首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 886 毫秒
1.
天津污染天气边界层温度层结变化特征及预报阈值确定   总被引:4,自引:0,他引:4  
针对天津市大气污染防治需求,基于2016年4月1日—2017年3月31日天津255 m气象塔观测资料及数值模拟,开展天津地区污染天气边界层温度层结变化特征及预报阈值研究.结果表明:(1)天津地区10~250 m高度的气温递减率为0.56℃/100 m,当日均气温递减率小于0.4℃/100 m时,垂直扩散条件不利于大气污染物扩散,出现中度以上污染概率为64%,重污染概率为47%.从温度廓线和逆温频率统计分析,贴地逆温占所有逆温的55%,除贴地逆温以外逆温底部最易出现在160 m的高度,大量脱地逆温的出现不利于高架源夜间的排放.(2)每年10月—次年2月天津逆温频率为20%,冬季需要关注逆温情况对大气污染物扩散的影响.如秋、冬季8:00逆温仍然存在,重污染天气出现概率高达56%,中度及以上污染出现概率为72%,是重污染天气辨识的重要指标.(3)7:00—10:00在逆温消散或者日均气温递减率由0.6℃/100 m向0.4℃/100 m变化时,任何细微变化对大气垂直扩散有显著影响.基于天津地区PM_(2.5)污染情况下,数值模拟显示10~250 m的气温递减率由于气溶胶的存在可减少0.06℃/100 m,在25个重污染过程中,日均气温递减率平均下降0.18℃/100 m,对大气垂直扩散条件产生显著影响.因此,在空气污染预报分析时使用不考虑气溶胶辐射效应的天气模式分析温度层结,需要适当调整阈值,尤其是在7:00—10:00逆温消散及垂直温度递减率由0.6℃/100 m向0.4℃/100 m变化时.  相似文献   

2.
利用WRF-Chem模式对2015年12月21—23日南京一次重霾污染过程进行模拟.基于合理的模拟评估,采用大气传输通量计算法,着重分析了此次霾污染过程中模拟的南京地区PM_(2.5)的传输收支特征,以及周边地区大气污染物传输对南京市PM_(2.5)变化的贡献.结果表明,此次霾污染过程中,本地源与外来源区域传输共同影响着南京市的空气质量.PM_(2.5)的跨区域传输是此次重霾污染发生和消亡的重要因素.在霾污染事件的形成维持阶段,南京地区是作为周边地区PM_(2.5)的接收区,大气污染物主要由南京的西边界输入,大气污染物的外源输入是南京PM_(2.5)污染的主要贡献来源,占南京PM_(2.5)污染的84%.在霾污染事件的消亡阶段,南京地区则是作为周边地区PM_(2.5)的源,大气污染物主要由南京的东边界持续向外输出.  相似文献   

3.
华北地区冬半年空气污染天气客观分型研究   总被引:8,自引:6,他引:2  
利用2013—2016年冬半年ERA-interim再分析资料,以及同期空气污染资料、地面常规气象观测资料和探空资料,采用PCT (Principal Component Analysis in T-mode)客观分型方法对华北地区冬半年海平面气压场进行天气分型,并探究不同月份不同天气型对应的空气污染状况及污染气象参数分布特征,进而从污染气象学的角度揭示重污染潜势天气型的气候特征.结果表明:冬半年海平面气压场共对应9种天气类型,其中,5型(均压场型)、6型(高压内部型)和8型(高压后部型)为3种重污染潜势天气型,冬半年对应的PM_(2.5)均值浓度分别为144.11、136.99和148.26μg·m~(-3),而1型(T型高压前部型)和3型(低压底部型)为两种清洁天气型,冬半年对应的PM_(2.5)均值浓度分别为97.12和80.83μg·m~(-3);重污染潜势天气型对应的边界层结构呈现出稳定能量大、混合层厚度和通风系数小的大气层结稳定的静稳天气特征,其能够反映大气污染潜势;研究还发现,即使是同一天气型,其在不同月份对污染物的扩散影响也存在差异,因此,建议在今后的污染潜势天气型研究中分月份进行.本研究可为华北地区空气污染潜势预报及大气重污染预报预警的客观化、自动化提供科学依据和技术支持.  相似文献   

