首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
为了提高传统污水处理工艺的脱氮除磷效率、实现污泥资源化,本实验通过超声破解污泥获取碳源,采用耗氧呼吸速率分析上清液作为碳源的可行性,并将上清液回用于生活污水,考察其对A2O工艺长期运行的脱氮除磷效果和微生物群落结构的影响。结果表明,上清液中可降解有机物达到76.2%,具有作为内碳源的潜能;上清液和生活污水按1∶15投入A2O反应器后,氮、磷的去除率分别从63.2%和53.4%提高到了82.1%和94.7%;上清液明显改变了微生物群落结构,使除磷菌Actinobacteia和反硝化聚磷菌Sphingobacterium富集。  相似文献   

2.
The main research objective of this study is to enhance the removal of recalcitrant compounds that are not readily bioavailable due to limiting mass transfer rate between the liquid and gas phases. Four trickle-bed air biofilters (TBABs), loaded with pelletized diatomaceous earth support media, were run at an empty bed residence time (EBRT) of 120 sec. After an acclimation period at constant loading rate (LR) of n-hexane (13.2 g m?3 hr?1) and intermittent feeding of methanol, n-hexane influent LR was then increased in step-wise fashion to 47.7 g m?3 hr?1 for biofilters receiving acidic nutrients (pH 4), and to 36.3 g m?3 hr?1 for biofilters receiving nutrient at pH 7. The results have shown that for TBABs receiving nutrient at pH 4, greater elimination capacities were obtained as compared to TBABs working at pH 7. n-Hexane removal efficiency of more than 84% at LR up to 47.7 g m?3 hr?1 was obtained for pH 4 nutrient-fed biofilters, while for biofilters with nutrients fed at pH 7, the removal efficiency did not exceed 64% for n-hexane LR of 36.3 g m?3 hr?1. The microbial analysis revealed that no fungal community was detected in TBABs run at neutral pH. The fungi communities that were initially acclimating TBABs run at pH 4, namely, Aspergillus niger and Fusarium solani, were not detected at the end of the experiment, while Gibberella moniliformis (Fusarium verticillioides) genus became the dominant species. Gibberella moniliformis (Fusarium verticillioides) was present along all the biofilter media and sustained very high n-hexane elimination at steady-state condition.
Implications:With growing apprehension about sustainability and environmental protection, with limited resources available, and with the passage of the 1990 Amendments to the Clean Air Act, there is more need for using air pollution control techniques that are sound economically and proven environmentally friendly. Biofiltration systems, namely, trickle-bed air biofilters, were for decades recognized as efficient in treating air pollutants. Thus, the application of this technique over a wide industrial spectrum would certainly contribute to reduction of hazardous gas emissions.  相似文献   

3.
Abstract

A formulation containing the biopesticide azadirachtin‐A (AZ‐A), extracted from the seeds of neem tree, Azadirachta indica A. Juss, was applied (10 μg/mL) in a nutrient solution (200 mL) to the roots of young spruce trees [Picea glauca (Moench) Voss]. The uptake, translocation, persistence and dissipation of AZ‐A in spruce were studied. The insecticide was taken up by the root system, translocated via xylem vessels and accumulated in the photosynthate sinks (areas of new growth, especially shoots), confirming that AZ‐A is systemic. The peak AZ‐A concentrations (μg/g, fresh weight) in the shoots (5.16 ± 0.73) and needles (2.56 ± 0.31) occurred at 8 and 15 d after treatment, respectively. The AZ‐A concentrations in bark and wood during this period were very low, however they were high in the root samples. The dissipation of AZ‐A from the shoots was rapid compared to other matrices. The initial (0‐d) and final (20‐d) AZ‐A concentrations (μg/mL) in the nutrient solution were 8.99 ± 1.24 and 3.24 + 0.55, respectively. The dissipation of AZ‐A in the nutrient solution followed first‐order kinetics. Dissipation half‐life (DT50) and rate constant (C), calculated from the nonlinear regression equation (Y = 8.400 e‐00544t), were 12.74 d and 0.0544, respectively. Usefulness of AZ‐A as a systemic insecticide in forest insect control programs is discussed.  相似文献   

4.

