首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Ni-doped and N-doped TiO2 nanoparticles were investigated for their antibacterial activities on Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. Their morphological features and characteristics such as particle size, surface area, and visible light absorbing capacity were compared and discussed. Scanning electron microscopy, X-ray diffraction, and UV–visible spectrophotometry were used to characterize both materials. The inactivation of E. coli (as an example of Gram-negative bacteria) and S. aureus (as an example of Gram-positive bacteria) with Ni-doped and N-doped TiO2 was investigated in the absence and presence of visible light. Antibacterial activity tests were conducted using undoped, Ni-doped, and N-doped TiO2. The N-doped TiO2 nanoparticles show higher antibacterial activity than Ni-doped TiO2. The band gap narrowing of N-doped TiO2 can induce more visible light absorption and leads to the superb antibacterial properties of this material. The complete inactivation time for E. coli at an initial cell concentration of 2.7?×?104 CFU/mL was 420 min which is longer than the 360 min required for S. aureus inactivation. The rate of inactivation of S. aureus using the doped TiO2 nanoparticles in the presence of visible light is greater than that of E. coli. The median lethal dose (LD50) values of S. aureus and E. coli by antibacterial activity under an 18-W visible light intensity were 80 and 350 mg/ml for N-doped TiO2, respectively.  相似文献   

2.
Photocatalytic degradation of dissolved organic carbon (DOC) by utilizing Fe(III)-doped TiO2 at the visible radiation range is hereby reported. The photocatalyst was immobilized on sintered glass frits with the coating done by wet method, calcinated at 500 °C and then applied in a photodegradation reactor. The addition of a transition metal dopant, Fe(III), initiated the red shift which was confirmed by UV–Vis spectroscopy, and the photocatalyst was activated by visible radiation. X-ray diffraction patterns showed that Fe(III) doping had an effect on the crystallinity of the photocatalysts. Mixtures of DOC and associated coloured solutions were degraded in first-order kinetics, showing that the degradation process was not dependent on intermediates or other species in solution. A reactor with a catalyst coating area of 12.57 cm2 was able to degrade 0.623 mg of the dissolved material per minute. Exposure of the reactor to hostile acidic conditions and repeated use did not compromise its efficiency. It was observed that the reactor regenerates itself in the presence of visible light, and therefore, it can be re-used for more than 100 runs before the performance dropped to <95 %. The results obtained indicate that the photocatalyst reactor has a great potential of application for use in tandem with biosorbent cartridges to complement water purification methods for domestic consumption.  相似文献   

3.
Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol–gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV–visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV–vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol–gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV–visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV–visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L?1) issued by the US Environmental Protection Agency.  相似文献   

4.
This study develops a low-energy rotating photocatalytic contactor (LE-RPC) that has Cu-doped TiO2 films coated on stainless-steel rotating disks, to experimentally evaluate the efficiency of the degradation and decolorization of methylene blue (MB) under irradiation from different light sources (visible 430 nm, light-emitting diode [LED] 460 nm, and LED 525 nm). The production of hydroxyl radicals is also examined. The experimental results show that the photocatalytic activity of TiO2 that is doped with Cu2+ is induced by illumination with visible light and an LED. More than 90% of methylene blue at a 10 mg/L concentration is degraded after illumination by visible light (430 nm) for 4 hr at 20 rpm. This study also demonstrates that the quantity of hydroxyl radicals produced is directly proportional to the light energy intensity. The greater the light energy intensity, the greater is the number of hydroxyl radicals produced.

Implications: The CuO-doped anatase TiO2 powder was successfully synthesized in this study by a sol–gel method. The catalytic abilities of the stainless-steel film were enhanced in the visible light regions. This study has successfully modified the nano-photocatalytic materials to drop band gap and has also successfully fixed the nano-photocatalytic materials on a substratum to effectively treat dye wastewater in the range of visible light. The results can be useful to the development of a low-energy rotating photocatalytic contactor for decontamination purposes.  相似文献   