4.
依据2001-2012年的空气污染指数(API)日报数据,从月(或季、年)平均和空气污染等级2个角度出发,研究西北5省5城市(西宁、兰州、银川、西安和乌鲁木齐)API和空气污染状况比例的变化特征和趋势分析,统计结果表明:(1)5城市空气质量等级以Ⅱ级良为主,首要污染物以可吸入颗粒物为主。在年、季节、采暖期和非采暖期API值有趋于同步的下降变化趋势,污染(优良)天数呈现明显的下降(上升)趋势,大气污染呈现一定的"区域化"的特征。(2)5城市API指数变化规律有明显的时间和空间差异。从多年API年均值来看,西安、兰州和乌鲁木齐较高,银川和西宁相对较低,且乌鲁木齐、兰州和西宁空气质量状况不稳定,而西安和银川变化相对比较平缓。5城市的年变化也呈现不同的变化特征,总体上夏秋季空气质量明显好于冬春季。(3)5城市谱峰区间逐渐向低浓度范围偏移且天数逐渐增加,高浓度事件逐渐减少,各城市向低浓度转变的年份不完全一致。  相似文献   

5.
东北区域空气质量时空分布特征及重度污染成因分析   总被引:3,自引:2,他引:1  
东北已成为我国又一个霾污染多发和重发区域.采用2013~2017年东北区域大气污染物地面监测数据、卫星数据和气象数据等信息,探讨了中国东北地区空气质量时空分布特征与重度污染成因.结果表明,"沈阳-长春-哈尔滨"带状城市群是全年污染最严重的区域,空气质量指数(AQI)的空间分布具有明显的季节性,冬季污染最严重,春季吉林省西部周围为椭圆形污染区,夏季和秋季大部分时间空气质量最佳.3个典型的霾污染时期是10月下旬和11月上旬(即秋末和初冬,时期一),12月下旬和1月(即冬季最冷的时候,时期二),及4月到5月中旬(即春季沙尘和农业耕作期).时期一,季节性作物残茬焚烧和冬季采暖用煤燃烧产生的PM_(2.5)强排放是极端霾事件发生的主要原因(AQI 300);时期二,在最严寒月份里,重度霾污染事件(200 AQI 300),主要由燃煤和汽车燃料消耗的PM_(2.5)排放量高,大气边界层较低,以及大气扩散性差等共同引起;时期三,春季PM_(10)浓度较高,主要是由内蒙古中部退化草原的风沙和吉林省西部裸地的区域性扬尘传输造成的.同时,当地农业耕作本身也释放PM_(10),并提升了裸土的人为源矿物尘的排放强度.  相似文献   

6.
近年来,随着气候变化以及工业化程度的加深,城市的大气污染问题日益突显。作者收集了2013-2018年南京地区首要大气污染物资料,对该地冬季大气污染物的时空分布特征及各污染物之间的相关性进行分析。结果表明:(1)从时间分布来看,除O_3外,南京冬季各污染物浓度均在2月达到最小值,AQI、PM_(10)、SO_2和NO_2浓度均在12月达最大,1月次之。PM_(2.5)、PM_(10)与AQI日变化趋势高度一致,在上午10∶00-11∶00出现峰值,在下午17∶00出现最低值。SO_2日变化呈单峰式变化特征,在上午11∶00出现峰值。NO_2浓度的日变化趋势与O_3正好相反,在下午14∶00-15∶00,NO_2出现低值,而O_3出现峰值。(2)从空间分布来看,南京冬季AQI与PM_(2.5)、SO_2的空间分布特征类似,呈东南高、西北低的分布特点,而PM_(10)呈西南-东北向递增的分布特点。(3)AQI与PM_(2.5)、PM_(10)的相关性最好,与SO_2、NO_2的相关性次之,而AQI与O_3没有明显的相关性,即影响南京冬季空气污染的主要是PM_(2.5)、PM_(10)、SO_2和NO_2。  相似文献   