Background, aim, and scope  

Linear alkylbenzene sulfonate (LAS) is the most used anionic surfactant in a worldwide scale and is considered a high-priority pollutant. LAS is regarded as a readily biodegradable product under aerobic conditions in aqueous media and is mostly removed in wastewater treatment plants, but an important fraction (20–25%) is immobilized in sewage sludge and persists under anoxic conditions. Due to the application of the sludge as a fertilizer, LAS reaches agricultural soil, and therefore, microbial toxicity tests have been widely used to evaluate the influence of LAS on soil microbial ecology. However, molecular-based community-level analyses have been seldom applied in studies regarding the effects of LAS on natural or engineered systems, and, to our knowledge, there are no reports of their use for such appraisals in agricultural soil. In this study, a microcosm system is used to evaluate the effects of a commercial mixture of LAS on the community structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria in an agricultural soil.  相似文献   

5.
Abstract

[Carbonyl‐ C]methabenzthiazuron (MBT) was applied to growing winter wheat in an outdoor lysimeter. The amount applied corresponded to 4 kg Tribunil/ha. 140 days after application the 0–2,5 cm soil layer was removed from the lysimeter. This soil contained about 40 % of the applied radioactivity. Using 0,01 M CaCl2 solution or organic solvents, the extractable residues were removed from the soil. The bioavailability of the non‐extractable as well as aged residues remaining in the soil was investigated in standardized microecosystems containing 1.5 kg of dry soil. During a 4 weeks period the total uptake (4 maize plants/pot) amounted up to 3,6; 2,2; and 0,9 % of the radioactivity from soils containing aged MBT residues, MBT residues non‐extractable‐with 0,01 MCaCl2 or MBT residues non‐extractable with organic solvents, respectively. About 20 % of the radioactivity found in maize leaves represented chromatographically characterized parent compound. At the end of the plant experiment the soil was extracted again with 0,01 M CaCl2 and with organic solvents. The soil extracts and also the organic phases obtained from the aqueous fulvic acid solution contained unchanged parent compound.  相似文献   

6.
Effects of 11 years (1978-1988) of nutrient enrichment (fertilizer or sludge) on microbial metabolic activity in soil samples collected from contrasting types of old-field communities were studied during September 1989. During the 1989 growing season, subplots were manipulated by tilling and/or liming to evaluate mechanisms of ecosystem recovery or were left undisturbed. Metabolic activities of soil microorganisms were determined by measuring dehydrogenase activity within soil samples collected from these subplots. The amounts of 2,3,5-triphenyltetrazolium formazan formed during incubation by the reduction of 2,3,5-triphenyltetrazolium chloride were used to evaluate dehydrogenase activity. Plots that had received long-term applications of sludge or fertilizer had significantly lower rates of microbial activity (P<0.05) than did control plots. Fertilizer and sludge plots treated with lime had significantly higher microbial metabolic activity (P<0.05) than those not receiving lime. Whereas liming stimulated microbial activity to near control levels, tilling had no significant treatment effect.  相似文献   

7.
The effect of road salt on the eating of bacteria or bacterivory by the ciliate, Tetrahymena thermophila, was followed in non-nutrient Osterhout's solution with Escherichia coli expressing green fluorescent protein. Bacterivory was impaired at between 0.025 and 0.050% w/v but the ciliates appeared to have normal morphologies and motilities, whereas at above 0.1%, bacterivory was blocked and many ciliates died. By contrast, E. coli remained viable, suggesting salt could alter predator-prey relationships in microbial communities. In nutrient medium, salt was not toxic and the ciliates grew. After growth in salt, ciliates consumed bacteria in 0.2% salt, indicating the salt acclimation of bacterivory. Bacteria and ciliates were added to urban creek samples to compare their capacity to support exogenous bacterivory. Even though samples were collected weekly for a year and be expected to have fluctuating salt levels as a result of deicing, all creek samples supported a similar level of bacterivory.  相似文献   