5.
Annihilation of electrons–holes recombination process is the main remedy to enhance the photocatalytic activity of the semiconductors photocatalysts. Doping of this class of photocatalysts by foreign nanoparticles is usually utilized to create high Schottky barrier that facilitates electron capture. In the literature, because nonpolar nanoparticles (usually pristine metals, e.g., Ag, Pt, Au, etc.) were utilized in the doping process, the corresponding improvement was relatively low. In this study, CdSO4-doped TiO2 nanoparticles are introduced as a powerful and reusable photocatalyst for the photocatalytic degradation of methomyl pesticide in concentrated aqueous solutions. The utilized CdSO4 nanoparticles form polar grains in the TiO2 matrix due to the electrons leaving characteristic of the sulfate anion. The introduced nanoparticles could successfully eliminate the harmful pesticide under the sunlight radiation within a very short time (less than 1 h), with a removal capacity reaching 1,000 mg pesticide per gram of the introduced photocatalyst. Moreover, increase in the initial concentration of the methomyl did not affect the photocatalytic performance; typically 300, 500, 1,000, and 2,000 mg/l solutions were completely treated within 30, 30, 40, and 60 min, respectively, using 100 mg catalyst. Interestingly, the photocatalytic efficiency was not affected upon multiple use of the photocatalyst. Moreover, negative activation energy was obtained which reveals super activity of the introduced photocatalyst. The distinct photocatalytic activity indicates the complete annihilation of the electrons–holes recombination process and abundant existence of electrons on the catalyst surfaces due to strong electrons capturing the operation of the utilized polar CdSO4 nanoparticles. The introduced photocatalyst has been prepared using the sol–gel technique. Overall, the simplicity of the synthesizing procedure and the obtained featured photocatalytic activity strongly recommend the introduced nanoparticles to treat the methomyl-containing polluted water.  相似文献   

6.
Li X  Zou X  Qu Z  Zhao Q  Wang L 《Chemosphere》2011,83(5):674-679
In this work, Ag-doping TiO2 nanotubes were prepared and employed as the photocatalyst for the degradation of toluene. The TiO2 nanotube powder was produced by the rapid-breakdown potentiostatic anodization of Ti foil in chloride-containing electrolytes, and then doped with Ag through an incipient wetness impregnation method. The samples were characterized by scanning electron microscope, high-resolution transmission electron microscopy, X-ray diffraction, surface photovoltage measurements, X-ray photoelectron spectroscopy and N2 adsorption. The nanotubular TiO2 photocatalysts showed an outer diameter of approximately 40 nm, fine mesoporous structure and high specific surface area. The photocatalytic activity of Ag-doping TiO2 nanotube powder was evaluated through photooxidation of gaseous toluene. The results indicated that the degradation efficiency of toluene could get 98% after 4 h reaction using the Ag-doping TiO2 nanotubes as the photocatalyst under UV light illumination, which was higher than that of the pure TiO2 nanotubes, Ag-doping P25 or P25. Benzaldehyde species could be observed during the photocatalytic oxidation monitored by in situ FTIR, and the formed benzaldehyde intermediate during reaction would be partially oxidized into CO2 and H2O.  相似文献   

7.
Lanthanum-modified TiO2 photocatalysts (0.2–1.5 wt% La) were investigated in the methanol decomposition in an aqueous solution. The photocatalysts were prepared by the common sol-gel method followed by calcination. The structural (X-ray diffraction, Raman, X-ray photoelectron spectroscopy), textural (N2 physisorption), and optical properties (diffuse reflectance spectroscopy, photoelectrochemical measurements) of all synthetized nanomaterials were correlated with photocatalytic activity. Both pure TiO2 and La-doped TiO2 photocatalysts proved higher yields of hydrogen in comparison to photolysis. The photocatalyst with optimal amount of lanthanum (0.2 wt% La) showed almost two times higher amount of hydrogen produced at the same time as in the presence of pure TiO2. The photocatalytic activity increased with both increasing photocurrent response and decreasing amount of lattice and surface O species. It has been shown that both direct and indirect mechanisms of methanol photocatalytic oxidation participate in the production of hydrogen. Both direct and indirect mechanisms take part in the formation of hydrogen.  相似文献   