7.
大气自净能力指数的气候特征与应用研究   总被引:1,自引:0,他引:1  
朱蓉  张存杰  梅梅 《中国环境科学》2018,38(10):3601-3610
为了定量地评估污染气象条件对空气污染的作用并实现对空气污染潜势的预报,本文在城市大气污染数值预报系统(CAPPS)预报原理的基础上,定义了大气自净能力指数,并分别给出了采用气象站观测资料和通过数值模拟计算大气自净能力指数的方法.基于气象站观测资料的全国大气自净能力指数分析计算表明,全国大气自净能力最差的地区分布在四川盆地和新疆塔里木盆地,大气自净能力最强的地区分布在青藏高原、蒙古高原、云贵高原、以及东北平原和三江平原、山东半岛和海南岛;1961~2017年,京津冀、长三角和珠三角地区的大气自净能力指数呈下降的变化趋势,全年低自净能力日数呈上升的变化趋势.采用大气自净能力指数评估2014年北京APEC会议期间大气污染防控效果,表明在11月8~10日极端不利扩散气象条件发生时,减排措施使北京市空气质量AQI平均降低77%,使京津冀平原地区11个城市的空气质量AQI平均降低37%.基于国家气候中心月动力延伸气候预测模式(DERF2.0)的预报产品和中尺度模式(WRF),建立了可以预测全国未来40d逐日大气自净能力指数的延伸期-月尺度大气污染潜势预测系统,回报实验表明,在大多数情况下可以提前15d预报出大气重污染过程;月尺度的大气重污染过程预报效果更大程度上取决于月动力延伸气候预测模式(DERF2.0)的预报准确率.  相似文献   

8.
针对石家庄市2015年12月5—14日出现的重污染过程,利用石家庄市逐日地基微波辐射计、风廓线雷达、地面气象观测资料以及同期的污染物观测资料,分析了重污染过程期间大气边界层温度、湿度、风变化特征及对PM_(2.5)的影响,采用Hysplit后向气团轨迹模式对污染来源进行分析。此次重污染以局地排放为主要形成源,期间冷空气势力弱,地面日平均风速均在1.5 m/s以下,日平均相对湿度均在70%以上,风速小、湿度大,稳定的大气环流形势为重污染提供了持续稳定的大气环境背景。逆温形成及快速增厚导致重污染开始,逆温层平均厚度为683 m,逆温层厚、强、不易消散,导致重污染持续时间长、污染重。近地面小风层厚(平均700 m左右),通风能力弱,导致污染物难以稀释扩散。同时近地层湿度大、厚度厚,使得PM_(2.5)更容易形成和积累,对重污染加重起到了促进作用。  相似文献   

9.
中国典型城市环境空气质量变化趋势分析研究   总被引:2,自引:0,他引:2  
文章选取北京市、兰州市、乌鲁木齐市、青岛市、武汉市、深圳市这六个典型城市为研究对象,利用2003年-2013年六个城市的SO2、NO2和PM10浓度数据,计算出区域空气综合污染指数和污染负荷指数,并采用Daniel趋势检验法分析主要污染物的变化趋势.结果表明,六个典型城市环境空气质量状况从优至差排列依次为深圳、青岛、武汉、北京、兰州、乌鲁木齐;六个典型城市空气首要污染物为PM10,SO2的污染负荷呈下降趋势,NO2的污染负荷呈上升趋势;各城市的空气质量整体呈现好转趋势,表明大气治理初见成效.  相似文献   

10.
对太原市2014年重污染天大气污染物浓度变化和时间、空间分布特征进行了分析,全年太原市城区有28个重度以上污染天,首要污染物为细颗粒物,集中出现于采暖期和10月。重污染期间,冬季PM_(2.5)、PM_(10)、SO_2、NO_2、CO浓度之间显著正相关,但均与O3显著负相关;主要超标因子PM_(2.5)、PM_(10)、SO_2浓度与风速(2.0 m/s以上时)显著负相关,与气压(P)总体负相关,与相对湿度(RH)总体正相关。重污染天城区大气污染物浓度空间分布南北差异明显、南部高于北部,聚类分析结果显示,城区北部远郊的南寨和上兰有类似污染特征,城区中部尖草坪、桃园、小店、金胜等点具有类似颗粒物污染特征,污染物分布主要与区域地形、风向、污染源分布特征有关。基于重污染天特征,该项研究提出了减缓太原市大气污染的建议。  相似文献   