8.
ABSTRACT

Xylene is the main component of many volatile industrial pollution sources, and the use of biotechnology to remove volatile organic compounds (VOCs) has become a growing trend. In this study, a biotrickling filter for gaseous xylene treatment was developed using activated sludge as raw material to study the biodegradation process of xylene. Reaction conditions were optimized, and long-term operation was performed. The optimal pH was 7.0, gas-liquid ratio was 15:1 (v/v), and temperature was 25 °C. High-throughput sequencing technique was carried out to analyze microbial communities in the top, middle, and bottom layers of the reactor. Characteristics of microbial diversity were elucidated, and microbial functions were predicted. The result showed that the removal efficiency (RE) was stable at 86%–91%, the maximum elimination capacity (EC) was 303.61 g·m?3·hr?1, residence time was 33.75 sec, and the initial inlet xylene concentration was 3000 mg·m?3, which was the highest known degradation concentration reported. Kinetic analysis of the xylene degradation indicated that it was a very high-efficiency-activity bioprocess. The rmax was 1059.8 g·m?3·hr?1, and Ks value was 4.78 g·m?3 in stationary phase. In addition, microbial community structures in the bottom and top layers were significantly different: Pseudomonas was the dominant genus in the bottom layer, whereas Sphingobium was dominant in the top layer. The results showed that intermediate metabolites of xylene could affect the distribution of community structure. Pseudomonas sp. can adapt to high concentration xylene–contaminated environments.

Implications: We combined domesticated active sludge and reinforced microbial agent on biotrickling filter. This system performed continuously under a reduced residence time at 33.75 sec and high elimination capacity at 303.61 g·m?3·hr?1 in the biotrickling reactor for about 260 days. In this case, predomestication combined with reinforcing of microorganisms was very important to obtaining high-efficiency results. Analysis of microbial diversity and functional prediction indicated a gradient distribution along with the concentration of xylene. This implied a rational design of microbial reagent and optimizing the inoculation of different sites of reactor could reduce the preparation period of the technology.  相似文献   

9.
A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha? 1 was applied GR soybean at the V4–V5 development stages. Check treatments included a conventional herbicide tank mix (2003 study only) and no herbicides (hand-weeded). Ten days after herbicide application, a commercially available biostimulant and a urea solution (21.0% N) were applied to soybean foliage at 33.5 mL ha? 1 and 9.2 kg ha? 1, respectively. Soil and plant samples were taken 0, 5, 10, 15, 20 and 25 days after herbicide application then assayed for enzyme and respiration activities. Soil respiration and enzyme activity increased with glyphosate and foliar amendment applications during the 2002 growing season; however, similar increases were not observed in 2003. Contrasting cumulative rainfall between 2002 and 2003 likely accounted for differences in soil microbial activities. Increases in soil microbial activity in 2002 suggest that adequate soil water and glyphosate application acted together to increase microbial activity. Our study suggests that general soil microbial properties including those involving C and N transformations are not sensitive enough to detect effects of glyphosate on rhizosphere microbial activity. Measurements of soil-plant-microbe relationships including specific microbial groups (i.e., root-associated Fusarium spp.) are likely better indicators of impacts of glyphosate on soil microbial ecology.  相似文献   

10.
ABSTRACT

Microbial particles can readily be released into the air from different types of man-made sources such as waste operations. Microbiological emissions from different biological sources and their dispersion may be an issue of concern for area planning and for nearby residents. This study was designed to determine the concentrations and diversity of microbiological emissions from four different man-made source environments: waste center with composting windrows, sewage treatment plant, farming environment, and cattle manure spreading. Samples of airborne particles were collected onto polyvinyl chloride filters at three distances along the prevailing downwind direction, from each source environment during a period of approximately 1 week. These samples were analyzed for 13 species or assay groups of fungi, bacterial genus Streptomyces, and Gram-positive and -negative bacteria using quantitative polymerase chain reaction (PCR). Samples for determining the concentrations of viable fungi and bacteria were collected from all environments using a six-stage impactor. The results show that there were variations in the microbial diversity between the source environments. Specifically, composting was a major source for the fungal genera Aspergillus and Penicillium, particularly for Aspergillus fumigatus, and for the bacterial genus Streptomyces. Although the microbial concentrations in the sewage treatment plant area were significantly higher than those at 50 or 200 m distance from the plant area, in the farming environment or cattle manure spreading area, no significant difference was observed between different distances from the source. In summary, elevated concentrations of microbes that differ from background can only be detected within a few hundred meters from the source. This finding, reported earlier for culturable bacteria and fungi, could thus be confirmed using molecular methods that cover both culturable and nonculturable microbial material.