8.
Airborne microorganisms, especially the pathogenic microorganisms, emitted from animal feeding operations (AFOs) may harm the environment and public health and threaten the biosecurity of the farm and surrounding environment. Electrolyzed water (EW), which was considered to be an environmentally friendly disinfectant, may be a potential spraying medium of wet scrubber for airborne microorganism emission reduction. A laboratory test was conducted to investigate the airborne bacteria (CB) removal efficiency of the wet scrubber by EW spray with different designs and operating parameters. Both the available choline (AC) initial loss rate and AC traveling loss rate of acidic electrolyzed water (AEW; pH = 1.35) were much higher than those of slightly acidic electrolyzed water (SAEW; pH = 5.50). Using one spraying stage with 4 m sec?1 air speed in the duct, the no detect lines (NDLs) of SAEW (pH = 5.50) for airborne Escherichia coli, Staphylococcus aureus, and Salmonella enteritidis removal were all 50 mg L?1, whereas the NDLs of AEW (pH = 1.35) for airborne E. coli, S. aureus, and S. enteritidis removal increased to 70, 90, and 90 mg L?1, respectively. The NDLs of SAEW (pH = 5.50) for airborne E. coli, S. aureus, and S. enteritidis were lower than those of AEW (pH = 1.35) at single spraying stage. Increase in the number of stages lowered the NDLs of both SAEW (pH = 5.50) and AEW (pH = 1.35) for airborne E. coli, S. aureus, and S. enteritidis. EW with a higher available chlorine concentration (ACC) was needed at air speed of 6 m sec?1 to reach the same airborne CB removal efficiency as that at air speed of 4 m sec?1. The results of this study demonstrated that EW spray wet scrubbers could be a very effective and feasible airborne CB mitigation technology for AFOs.

Implications: It is difficult to effectively reduce airborne bacteria emitted from animal feeding operations (AFOs). Electrolyzed water (EW) with disinfection effect and acidity is a potential absorbent for spray in wet scrubber to remove microorganisms and ammonia. Based on the field test results, a laboratory experiment we conducted this time was to optimize the design and operation parameters to improve the airborne bacteria removal efficiency. A better understanding of the EW application in the wet scrubber can contribute to the mitigation of airborne bacteria from animal houses and improve the atmosphere air quality.  相似文献   


9.
以水解法制备的锐钛矿型TiO2为载体,制备了CuO/TiO2型光催化剂.以亚甲基蓝为对象,在可见光照射下研究了H2O3加入量、pH值和催化剂投加量对脱色效果的影响,同时与改性前的TiO2催化剂进行了脱色效果的对比.结果表明亚甲基蓝在碱性条件下能较好脱色,H2O2用量和CuO/TiO2催化剂投加量分别为每1 000 mL反应液各加入10 mL和0.1 g时脱色最好;另外,TiO2催化剂也在碱性条件下能较好脱色,H2O2用量和催化剂投加量分别为每1 000 mL反应液各加入12.5 mL和0.1 g时脱色最好.最优条件下对比实验表明,CuO/TiO2型催化剂在可见光照射下具有很高的催化活性,亚甲基蓝2 h脱色率达到88%,远好于改性前的TiO2和Degussa P25催化剂.  相似文献   

10.
Titanium dioxide (TiO2) has been considered a useful material for the treatment of wastewater due to its non-toxic character, chemical stability and excellent electrical and optical properties which contribute in its wide range of applications, particularly in environmental remediation technology. However, the wide band gap of TiO2 photocatalyst (anatase phase, 3.20 eV) limits its photocatalytic activity to the ultraviolet region of light. Besides that, the electron-hole pair recombination has been found to reduce the efficiency of the photocatalyst. To overcome these problems, tailoring of TiO2 surface with rare earth metals to improve its surface, optical and photocatalytic properties has been investigated by many researchers. The surface modifications with rare earth metals proved to enhance the efficiency of TiO2 photocatalyts by way of reducing the band gap by shifting the working wavelength to the visible region and inhibiting the anatase-to-rutile phase transformations. This review paper summarises the attempts on modification of TiO2 using rare earth metals describing their effect on the photocatalytic activities of the modified TiO2 photocatalyst.  相似文献   

