The average monthly concentration of isoprene and these products ranged from around 10 ppbC in June, July and September to 20 ppbC in August, which constitutes 15–30% of C3–C9 VOCs. The contribution from isoprene photo-oxidation to the ambient air formaldehyde concentrations was also found to be high during this period ranging from 30% to 60% in May, June, July and August.From the atmospheric VOC and NOX concentrations the local photochemical ozone formation was estimated by the incremental reactivity approach. The calculations showed that in summer isoprene's contribution to the local ozone formation was as high as 50–75%.  相似文献   

15.
16.
From November 1995 to October 1996, airborne concentrations of VOCs were measured in the Madrid area to study the organic pollution in general, and the correlation between different pollutants in relation to such parameters as location and season. Mean concentrations for up to 90 compounds were measured at four test sites, including both urban and suburban areas. At the urban sites, maximum concentrations occurred in the autumn and winter, whereas minimum concentrations were reached in summer and spring. Similar changes were obtained for the lesscontaminated site located in the SE of the city, whereas a different pattern was found at the site in the NW of the city due to meteorological aspects. Mean levels of hydrocarbons in Madrid were quite similar to those found in other European cities. Chemometrical techniques were applied to the set of data in order to assess the influence of such factors as traffic, temperature and seasonal variations on the VOC levels.  相似文献   

17.
INTRODUCTION: The role of biogenic emissions in tropospheric ozone production is currently under discussion and major aspects are not well understood yet. This study aims towards the estimation of the influence of biogenic emissions on tropospheric ozone concentrations over Saxony in general and of biogenic emissions from brassica napus in special. MODELLING TOOLS: The studies are performed by utilizing a coupled numerical modelling system consisting of the meteorological model METRAS and the chemistry transport model MUSCAT. For the chemical part, the Euro-RADM algorithm is used. EMISSIONS: Anthropogenic and biogenic emissions are taken into account. The anthropogenic emissions are introduced by an emission inventory. Biogenic emissions, VOC and NO, are calculated within the chemical transport model MUSCAT at each time step and in each grid cell depending on land use type and on the temperature. The emissions of hydrocarbons from forest areas as well as biogenic NO especially from agricultural grounds are considered. Also terpene emissions from brassica napus fields are estimated. SIMULATION SETUP AND METEOROLOGICAL CONDITIONS: The simulations were performed over an area with an extension of 160 x 140 km2 which covers the main parts of Saxony and neighboring areas of Brandenburg, Sachsen-Anhalt and Thuringia. Summer smog with high ozone concentrations can be expected during high pressure conditions on hot summer days. Typical meteorological conditions for such cases were introduced in an conceptual way. RESULTS: It is estimated that biogenic emissions change tropospheric ozone concentrations in a noticeable way (up to 15% to 20%) and, therefore, should not be neglected in studies about tropospheric ozone. Emissions from brassica napus do have a moderate potential to enhance tropospheric ozone concentrations, but emissions are still under consideration and, therefore, results vary to a high degree. CONCLUSIONS: Summing up, the effect of brassica napus terpene emissions on ozone concentrations is noticeable, but not too pronounced. The results give a preliminary estimate on what the effect due to brassica napus emissions could be until better parameterizations can be derived from measurements.  相似文献   

18.
Twenty-one oxygenated volatile organic compounds (OVOCs) were measured in four seasonal campaigns at an urban background site in Zürich (Switzerland) with a newly developed double adsorbent sampling unit coupled to a gas chromatograph–mass spectrometer (GC–MS). In addition, selected non-methane hydrocarbons (NMHCs) were measured, as well as formaldehyde in the summer and winter campaign. The most abundant compound measured in all seasons was ethanol, with peak values of more than 60 ppb. Its seasonal variation with a lower mean value in summer compared to that in winter implied mostly anthropogenic sources. In contrast, compounds with additional biogenic sources, or compounds known to be produced in the troposphere by oxidation processes, had seasonal maxima in summer (e.g. methanol, acetone, formaldehyde, methacrolein and 2-butenone (methyl vinyl ketone, MVK)).For the OVOCs it was estimated that local sources contributed 40% and 49% to the mixing ratios of the measured compounds in summer and in winter, respectively. Combustion was estimated to contribute 75% to these local sources independent of the season. About 50% of both the OVOC and NMHC levels in Zürich could be explained by the regional background, which included regional biogenic and anthropogenic sources in addition to secondary production. Industrial sources were identified for acetone, butanone (methyl ethyl ketone, MEK), n-propanol, iso-propanol, n-butanol, ethyl acetate and butyl acetate.  相似文献   

19.
The photochemical grid model, UAM-V, has been used by regulatory agencies to make decisions concerning emissions controls, based on studies of the July 1995 ozone episode in the eastern US. The current research concerns the effect of the uncertainties in UAM-V input variables (emissions, initial and boundary conditions, meteorological variables, and chemical reactions) on the uncertainties in UAM-V ozone predictions. Uncertainties of 128 input variables have been estimated and most range from about 20% to a factor of two. 100 Monte Carlo runs, each with new resampled values of each of the 128 input variables, have been made for given sets of median emissions assumptions. Emphasis is on the maximum hourly-averaged ozone concentration during the 12–14 July 1995 period. The distribution function of the 100 Monte Carlo predicted domain-wide maximum ozone concentrations is consistently close to log-normal with a 95% uncertainty range extending over plus and minus a factor of about 1.6 from the median. Uncertainties in ozone predictions are found to be most strongly correlated with uncertainties in the NO2 photolysis rate. Also important are wind speed and direction, relative humidity, cloud cover, and biogenic VOC emissions. Differences in median predicted maximum ozone concentrations for three alternate emissions control assumptions were investigated, with the result that (1) the suggested year-2007 emissions changes would likely be effective in reducing concentrations from those for the year-1995 actual emissions, that (2) an additional 50% NOx emissions reductions would likely be effective in further reducing concentrations, and that (3) an additional 50% VOC emission reductions may not be effective in further reducing concentrations.  相似文献   

20.
An atmospheric dispersion model, where the inputs of meteorological field were calculated using a meteorological model, was used to reproduce the observed air pollution conditions for the typical fine day in summer period, especially the concentration of the photochemical oxidants. As well, the effects of an increase in the urban temperature and VOC emissions on the concentration of photochemical oxidants were also considered. The following conclusions were drawn.The observed air pollution levels were well modeled by the atmospheric dispersion model using in this study, although modeled NO levels were slightly lower than the observed levels. An analysis of the temperature data showed that a 1 °C increase in temperature leads to a maximal photochemical oxidant concentration of 5.3 ppb, which is an increase of 11%. Additionally, the effect on the photochemical oxidant concentration due to an increase in the vegetation-derived VOCs was more than double the effect due to an increase in the photochemical reactions. It was found that the temperature and photochemical oxidant concentration were linearly related up to a temperature increase of 3 °C. When the temperature increases up to 3 °C, the concentration of photochemical oxidants increases by 19 ppb. An analysis of the effect of vegetation-derived VOCs on photochemical oxidant concentrations showed that, the concentration of photochemical oxidants was 30 ppb higher in the afternoon by the effect of vegetation-derived VOCs, so even in metropolitan areas with relatively little vegetation, vegetation-derived VOCs have a strong impact on photochemical oxidant concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号