IMPLICATIONS Concentrations and diversity of airborne microbes increase due to particle emissions from different biological waste treatment applications. However, these emissions cannot be separated from the background concentrations after more than a few hundred meters from the source. As part of a risk assessment, it may be necessary to confirm the behavior of microbial emissions from a specific source. Quantitative PCR is a useful tool for estimating total concentrations of different microbial species or groups as it detects both culturable and nonculturable microbial material.  相似文献   

11.
The purpose of this study was to characterize the microbial community in ground pork using molecular approaches. Forty six ground pork products were purchased from local stores in the north central area of South Korea. Aerobic plate counts varied 4.23 ± 5.14 × 105 CFU/g with the range between 5.00 × 103 and 1.85 × 106 CFU/g for ground pork samples. Four ground meat samples were further processed for metagenomic analysis. Pseudomonas species was the most relative abundant with a wide range occurring (1.72 to 77.7%) as part of the microbial genera in ground pork. Bacteria such as Carnobacterium, Yersinia, Photobacterium were also identified in ground pork. Despite the prominence of certain genera across all samples there was still extensive microbial diversity among ground pork products that originated from different slaughter houses and were processed in different markets. Such diversity indicates that designing interventions to extend shelf life may be hampered by the extensive variability in the microbial consortia associated with pork products. However, this diversity may be useful for developing microbial traceability signatures unique to a slaughter house or a particular market.  相似文献   

12.

The reuse of human wastes as biofertilizer resources offers a new option for meeting the growing demand for food and addressing poor soil productivity. Feces and black water are ubiquitous human wastes that usually require proper treatment, such as composting and anaerobic digestion, to remove potentially harmful substances before they can be applied as fertilizers. As an effective treatment technology for livestock farming wastes, the ectopic fermentation bed system (EFS) provides a new means of treating human waste and producing organic fertilizer from decomposed filler. Therefore, the objective of this study was to evaluate and compare the nutrient content and fertilizer potential of decomposed fillers obtained after EFS treatment of human feces and black water under different application conditions. The results showed that the application of fillers increased the yield of pakchoi by 3.60?29.32% and nutrient uptake by 8.09?83.45% compared to the CK, which could effectively promote the growth of pakchoi. This approach also improved the quality of pakchoi and enhanced soil fertility, and differences were observed in the effects of different kinds and application amounts of fillers. Soil EC was the soil property that had the greatest effect on the growth characteristics of pakchoi in this study. These findings help to better clarify the agronomic value of human wastes, but the effects of long-term filler application need to be further explored.

  相似文献   

13.
Reducing airborne microorganisms may potentially improve the environment in layer breeding houses. The effectiveness of slightly acidic electrolyzed water (SAEW; pH 5.29–6.30) in reducing airborne microorganisms was investigated in a commercial layer house in northern China. The building had a tunnel-ventilation system, with an evaporative cooling. The experimental area was divided into five zones along the length of the house, with zone 1 nearest to an evaporative cooling pad and zone 5 nearest to the fans. The air temperature, relative humidity, dust concentration, and microbial population were measured at the sampling points in the five zones during the study period. The SAEW was sprayed by workers in the whole house. A six-stage air microbial sampler was used to measure airborne microbial population. Results showed that the population of airborne bacteria and fungi were sharply reduced by 0.71 × 105 and 2.82 × 103 colony-forming units (CFU) m?3 after 30 min exposure to SAEW, respectively. Compared with the benzalkonium chloride (BC) solution and povidone-iodine (PVP-I) solution treatments, the population reductions of airborne fungi treated by SAEW were significantly (P < 0.05) more, even though the three disinfectants can decrease both the airborne bacteria and fungi significantly (P < 0.05) 30 min after spraying.
Implications: There are no effective methods for reducing airborne microbial levels in tunnel-ventilated layer breeding houses; additionally, there is limited information available on airborne microorganism distribution. This research investigated the spatial distribution of microbial population, and the effectiveness of spraying slightly acidic electrolyzed water in reducing microbial levels. The research revealed that slightly acidic electrolyzed water spray was a potential method for reducing microbial presence in layer houses. The knowledge gained in this research about the microbial population variations in the building may assist producers in managing the bird housing environment and engineers in designing poultry houses.  相似文献   

