首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-model ensemble simulations using three coupled physical-biogeochemical models were performed to calculate the combined impact of projected future climate change and plausible nutrient load changes on biogeochemical cycles in the Baltic Sea. Climate projections for 1961-2099 were combined with four nutrient load scenarios ranging from a pessimistic business-as-usual to a more optimistic case following the Helsinki Commission's (HELCOM) Baltic Sea Action Plan (BSAP). The model results suggest that in a future climate, water quality, characterized by ecological quality indicators like winter nutrient, summer bottom oxygen, and annual mean phytoplankton concentrations as well as annual mean Secchi depth (water transparency), will be deteriorated compared to present conditions. In case of nutrient load reductions required by the BSAP, water quality is only slightly improved. Based on the analysis of biogeochemical fluxes, we find that in warmer and more anoxic waters, internal feedbacks could be reinforced. Increased phosphorus fluxes out of the sediments, reduced denitrification efficiency and increased nitrogen fixation may partly counteract nutrient load abatement strategies.  相似文献   

2.
The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia. Nutrient retentions are high, which means that the nutrient reduction goals of 135 000 tons N and 15 000 tons P, as formulated in the BSAP from 2007, correspond to a reduction in nutrient loadings to watersheds by 675 000 tons N and 158 000 tons P. A cost-minimization model was used to allocate nutrient reductions to measures and countries where the costs for reducing loads are low. The minimum annual cost to meet BSAP basin targets is estimated to 4.7 billion €.  相似文献   

3.
Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countries with more limited commitments. In the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.  相似文献   

4.
For many coastal areas including the Baltic Sea, ambitious nutrient abatement goals have been set to curb eutrophication, but benefits of such measures were normally not studied in light of anticipated climate change. To project the likely responses of nutrient abatement on eelgrass (Zostera marina), we coupled a species distribution model with a biogeochemical model, obtaining future water turbidity, and a wave model for predicting the future hydrodynamics in the coastal area. Using this, eelgrass distribution was modeled for different combinations of nutrient scenarios and future wind fields. We are the first to demonstrate that while under a business as usual scenario overall eelgrass area will not recover, nutrient reductions that fulfill the Helsinki Commission’s Baltic Sea Action Plan (BSAP) are likely to lead to a substantial areal expansion of eelgrass coverage, primarily at the current distribution’s lower depth limits, thereby overcompensating losses in shallow areas caused by a stormier climate.  相似文献   

5.
The environmental targets of the recently agreed Baltic Sea Action Plan (BSAP) targets are likely associated with a considerable cost, which motivates a search for low-cost policies. The following review shows there is a substantial literature on cost-efficient nutrient reduction strategies, including suggestions regarding low-cost abatement, but actual policies at international and national scale tend to be considerably more expensive due to lack of instruments that ensure a cost-efficient allocation of abatement across countries and sectors. Economic research on the costs of reducing hazardous substances and oil spill damages in the Baltic Sea is not available, but lessons from the international literature suggest that resources could be used more efficiently if appropriate analysis is undertaken. Common to these pollution problems is the need to ensure that all countries in the region are provided with positive incentives to implement international agreements.  相似文献   

6.
Dynamic model simulations of the future climate and projections of future lifestyles within the Baltic Sea Drainage Basin (BSDB) were considered in this study to estimate potential trends in future nutrient loads to the Baltic Sea. Total nitrogen and total phosphorus loads were estimated using a simple proxy based only on human population (to account for nutrient sources) and stream discharges (to account for nutrient transport). This population-discharge proxy provided a good estimate for nutrient loads across the seven sub-basins of the BSDB considered. All climate scenarios considered here produced increased nutrient loads to the Baltic Sea over the next 100 years. There was variation between the climate scenarios such that sub-basin and regional differences were seen in future nutrient runoff depending on the climate model and scenario considered. Regardless, the results of this study indicate that changes in lifestyle brought about through shifts in consumption and population potentially overshadow the climate effects on future nutrient runoff for the entire BSDB. Regionally, however, lifestyle changes appear relatively more important in the southern regions of the BSDB while climatic changes appear more important in the northern regions with regards to future increases in nutrient loads. From a whole-ecosystem management perspective of the BSDB, this implies that implementation of improved and targeted management practices can still bring about improved conditions in the Baltic Sea in the face of a warmer and wetter future climate.  相似文献   

