首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: Phosphorus (P) in runoff from long term animal waste application fields can contribute to accelerated eutrophication of surface waters. Manure when applied at nitrogen (N) agronomic rates generally increases soil P concentrations, which can increase runoff of soluble P. Along the North Bosque River in central Texas, dairy waste application fields are identified as the most controllable nonpoint source of soluble P in a total maximum daily load. To evaluate P reduction practices for fields high in soil extractable P, edge‐of‐field runoff was measured from paired plots of Coastal bermudagrass (Cynodon dactylon) and sorghum (Sorghum bicolor)/ winter wheat (Triticum spp.). Plots (about 0.4 ha) received manure at P agronomic rates following Texas permit guidelines and commercial N during the pretreatment period. During the post‐treatment period, control plots continued to receive manure at P agronomic rates and commercial N. Treatment plots received only commercial N during the post‐treatment period. Use of only commercial N on soils with high extractable P levels significantly decreased P loadings in edge‐of‐field runoff by at least 40 percent, but runoff concentrations sometimes increased. No notable changes in extractable soil P concentrations were observed after five years of monitoring due to drought conditions limiting forage uptake and removal.  相似文献   

2.
The disposal of manure on agricultural land has caused water quality concerns in many rural watersheds, sometimes requiring state environmental agencies to conduct total maximum daily load (TMDL) assessments of stream nutrients, such as nitrogen (N) and phosphorus (P). A best management practice (BMP) has been developed in response to a TMDL that mandates a 50% reduction of annual P load to the North Bosque River (NBR) in central Texas. This BMP exports composted dairy manure P through turfgrass sod from the NBR watershed to urban watersheds. The manure-grown sod releases P slowly and would not require additional P fertilizer for up to 20 years in the receiving watershed. This would eliminate P application to the sod and improve the water quality of urban streams. The soil and water assessment tool (SWAT) was used to model a typical suburban watershed that would receive the sod grown with composted dairy manure to assess water quality changes due to this BMP. The SWAT model was calibrated to simulate historical flow and estimated sediment and nutrient loading to Mary's Creek near Fort Worth, Texas. The total P stream loading to Mary's Creek was lower when manure-grown sod was transplanted instead of sod grown with inorganic fertilizers. Flow, sediment and total N yield were the same for both cases at the watershed outlet. The SWAT simulations indicated that the turfgrass BMP can be used effectively to import manure P into an urban watershed and reduce in-stream P levels when compared to sod grown with inorganic fertilizers.  相似文献   

3.
A best management practice (BMP) for exporting manure phosphorus (P) in turfgrass sod from the North Bosque River (NBR) watershed in central Texas was assessed using a geographic information system (GIS). The NBR watershed has a mandate to reduce the total annual P load to the NBR by 50% as a result of total maximum daily load regulation. Since dairy waste applications to fields are identified as the major nonpoint source of P to the river, innovative BMPs, such as export of manure P in turfgrass, will be needed to achieve the 50% reduction. However, methods are needed to evaluate the feasibility of these innovative management practices prior to their implementation. A geospatial database of suitable turfgrass production sites was developed for Erath County using GIS. Erath County largely encompasses the upper portion of the NBR watershed. Information from field experiments, production practices, and ground-truthing was used to search, analyze, and verify a geospatial database developed from national and regional sources. The integration and analyses of large databases supports the search by turf producers for sites suitable for turfgrass sod production in Erath County. In addition, GIS enables researchers and regulators to estimate manure P exports and reduced P loading due to implementation of the manure export BMP on a county scale. Under optimal conditions 198,000 kg manure P yr(-1) could be used and 114,840 kg manure P yr(-1) exported from the NBR watershed through implementation of a system using dairy manure to produce turfgrass sod. This is the equivalent of the manure P applied from 10,032 dairy cows yr(-1) and exported from 5808 dairy cows yr(-1). Application of GIS to large-scale planning and decision-making transcends traditional field-scale applications in precision agriculture.  相似文献   

4.
ABSTRACT. This paper describes the methodology for a nutrient balance to evaluate the sources and distribution of nutrients in a small river basin. Loadings for total nitrogen and phosphorus are calculated from measured nutrient concentration and river discharge data. Using a special retrieval program and a data storage and processing system, loadings are accumulated over a given time period to allow for time of passage through the basin and seasonal changes in nutrient distribution. Nutrient balances are made with the accumulated loadings to obtain the relative contribution of each nutrient source and the retention of nutrients within the basin through sedimentation and aquatic growth. The methodology has been used to study nutrients in the Qu'Appelle River Basin, Saskatchewan, Canada.  相似文献   