11.
This study investigated the photocatalytic degradation of acetaminophen (ACT) in synthetic titanium dioxide (TiO2) solution under a visible light (λ >440 nm). The TiO2 photocatalyst used in this study was synthesized via sol–gel method and doped with potassium aluminum sulfate (KAl(SO4)2) and sodium aluminate (NaAlO2). The influence of some parameters on the degradation of acetaminophen was examined, such as initial pH, photocatalyst dosage, and initial ACT concentration. The optimal operational conditions were also determined. Results showed that synthetic TiO2 catalysts presented mainly as anatase phase and no rutile phase was observed. The results of photocatalytic degradation showed that LED alone degraded negligible amount of ACT but with the presence of TiO2/KAl(SO4)2, 95 % removal of 0.10-mM acetaminophen in 540-min irradiation time was achieved. The synthetic TiO2/KAl(SO4)2 presented better photocatalytic degradation of acetaminophen than commercially available Degussa P-25. The weak crystallinity of synthesized TiO2/NaAlO2 photocatalyst showed low photocatalytic degradation than TiO2/KAl(SO4)2. The optimal operational conditions were obtained in pH 6.9 with a dose of 1.0 g/L TiO2/KAl(SO4)2 at 30 °C. Kinetic study illustrated that photocatalytic degradation of acetaminophen fits well in the pseudo-first order model. Competitive reactions from intermediates affected the degradation rate of ACT, and were more obvious as the initial ACT concentration increased.  相似文献   

12.
Quinestrol has shown potential for use in the fertility control of the plateau pika population of the Qinghai–Tibet Plateau. However, the environmental safety and fate of this compound are still obscure. Our study investigated degradation of quinestrol in a local soil and aquatic system for the first time. The results indicate that the degradation of quinestrol follows first-order kinetics in both soil and water, with a dissipation half-life of approximately 16.0 days in local soil. Microbial activity heavily influenced the degradation of quinestrol, with 41.2 % removal in non-sterile soil comparing to 4.8 % removal in sterile soil after incubation of 10 days. The half-lives in neutral water (pH 7.4) were 0.75 h when exposed to UV light (λ?=?365 nm) whereas they became 2.63 h when exposed to visible light (λ?>?400 nm). Acidic conditions facilitated quinestrol degradation in water with shorter half-lives of 1.04 and 1.47 h in pH 4.0 and pH 5.0 solutions, respectively. Moreover, both the soil and water treatment systems efficiently eliminated the estrogenic activity of quinestrol. Results presented herein clarify the complete degradation of quinestrol in a relatively short time. The ecological and environmental safety of this compound needs further investigation.  相似文献   

13.
This study reports the synthesis and characterization of composite nitrogen and fluorine co-doped titanium dioxide (NF-TiO2) for the removal of contaminants of concern in wastewater under visible and solar light. Monodisperse anatase TiO2 nanoparticles of different sizes and Evonik P25 were assembled to immobilized NF-TiO2 by direct incorporation into the sol–gel or by the layer-by-layer technique. The composite films were characterized with X-ray diffraction, high-resolution transmission electron microscopy, environmental scanning electron microscopy, and porosimetry analysis. The photocatalytic degradation of atrazine, carbamazepine, and caffeine was evaluated in a synthetic water solution and in an effluent from a hybrid biological concentrator reactor (BCR). Minor aggregation and improved distribution of monodisperse titania particles was obtained with NF-TiO2-monodisperse (10 and 50 nm) from the layer-by-layer technique than with NF-TiO2?+?monodisperse TiO2 (300 nm) directly incorporated into the sol. The photocatalysts synthesized with the layer-by-layer method achieved significantly higher degradation rates in contrast with NF-TiO2-monodisperse titania (300 nm) and slightly faster values when compared with NF-TiO2-P25. Using NF-TiO2 layer-by-layer with monodisperse TiO2 (50 nm) under solar light irradiation, the respective degradation rates in synthetic water and BCR effluent were 14.6 and 9.5?×?10?3?min?1 for caffeine, 12.5 and 9.0?×?10?3?min?1 for carbamazepine, and 10.9 and 5.8?×?10?3?min?1 for atrazine. These results suggest that the layer-by-layer technique is a promising method for the synthesis of composite TiO2-based films compared to the direct addition of nanoparticles into the sol.  相似文献   

14.
A new heterogeneous photocatalyst was prepared by oxidative polymerization of the thiophene with ferric chloride in the ZSM-5 zeolite type. The synthesized polythiophene absorbs radiation in the visible range of the electromagnetic spectrum and by illumination with visible light generates reactive oxygen species (ROS) in water medium. During illumination reactive hydroxyl radical was detected by the spin trapping EPR method. Efficiency of the photocatalyst was tested on the killing of Gram-positive bacteria Staphylococcus aureus and Gram negative bacteria Escherichia coli.  相似文献   

15.