7.
This paper systematically reviews the literature on how to reduce nutrient emissions to the Baltic Sea cost-effectively and considerations for allocating these costs fairly among countries. The literature shows conclusively that the reduction targets of the Baltic Sea Action Plan (BSAP) could be achieved at considerably lower cost, if countries would cooperate to implement the least costly abatement plan. Focusing on phosphorus abatement could be prudent as the often recommended measures—wastewater treatment and wetlands—abate nitrogen too. An implication of our review is that the potential for restoring the Baltic Sea to good health is undermined by an abatement strategy that is more costly than necessary and likely to be perceived as unfair by several countries. Neither the BSAP nor the cost-effective solution meet the surveyed criteria for fairness, implying a need for side-payments.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01580-4.  相似文献   

8.
Gren IM  Destouni G 《Ambio》2012,41(2):151-160
Successful implementation of an international nutrient abatement agreement, such as the Baltic Sea Action Plan (BSAP), requires consistent understanding of the baseline nutrient loads, and a perception of acceptable costs and fairness in targeted reductions of these base line loads. This article presents a general framework for identifying the implications of divergence between different nutrient load quantification approaches, with regard to both cost and fairness criteria outcomes, for the international agreement to decrease nutrient loads into the Baltic Sea as presented in the BSAP. The results indicate that even relatively small divergence in the nutrient load quantification translates into relatively large differences in abatement cost for different Baltic Sea countries. A robust result, irrespective of differences in nutrient load assessments, is a conflict between abatement cost effectiveness and fairness, with relatively poor countries facing heavy abatement cost burdens for cost-effective international load abatement.  相似文献   

9.
We quantified horizontal transport patterns and the net exchange of nutrients between shallow regions and the open sea in the Baltic proper. A coupled biogeochemical-physical circulation model was used for transient simulations 1961-2100. The model was driven by regional downscaling of the IPCC climate change scenario A1B from two global General Circulation Models in combination with two nutrient load scenarios. Modeled nutrient transports followed mainly the large-scale internal water circulation and showed only small circulation changes in the future projections. The internal nutrient cycling and exchanges between shallow and deeper waters became intensified, and the internal removal of phosphorus became weaker in the warmer future climate. These effects counteracted the impact from nutrient load reductions according to the Baltic Sea Action Plan. The net effect of climate change and nutrient reductions was an increased net import of dissolved inorganic phosphorus to shallow areas in the Baltic proper.  相似文献   

10.
We present a multi-model ensemble study for the Baltic Sea, and investigate the combined impact of changing climate, external nutrient supply, and fisheries on the marine ecosystem. The applied regional climate system model contains state-of-the-art component models for the atmosphere, sea ice, ocean, land surface, terrestrial and marine biogeochemistry, and marine food-web. Time-dependent scenario simulations for the period 1960–2100 are performed and uncertainties of future projections are estimated. In addition, reconstructions since 1850 are carried out to evaluate the models sensitivity to external stressors on long time scales. Information from scenario simulations are used to support decision-makers and stakeholders and to raise awareness of climate change, environmental problems, and possible abatement strategies among the general public using geovisualization. It is concluded that the study results are relevant for the Baltic Sea Action Plan of the Helsinki Commission.  相似文献   

11.
Coastal habitats are situated on the border between land and sea, and ecosystem structure and functioning is influenced by both marine and terrestrial processes. Despite this, most scientific studies and monitoring are conducted either with a terrestrial or an aquatic focus. To address issues concerning climate change impacts in coastal areas, a cross-ecosystem approach is necessary. Since habitats along the Baltic coastlines vary in hydrology, natural geography, and ecology, climate change projections for Baltic shore ecosystems are bound to be highly speculative. Societal responses to climate change in the Baltic coastal ecosystems should have an ecosystem approach and match the biophysical realities of the Baltic Sea area. Knowledge about ecosystem processes and their responses to a changing climate should be integrated within the decision process, both locally and nationally, in order to increase the awareness of, and to prepare for climate change impacts in coastal areas of the Baltic Sea.  相似文献   