5.
ABSTRACT: This paper presents the results of an investigation of the effects of the Maryland Critical Area Act on generation of non-point source loads of phosphorus, nitrogen, and sediment to the Rhode River estuary. The Simple Method model, the Marcus and Kearney regression model, and the CREAMS model were used to estimate annual loads under: (1) present conditions, (2) maximum land use development allowable under the Act, and (3) two sets of future land use conditions that might occur if the Act were not in place. Results indicate that the Critical Area Act can reduce the present generation of nonpoint nutrient and sediment loadings 20–30 percent from the regulated area. These reductions can occur while preserving agricultural lands and allowing limited residential and urban development. The decrease in nutrient loadings is primarily dependent upon implementation and enforcement of agricultural best management practices (BMPs). The BMPs could reduce present agricultural nutrient loadings by 90 percent to a level comparable to loadings from residential areas. The estimated effectiveness of the Critical Area Act is even greater when compared to potential future nutrient loadings if development in the area remains unregulated. Unrestricted residential and urban development could increase nutrient loadings by 200 percent to 1000 percent as compared to controlled development under Critical Area Act guidelines. The Critical Area Act primarily prevents these future increases by severely limiting woodland cutting, with lesser results obtained by requiring urban BMPs.  相似文献   

6.
ABSTRACT: The State of Texas has initiated the development of a Total Maximum Daily Load program in the Bosque River Watershed, where point and nonpoint sources of pollution are a concern. Soil Water Assessment Tool (SWAT) was validated for flow, sediment, and nutrients in the watershed to evaluate alternative management scenarios and estimate their effects in controlling pollution. This paper discusses the calibration and validation at two locations, Hico and Valley Mills, along the North Bosque River. Calibration for flow was performed from 1960 through 1998. Sediment and nutrient calibration was done from 1993 through 1997 at Hico and from 1996 through 1997 at Valley Mills. Model validation was performed for 1998. Time series plots and statistical measures were used to verify model predictions. Predicted values generally matched well with the observed values during calibration and validation (R2≥ 0.6 and Nash‐Suttcliffe Efficiency ≥ 0.5, in most instances) except for some underprediction of nitrogen during calibration at both locations and sediment and organic nutrients during validation at Valley Mills. This study showed that SWAT was able to predict flow, sediment, and nutrients successfully and can be used to study the effects of alternative management scenarios.  相似文献   

7.
ABSTRACT: Proper management of animal manure is crucial to the viability of the U.S. animal industry and the quality of the environment. This paper analyzes the animal manure distribution in Michigan, identifies counties with high potential for land application of manure nutrients, and proposes a manure distribution prototype model for transporting surplus manure beyond individual farms for nutrient utilization. Tabulations of animal numbers by county and by 5-digit zip code are used to identify areas with greater potential for land application of manure nutrients. Distribution of the manure nutrients from surplus areas to the nutrient utilization areas is explored in a selected watershed by taking into account manure nutrient value, soil nutrient content, crop nutrient needs, topography and hydrography. The results indicate that by appropriate planning and collaboration transport of the excessive animal manure to suitable crop fields is an appealing alternative to utilize the manure nutrients while minimizing the adverse environmental impact. Further studies are needed to determine the necessary economic and institutional programs to implement the export of the manure at the regional level.  相似文献   

8.
Abstract: Nutrient dose‐response bioassays were conducted using water from three sites along the North Bosque River. These bioassays provided support data for refinement of the Soil and Water Assessment Tool (SWAT) model used in the development of two phosphorus TMDLs for the North Bosque River. Test organisms were native phytoplanktonic algae and stock cultured Pseudokirchneriella subcapitata (Korshikov) Hindak. Growth was measured daily by in vivo fluorescence. Algal growth parameters for maximum growth (μmax) and half‐saturation constants for nitrogen (KN) or phosphorus (KP) were determined by fitting maximum growth rates associated with each dose level to a Monod growth rate function. Growth parameters of native algae were compared between locations and to growth parameters of P. subcapitata and literature values. No significant differences in half‐saturation constants were indicated within nutrient treatment for site or algal type. Geometric mean KN was 32 μg/l and for KP 7 μg/l. A significant difference was detected in maximum growth rates between algae types but not between sites or nutrient treatments. Mean μmax was 1.5/day for native algae and 1.2/day for stock algae. These results indicate that watershed‐specific maximum growth rates may need to be considered when modeling algal growth dynamics with regard to nutrients.  相似文献   