14.
为研究间歇运行式生物滴滤池对油漆生产厂废气净化能力,建立一座中试规模生物滴滤池(BTF),接种降解菌群,采用8 h/d运行方式净化某油漆厂包装车间废气,并用PCR-DGGE技术揭示BTF细菌群落结构与工艺运行条件间的联系。油漆厂包装车间废气中挥发性有机物(VOCs)主要为甲苯、乙苯、混合二甲苯(间、对和邻二甲苯),BTF对甲苯、乙苯、混合二甲苯最大去除率分别为88.8%、83.7%和86.3%。DGGE分析显示,BTF稳定运行时,主要优势菌相对丰度较为稳定(F,P>0.05),其细菌多样性显著低于启动期(F,P>0.05);同时,下层填料细菌多样性高于上层填料,其细菌结构变化也较上层明显;另外,提升培养液浓度至2倍和4倍对菌群结构亦无显著影响。  相似文献   

15.
Seedlings of Theobroma cacao CCN 51 genotype were grown under greenhouse conditions and exposed to increasing concentrations of Cu (0.005, 1, 2, 4, 8, 16, and 32 mg Cu L?1) in nutrient solution. When doses were equal or higher than 8 mg Cu L?1, after 24 h of treatment application, leaf gas exchange was highly affected and changes in chloroplasts thylakoids of leaf mesophyll cells and plasmolysis of cells from the root cortical region were observed. In addition, cell membranes of roots and leaves were damaged. In leaves, 96 h after treatments started, increases in the percentage of electrolyte leakage through membranes were observed with increases of Cu in the nutrient solution. Moreover, there was an increase in the concentration of thiobarbituric acid-reactive substances in roots due to lipid peroxidation of membranes. Chemical analysis showed that increases in Cu concentrations in vegetative organs of T. cacao increased with the increase of the metal in the nutrient solution, but there was a greater accumulation of Cu in roots than in shoots. The excess of Cu interfered in the levels of Mn, Zn, Fe, Mg, K, and Ca in different organs of T. cacao. Analysis of gene expression via RTq-PCR showed increased levels of MT2b, SODCyt, and PER-1 expression in roots and of MT2b, PSBA, PSBO, SODCyt, and SODChI in leaves. Hence, it was concluded that Cu in nutrient solution at doses equal or above 8 mg L?1 significantly affected leaf gas exchange, cell ultrastructure, and transport of mineral nutrients in seedlings of this T. cacao genotype.  相似文献   

16.
脱氮副球菌YF1微生物燃料电池生物阴极脱氮和产电   总被引:1,自引:0,他引:1  
以脱氮副球菌YF1构建纯种生物阴极微生物燃料电池(microbial fuel cell,MFC)进行脱氮和产电机理的研究。研究结果发现,阴极碳氮比、pH值对产电和脱氮效率有明显影响。当MFC的阴极运行条件pH值为8.0,碳氮比为20时,运行时间15 h时,脱氮率高达100%,输出电压为150 mV。上述结果表明,微生物燃料电池运行过程中,细菌降解硝酸根的机理为将硝酸根还原为N2或者直接将其作为自身的营养物质而利用。循环伏安(CV)与扫描电镜(SEM)的结果表明,在微生物燃料电池运行中,副球菌YF1通过接触导电作为产电的电子供体。  相似文献   