12.
Nutrient loads from inland sources to the Baltic Sea and adjacent inland waters need to be reduced in order to prevent eutrophication and meet requirements of the European Water Framework Directive (WFD) and the Baltic Sea Action Plan (BSAP). We here investigate the spatial implications of using different possible criteria for reducing water-borne phosphorous (P) loads in the Northern Baltic Sea River Basin District (NBS-RBD) in Sweden. Results show that most catchments that have a high degree of internal eutrophication do not express high export of P from their outlets. Furthermore, due to lake retention, lake catchments with high P-loads per agricultural area (which is potentially of concern for the WFD) did not considerably contribute to the P-loading of the Baltic Sea. Spatially uniform water quality goals may, therefore, not be effective in NBS-RBD, emphasizing more generally the need for regional adaptation of WFD and BSAP-related goals.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-014-0523-x) contains supplementary material, which is available to authorized users.  相似文献   

13.
In the future, the Baltic Sea ecosystem will be impacted both by climate change and by riverine and atmospheric nutrient inputs. Multi-model ensemble simulations comprising one IPCC scenario (A1B), two global climate models, two regional climate models, and three Baltic Sea ecosystem models were performed to elucidate the combined effect of climate change and changes in nutrient inputs. This study focuses on the occurrence of extreme events in the projected future climate. Results suggest that the number of days favoring cyanobacteria blooms could increase, anoxic events may become more frequent and last longer, and salinity may tend to decrease. Nutrient load reductions following the Baltic Sea Action Plan can reduce the deterioration of oxygen conditions.  相似文献   

14.
We developed for the first time a catchment model simulating simultaneously the nutrient land-sea fluxes from all 105 major watersheds within the Baltic Sea drainage area. A consistent modeling approach to all these major watersheds, i.e., a consistent handling of water fluxes (hydrological simulations) and loading functions (emission data), will facilitate a comparison of riverine nutrient transport between Baltic Sea subbasins that differ substantially. Hot spots of riverine emissions, such as from the rivers Vistula, Oder, and Daugava or from the Danish coast, can be easily demonstrated and the comparison between these hot spots, and the relatively unperturbed rivers in the northern catchments show decisionmakers where remedial actions are most effective to improve the environmental state of the Baltic Sea, and, secondly, what percentage reduction of riverine nutrient loads is possible. The relative difference between measured and simulated fluxes during the validation period was generally small. The cumulative deviation (i.e., relative bias) [Sigma(Simulated - Measured)/Sigma Measured x 100 (%)] from monitored water and nutrient fluxes amounted to +8.2% for runoff, to -2.4% for dissolved inorganic nitrogen, to +5.1% for total nitrogen, to +13% for dissolved inorganic phosphorus and to +19% for total phosphorus. Moreover, the model suggests that point sources for total phosphorus compiled by existing pollution load compilations are underestimated because of inconsistencies in calculating effluent loads from municipalities.  相似文献   

15.
An experiment combining the use of two ecosystem models was conducted to search for effective protection strategies for the Gulf of Finland (Baltic Sea). Reference and scenario simulations were first run with a one-dimensional (1D) model for seven main basins of the entire Baltic Sea until steady state was achieved. The obtained basinwise distributions of inorganic nitrogen (N) and phosphorus (P), as well as sediment labile P, were then used to initiate 5-y simulations with a three-dimensional (3D) ecosystem model. The results suggest that relatively small local load reductions (the "Finland" scenario) would improve only the state of adjacent coastal waters significantly. This would be the case, even for runs covering several decades, which clearly exceed the residence times of nutrients in the Gulf of Finland. A significant decrease from a substantial loading source to the Gulf (the "St. Petersburg" scenario) would decrease cyanobacterial biomasses in the entire Gulf of Finland and also immediately outside it. A reduction in the current Polish nutrient loads would improve the situation in the whole Baltic Proper and cause an extensive decline in cyanobacterial biomasses in the Gulf of Finland, as well. However, it would take several decades until the improvement caused by reducing loads in the "Poland" scenario is seen, while in the "St. Petersburg" scenario the corresponding time lag would only be a few years. Our results suggest that the common water protection policy in the Baltic Sea region should have the largest nutrient sources as its primary target, regardless of their location and country.  相似文献   