9.
ABSTRACT: A nutrient mass balance — accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage — was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.  相似文献   

10.
Brown, Juliane B., Lori A. Sprague, and Jean A. Dupree, 2011. Nutrient Sources and Transport in the Missouri River Basin, With Emphasis on the Effects of Irrigation and Reservoirs. Journal of the American Water Resources Association (JAWRA) 47(5):1034‐1060. DOI: 10.1111/j.1752‐1688.2011.00584.x Abstract: SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.  相似文献   

11.
ABSTRACT: A survey of numerous field studies shows that nitrogen and phosphorous export coefficients are significantly different across forest, agriculture, and urban land‐cover types. We used simulations to estimate the land‐cover composition at which there was a significant risk of nutrient loads representative of watersheds without forest cover. The results suggest that at between 20 percent and 30 percent nonforest cover, there is a 10 percent or greater chance of N or P nutrient loads being equivalent to the median values of predominantly agricultural or urban watersheds. The methods apply to environmental management for assessing the risk to increased nonpoint nutrient pollution. Interpretation of the risk measures are discussed relative to their application for a single watershed and across a region comprised of several watersheds.  相似文献   

12.
Nitrate and phosphate export coefficient models were developed for coastal watersheds along the Santa Barbara Channel in central California. One approach was based on measurements of nutrient fluxes in streams from specific land use classes and included a watershed response function that scaled export up or down depending on antecedent moisture conditions. The second approach for nutrient export coefficient modeling used anthropogenic nutrient loading for land use classes and atmospheric nutrient deposition to model export. In an application of the first approach to one watershed, the nitrate and phosphate models were within 20% of measured values for most storms. When applied to another year, both nitrate and phosphate models generally performed adequately with annual, storm‐flow, and base‐flow values within 20% of measured nutrient loadings. Less satisfactory results were found when applied to neighboring watersheds with difference percentages of land use and hydrologic conditions. Application of the second approach was less successful than the first approach.  相似文献   

13.
ABSTRACT: A loading function methodology is presented for predicting runoff, sediment, and nutrient losses from complex watersheds. Separate models are defined for cropland, forest, urban and barnyard sources, and procedures for estimating baseflow nutrients are provided. The loading functions are designed for use as a preliminary screening tool to isolate the major contributors in a watershed. Input data sources are readily available and the functions do not require costly calibrations. Data requirements include watershed land use and soil information, daily precipitation and temperature records and rainfall erosivities. Comparison of predicted and measured water, sediment, and nutrient runoff fluxes for the West Branch Deleware River in New York, indicated that runoff was underpredicted by about 14 percent while dissolved nutrients were within 30 percent of observed values. Sediment and solid-phase nutrients were overpredicted by about 50 percent. An annual nutrient budget for the West Branch Delaware River showed that cornland was the major source of sediment, solid phase nutrients, and total phosphorus. Waste water treatment plants and ground water discharge contributed the most dissolved phosphorus and dissolved nitrogen, respectively.  相似文献   

14.
Abstract: Small streams have been shown to be efficient in retaining nutrients and regulating downstream nutrient fluxes, but less is known about nutrient retention in larger rivers. We quantified nutrient uptake length and uptake velocity in a regulated urban river to determine the river’s ability to retain nutrients associated with wastewater treatment plant (WWTP) effluent. We measured net uptake of soluble reactive phosphorus (SRP), dissolved organic phosphorus, ammonium (NH4), nitrate, and dissolved organic nitrogen in the Chattahoochee River, Atlanta, GA by following the downstream decline of nutrients and fluoride from WWTP effluent on 10 dates under low flow conditions. Uptake of all nutrients was sporadic. On many dates, there was no evidence of measurable nutrient uptake lengths within the reach; indeed, on several dates release of inorganic N and P within the sample reach led to increased nutrient export downstream. When uptake occurred, SRP uptake length was negatively correlated with total suspended solids and temperature. Uptake velocities of SRP and NH4 in the Chattahoochee River were lower than velocities in less‐modified systems, but they were similar to those measured in other WWTP impacted systems. Lower uptake velocities indicate a diminished capacity for nutrient uptake.  相似文献   