Transition metal sulphide-loaded fly ash–based EU-12 photocatalysts were synthesized by sono-hydrothermal method followed by ion exchange. The composites were characterized by XRD, FESEM, DSC-TGA, Raman spectroscopy, and BET surface area analysis. The XRD results imply 76.39% crystallinity of EU-12 and morphological studies by FESEM, and TEM revealed the shape and size of EU-12, i.e. rod-shaped with size ranging from 5 to 200 nm. Band gap of all synthesized photocatalysts were found to be?≤?3.44 eV. The photoactivities of the photocatalysts were examined by degrading rhodamine B (RhB). The results indicated that metal sulphide/EU-12 composite had the strong photoactivity under visible light compared to dark environment. Furthermore, the efficiency of photocatalysts was determined in terms of degradation efficiency towards RhB which was found to be maximum of 98.62% for 0.2 M CdS/EU-12 at 2 gL?1 of catalyst dosage and 10 ppm of dye concentration within 3 h under visible light source of 200 W.

  相似文献   

16.
The objective of this work was to evaluate the efficiency of a solar TiO2-assisted photocatalytic process on amoxicillin (AMX) degradation, an antibiotic widely used in human and veterinary medicine. Firstly, solar photolysis of AMX was compared with solar photocatalysis in a compound parabolic collectors pilot scale photoreactor to assess the amount of accumulated UV energy in the system (Q UV) necessary to remove 20 mg L?1 AMX from aqueous solution and mineralize the intermediary by-products. Another experiment was also carried out to accurately follow the antibacterial activity against Escherichia coli DSM 1103 and Staphylococcus aureus DSM 1104 and mineralization of AMX by tracing the contents of dissolved organic carbon (DOC), low molecular weight carboxylate anions, and inorganic anions. Finally, the influence of individual inorganic ions on AMX photocatalytic degradation efficiency and the involvement of some reactive oxygen species were also assessed. Photolysis was shown to be completely ineffective, while only 3.1 kJUV?L?1 was sufficient to fully degrade 20 mg L?1 AMX and remove 61 % of initial DOC content in the presence of the photocatalyst and sunlight. In the experiment with an initial AMX concentration of 40 mg L?1, antibacterial activity of the solution was considerably reduced after elimination of AMX to levels below the respective detection limit. After 11.7 kJUV?L?1, DOC decreased by 71 %; 30 % of the AMX nitrogen was converted into ammonium and all sulfur compounds were converted into sulfate. A large percentage of the remaining DOC was in the form of low molecular weight carboxylic acids. Presence of phosphate ions promoted the removal of AMX from solution, while no sizeable effects on the kinetics were found for other inorganic ions. Although the AMX degradation was mainly attributed to hydroxyl radicals, singlet oxygen also plays an important role in AMX self-photosensitization under UV/visible solar light.  相似文献   

17.
Hu XY  Fan J  Zhang KL  Wang JJ 《Chemosphere》2012,87(10):1155-1160
In this work, Bi4NbxTa(1−x)O8I photocatalysts have been synthesized by solid state reaction method and characterized by powder X-ray diffraction, scanning electron microscope and UV-Vis near infrared diffuse reflectance spectroscopy. The photocatalytic activity of these photocatalysts was evaluated by the degradation of methyl orange (MO) in aqueous solutions under visible light, UV light and solar irradiation. The effects of catalyst dosage, initial pH and MO concentration on the removal efficiency were studied, and the photocatalytic reaction kinetics of MO degradation as well. The results indicated that Bi4NbxTa(1−x)O8I exhibited high photocatalytic activity for the removal of MO in aqueous solutions. For example, the removal efficiency of MO by Bi4Nb0.1Ta0.9O8I was as high as 92% within 12 h visible light irradiation under the optimal conditions: initial MO concentration of 5-10 mg L−1, catalyst dosage of 6 g L−1 and natural pH (6-8), the MO molecules could be completely degradated by Bi4Nb0.1Ta0.9O8I within 40 min under UV light irradiation, and the photodegradation efficiency reaches to 60% after 7 h solar irradiation. Furthermore, the photocatalytic degradation of Bisphenol A (BPA) was also investigated under visible light irradiation. It is found that 99% BPA could be mineralized by Bi4Nb0.1Ta0.9O8I after 16 h visible light irradiation. Through HPLC/MS, BOD, TOC, UV-Vis measurements, we determined possible degradation products of MO and BPA. The results indicated that MO was degradated into products which are easier to be biodegradable and innocuous treated, and BPA could be mineralized completely. Furthermore, the possibility for the photosensitization effect in the degradation process of MO under visible light irradiation has been excluded.  相似文献   

18.