17.
Contamination of aquatic systems is a major environmental stress that can interfere with predator-prey interactions, altering prey or predator behavior differentially. We determined toxicity parameters of the fungicide trifloxystrobin (TFS) and examined its effects on predation rate, using a fish predator (Synbranchus marmoratus) and four anuran tadpole species as prey (Rhinella arenarum, Physalaemus santafecinus, Leptodactylus latrans, and Elachistocleis bicolor). TFS was not equally toxic to the four tadpole species, E. bicolor being the most sensitive species, followed by P. santafecinus, R. arenarum, and L. latrans. Predation rates were evaluated using different treatments that combined predator and prey exposed or not to this fungicide. TFS would alter the outcome of eel-tadpole interaction by reducing prey movements; thus, prey detection would decrease and therefore tadpole survival would increase. In addition, eels preyed selectively upon non-exposed tadpoles avoiding the exposed ones almost all throughout the period evaluated. Predation rate differed among prey species; such differences were not due to TFS exposure, but to interspecific differences in behavior. The mechanism that would explain TFS-induced reduction in predation rates remains unclear; however, what is clear is that sublethal TFS concentrations have the potential to alter prey behavior, thereby indirectly altering predator-prey interactions. In addition, we consider that predator-prey relationships are measurable responses of toxicant exposure and provide ecological insight into how contaminants modify predator-prey interactions.  相似文献   

18.
手足口病是由多种肠道病毒引起的传染病,其主要病原体有EV71、CVA16及CVA10。为了研究污水处理厂的生活原污水及二级处理水中此类病毒的存活情况,实验利用手足口病3种主要病毒的通用引物对其进行分型检测,同时使用肠道病毒通用引物检测所有肠道病毒,并对常规水质指标进行分析。结果表明,原污水及二级处理水的手足口病病毒阳性率分别为83.3%与36.7%,而肠道病毒阳性率更高达100%及93.3%。说明生活污水中的肠道病毒可以稳定存在,且若未进行有效消毒处理,可能存在于二级处理水中。在3种手足口病主要病毒中,CVA10检出率最高,达45.0%,CVA16及EV71检出率分别为8.3%及10.0%。可推断,CVA10为实验阶段该地区主要的手足口病病毒。通过相关性分析,肠道病毒的存活与水质条件密切相关。  相似文献   

19.
为了提高污泥水解酸化过程中的挥发酸产量,获取污水脱氮除磷所需的内碳源,以深圳市罗芳污水厂的二沉池污泥为研究对象,采用不同的碱量对其进行预处理。通过测定碱预处理污泥水解酸化过程中的挥发酸浓度,并采用聚合酶链式反应-变性梯度凝胶电泳(polymerase chain reaction denature gradient gel electrophoresis,PCR-DGGE)技术对参与碱预处理污泥水解酸化产酸过程的主要微生物种群进行分析,结果表明,当碱投加量为0.20 g NaOH/g VSS时,初始溶出的蛋白浓度为1 780 mg/L;水解酸化15 d时,挥发酸总量达到3 473 mg/L;参与产酸的主要细菌属于Firmicutes、Proteobacteria、Bacteroidetes三个门类。  相似文献   

20.

Characterization of the typical petroleum pollutants, polycyclic aromatic hydrocarbons (PAHs) and n-alkanes, and indigenous microbial community structure and function in historically contaminated soil at petrol stations is critical. Five soil samples were collected from a petrol station in Beijing, China. The concentrations of 16 PAHs and 31 n-alkanes were measured by gas chromatography-mass spectrometry. The total concentrations of PAHs and n-alkanes ranged from 973 ± 55 to 2667 ± 183 μg/kg and 6.40 ± 0.38 to 8.65 ± 0.59 mg/kg (dry weight), respectively, which increased with depth. According to the observed molecular indices, PAHs and n-alkanes originated mostly from petroleum-related sources. The levels of ΣPAHs and the total toxic benzo[a]pyrene equivalent (ranging from 6.41 to 72.54 μg/kg) might exert adverse biological effects. Shotgun metagenomic sequencing was employed to investigate the indigenous microbial community structure and function. The results revealed that Proteobacteria and Actinobacteria were the most abundant phyla, and Nocardioides and Microbacterium were the important genera. Based on COG and KEGG annotations, the highly abundant functional classes were identified, and these functions were involved in allowing microorganisms to adapt to the pressure from contaminants. Five petroleum hydrocarbon degradation-related genes were annotated, revealing the distribution of degrading microorganisms. This work facilitates the understanding of the composition, source, and potential ecological impacts of residual PAHs and n-alkanes in historically contaminated soil.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号