15.
ABSTRACT: Loading rates derived from monitoring natural runoff from selected land uses are compared. Land uses selected for evaluation are construction sites, barnyards, and agriculture (dairying). Runoff volumes, sediment, and nutrient fractions were monitored and expressed as areal loadings for comparison purposes. Sediment yield and total phosphorus (total P) loss was directly proportional to runoff (m3/ha). In decreasing order, the loadings for sediment and total P were as follows: construction site > barnyard > general dairying. Runoff from the barnyard area was approximately 10 times higher in soluble phosphorus and ammonium nitrogen than the other land uses under investigation. Areal loss for nitrate nitrogen was highest from the construction site and was attributed to the higher volume of runoff per unit area. Results show that barnyards in a dairying watershed are potentially a major source of sediment and nutrients, especially those dissolved fractions which have the potential for immediate water quality impacts. Relative to general agricultural land, urban construction sites also appear to be a major source of sediment and nutrients. As with barnyard sites, however, the effect of such sites on water quality likely depends on proximity to surface water bodies and other watershed characteristics affecting delivery ratios of contaminants.  相似文献   

16.
ABSTRACT: Estimates were made of petroleum hydrocarbon pollution loadings reaching the Delaware Estuary by determining storm event loadings of hydrocarbons from four storm sewers, draining areas of different land uses. Although refinery effluents constituted the largest source of petroleum pollution in 1975, it appears that after completion of currently required treatment processes urban runoff will be the largest remaining source of petroleum pollution. The petroleum in urban runoff resembles used crankcase oil in composition and contains toxic chemicals such as polynuclear hydrocarbons. Further research is clearly desirable. Remedial programs to control such pollution may be warranted on the basis of information now available.  相似文献   

17.
ABSTRACT: Lake and watershed management strategies and recent environmental legislation dictate that nonpoht nutrient sources associated with storm water runoff must be assessed. Accordingly, a nutrient flu assessment for phosphorus and nitrogen is conducted through an extensive literature review of nutrient export studies. These studies are reevaluated. The nutrient export coefficients are screened according to sampling design criteria and compiled according to land use. The ecological mechanisms within each land use influencing the magnitude of nutrient flux are also discussed  相似文献   

18.
Management of urban solid waste: Vermicomposting a sustainable option   总被引:1,自引:0,他引:1  
Solid waste management is a worldwide problem and it is becoming more and more complicated day by day due to rise in population, industrialization as well as changes in our life style. Presently most of the waste generated is either disposed of in an open dump in developing countries or in landfills in the developed ones. Landfilling as well as open dumping requires lot of land mass and could also result in several environmental problems. Land application of urban/municipal solid waste (MSW) can be carried out as it is rich in organic matter and contains significant amount of recyclable plant nutrients. The presence of heavy metals and different toxics substances restricts its land use without processing. Vermicomposting of MSW, prior to land application may be a sustainable waste management option, as the vermicast obtained at the end of vermicomposting process is rich in plant nutrients and is devoid of pathogenic organism. Utilization of vermicast produced from urban/municipal solid waste in agriculture will facilitate in growth of countries economy by lowering the consumption of inorganic fertilizer and avoiding land degradation problem. Vermicomposting of urban/MSW can be an excellent practice, as it will be helpful in recycling valuable plant nutrients. This review deals with various aspects of vermicomposting of MSW.  相似文献   

19.
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr).  相似文献   

20.
Excess loading of nitrogen and phosphorus to river networks causes environmental harm, but reducing loads from large river basins is difficult and expensive. We developed a new tool, the River Basin Export Reduction Optimization Support Tool (RBEROST) to identify the least-cost combinations of management practices that will reduce nutrient loading to target levels in downstream and mid-network waterbodies. We demonstrate the utility of the tool in a case study in the Upper Connecticut River Basin in New England, USA. The total project cost of optimized lowest-cost plans ranged from $18.0 million to $41.0 million per year over 15 years depending on user specifications. Plans include both point source and non-point source management practices, and most costs are associated with urban stormwater practices. Adding a 2% margin of safety to loading targets improved the estimated probability of success from 37.5% to 99%. The large spatial scale of RBEROST, and the consideration of both point and non-point source contributions of nutrients, make it well suited as an initial screening tool in watershed planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号