16.
Integrated sediment multiproxy studies and modeling were used to reconstruct past changes in the Baltic Sea ecosystem. Results of natural changes over the past 6000 years in the Baltic Sea ecosystem suggest that forecasted climate warming might enhance environmental problems of the Baltic Sea. Integrated modeling and sediment proxy studies reveal increased sea surface temperatures and expanded seafloor anoxia (in deep basins) during earlier natural warm climate phases, such as the Medieval Climate Anomaly. Under future IPCC scenarios of global warming, there is likely no improvement of bottom water conditions in the Baltic Sea. Thus, the measures already designed to produce a healthier Baltic Sea are insufficient in the long term. The interactions between climate change and anthropogenic impacts on the Baltic Sea should be considered in management, implementation of policy strategies in the Baltic Sea environmental issues, and adaptation to future climate change.  相似文献   

17.
In the middle of the last century in the case of many river basins, it became obvious that the targets of the Helsinki-Commission (HELCOM) concerning a 50% reduction of nitrogen and phosphorus inputs to the Baltic Sea had not been reached. Such conclusions could be derived from the observed loads. But the measurements regarding the analysis were not sufficient to determine what the reasons for this report were, what has to be done to fulfil this agreement and to evaluate the time at which the targets can be reached. This contribution presents the current state of Polish surface water quality as well as results of modelling nutrient and heavy metal emissions into the two biggest Polish river basins: Vistula and Odra, which both cover approximately 90% of Poland's territory.  相似文献   

18.
We assess the physical potential to reduce nutrient loads from waste water treatment plants in the Baltic Sea region and determine the costs of abating nutrients based on the estimated potential. We take a sample of waste water treatment plants of different size classes and generalize its properties to the whole population of waste water treatment plants. Based on a detailed investment and operational cost data on actual plants, we develop the total and marginal abatement cost functions for both nutrients. To our knowledge, our study is the first of its kind; there is no other study on this issue which would take advantage of detailed data on waste water treatment plants at this extent. We demonstrate that the reduction potential of nutrients is huge in waste water treatment plants. Increasing the abatement in waste water treatment plants can result in 70 % of the Baltic Sea Action Plan nitrogen reduction target and 80 % of the Baltic Sea Action Plan phosphorus reduction target. Another good finding is that the costs of reducing both nutrients are much lower than previously thought. The large reduction of nitrogen would cost 670 million euros and of phosphorus 150 million euros. We show that especially for phosphorus the abatement costs in agriculture would be much higher than in waste water treatment plants.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-013-0435-1) contains supplementary material, which is available to authorized users.  相似文献   

19.
In this perspective article, we provide recommendations for strengthening the policy framework for protecting the Baltic Sea from agricultural nutrient pollution. The most striking weakness is the lax implementation of prescribed abatement measures, particularly concerning manure management, in most countries. Institutions of the EU should also be leveraged for achieving Baltic Sea Action Plan (BSAP) goals. In contrast to the Helsinki Convention, the European Union has economic, political and legal mandates to further implementation and compliance. Equally important is the need for strengthening of local institutions, particularly Water Boards and independent agricultural advisory services in the eastern Baltic Sea Region countries. There is also an urgent need for implementation of voluntary land-use measures where EU funding available to farmers is more broadly and effectively used by providing it on the basis of estimated abatement performance, which can be realized through modelling. The enormous potential for funding performance-based schemes, manure management infrastructure and advisory services through the EU’s Common Agricultural Policy are currently underutilized.Supplementary Informationhe online version contains supplementary material available at 10.1007/s13280-021-01573-3.  相似文献   

20.
Understanding and managing ecosystems affected by several anthropogenic stressors require methods that enable analyzing the joint effects of different factors in one framework. Further, as scientific knowledge about natural systems is loaded with uncertainty, it is essential that analyses are based on a probabilistic approach. We describe in this article about building a Bayesian decision model, which includes three stressors present in the Gulf of Finland. The outcome of the integrative model is a set of probability distributions for future nutrient concentrations, herring stock biomass, and achieving the water quality targets set by HELCOM Baltic Sea Action Plan. These distributions can then be used to derive the probability of reaching the management targets for each alternative combination of management actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号