In recent years, using semiconductor photocatalysts for antibiotic contaminant degradation under visible light has become a hot topic. Herein, a novel and ingenious cadmium-doped graphite phase carbon nitride (Cd-g-C3N4) photocatalyst was successfully constructed via the thermal polymerization method. Experimental and characterization results revealed that cadmium (Cd) was well doped at the g-C3N4 surface and exhibited high intercontact with g-C3N4. Additionally, the introduction of cadmium significantly improved the photocatalytic activity, and the optimum degradation efficiency of tetracycline (TC) reached 98.1%, which was exceeded 2.0 times that of g-C3N4 (43.9%). Meanwhile, the Cd-doped sample presented a higher efficiency of electrical conductivity, light absorption property, and photogenerated electron-hole pair migration compared with g-C3N4. Additionally, the quenching experiments and electron spin-resonance tests exhibited that holes (h+), hydroxyl radicals (?OH), superoxide radicals (?O2?) were the main active species involved in TC degradation. The effects of various conditions on photocatalytic degradation, such as pH, initial TC concentrations, and catalyst dosage, were also researched. Finally, the degradation mechanism was elaborated in detail. This work gives a reasonable point to synthesizing high-efficiency and economic metal-doped photocatalysts.

  相似文献   

19.

The textile industry consumes a large volume of organic dyes and water. These organic dyes, which remained in the effluents, are usually persistent and difficult to degrade by conventional wastewater treatment techniques. If the wastewater is not treated properly and is discharged into water system, it will cause environmental pollution and risk to living organisms. To mitigate these impacts, the photo-driven catalysis process using semiconductor materials emerges as a promising approach. The semiconductor photocatalysts are able to remove the organic effluent through their mineralization and decolorization abilities. Besides the commonly used titanium dioxide (TiO2), manganese dioxide (MnO2) is a potential photocatalyst for wastewater treatment. MnO2 has a narrow bandgap energy of 1~2 eV. Thus, it possesses high possibility to be driven by visible light and infrared light for dye degradation. This paper reviews the MnO2-based photocatalysts in various aspects, including its fundamental and photocatalytic mechanisms, recent progress in the synthesis of MnO2 nanostructures in particle forms and on supporting systems, and regeneration of photocatalysts for repeated use. In addition, the effect of various factors that could affect the photocatalytic performance of MnO2 nanostructures are discussed, followed by the future prospects of the development of this semiconductor photocatalysts towards commercialization.

  相似文献   

20.
Hyperaccumulators contain tubular cellulose and heavy metals, which can be used as the sources of carbon and metals to synthesize nanomaterials. In this paper, carbon nanotubes (CNTs), Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites were synthesized using Brassica juncea L. plants, and the ultraviolet (UV)-light-driven photocatalytic degradations of bisphenol A (BPA) using them as photocatalysts were studied. It was found that the outer diameter of CNTs was around 50 nm and there were a few defects in the crystal lattice. The synthesized Cu0.05Zn0.95O nanocomposites had a diameter of around 40 nm. Cu0.05Zn0.95O nanocomposites have grown on the surface of the CNTs and the outer diameter of them was around 100 nm. The synthesized hybrid carbon nanotubes using B. juncea could enhance the efficiency of photocatalytic degradation on BPA. The complete equilibration time of adsorption/desorption of BPA onto the surface of CNTs, Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites was within 30, 20, and 30 min, and approximately 14.9, 8.7, and 17.4 % BPA was adsorbed by them, respectively. The combination of UV light irradiation (90 min) with CNTs, Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites could lead to 48.3, 75.7, and 92.6 % decomposition yields of BPA, respectively. These findings constitute a new insight for synthesizing nanocatalyst by reusing hyperaccumulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号