11.
为了探究呼和浩特市大气污染物污染特征,对2014年一年的AQI做出统计整理并对PM_(10)、PM_(2.5)、SO_2、CO、NO_2的相关性进行分析。研究结果发现:呼和浩特市2014年空气质量总体良好,空气质量为良所占比重为58%,中度污染和重度污染所占比重为35%。该市的主要污染物PM_(10)、PM_(2.5)、SO_2的超标率分别达到了88.81%、52.60%、36.20%。空气污染指数AQI与PM_(10)、PM_(2.5)、SO_2、CO、NO_2、呈显著相关,尤其是PM_(10)和PM_(2.5),相关性系数高达0.959和0.851,可见其污染主要以颗粒物物为主。PM_(10)、PM_(2.5)、SO_2、CO、NO_2浓度间两两正相关。O_3的浓度与PM_(2.5)、SO_2、CO、NO_2均呈现负相关,O_3与AQI和PM_(10)的相关性不显著。  相似文献   

12.
2014年10月太原市一次空气重污染过程分析   总被引:1,自引:0,他引:1  
采用数值模拟(CAMx)与污染物、气象观测资料相结合的方式,对太原市及周边区域2014年10月6—12日一次典型空气重污染过程的大气环境背景、气象条件和形成原因进行了分析.结果表明:2014年10月8—10日太原ρ(PM_(2.5))日均值平均为175μg·m~(-3),太原城区约1460km~2的国土面积处于重度污染(ρ(PM_(2.5))150μg·m~(-3))之下,而京津冀约20×104km2的国土面积达到重度污染水平;区域稳定的气象条件是形成重污染的主要原因,重污染过程中大气层结稳定,逆温明显(2.14℃/100m)、风速小(1.91 m·s~(-1))、湿度大(68.13%)、负变压(-0.74 h Pa)、正变温(0.92℃).模拟结果显示,8—10日重污染期间区域输送对太原PM_(2.5)的贡献率在17%~24%之间,太原市PM_(2.5)浓度以本地贡献为主;估算的2014年太原城区PM_(2.5)排放量是其大气环境容量的1.4倍,重污染期间大气环境容量的大幅降低又加剧了空气污染的程度.  相似文献   

13.
2014年10月中国东部持续重污染天气成因分析   总被引:11,自引:0,他引:11       下载免费PDF全文
2014年10月5─13日中国东部发生了大范围、长时间的(雾)霾及重污染天气. 采用AQI数据分析此次大气重污染过程的时、空演变特征,并应用NCEP(美国国家环境预报中心)再分析资料以及地面、小球探空数据,分析了主要天气型演变、边界层及上空的风场、气象条件特征,以研究此次秋季重污染天气的气象成因和形成过程. 结果表明:①华北、东北是此次污染最为严重的地区,其域内各城市持续数日的污染演变可分为AQI显著上升、持续高值、下降3个阶段. ②在AQI上升阶段(10月6—8日),受大陆高压控制,东部地区出现较弱地方风场和偏南风输送风场,风速在0~2 m/s,相对湿度在22%~86%,3 000 m逆温显著利于污染物积累. ③在持续污染阶段(10月8—11日),海上高压滞留,再加上台风“凤凰”北上阻挡大陆高压影响,使东部地区出现持续4 d的偏南风、偏东风弱风场,风速在1~4 m/s,相对湿度为57%~96%,造成严重污染. ④在AQI下降阶段(10月11—12日),后续大陆高压南下,前部冷锋利于污染物清除,风速达到6 m/s,是AQI降低的主要天气背景场. 因此,持续出现的稳定天气形势是导致此次中国东部重污染天气的主要气象原因.   相似文献   

14.
传输指数在合肥市重污染过程中的应用分析   总被引:2,自引:0,他引:2  
利用潜在源区贡献法计算了合肥市2015年冬季传输指数,并基于传输指数和PM_(2.5)浓度将合肥市的重污染过程划分为3类,同时对各类重污染过程进行气象成因分析.结果表明:污染物传输型重污染过程的传输指数明显增大且PM_(2.5)浓度急剧增大;污染物积累型重污染过程的传输指数无明显增大且PM_(2.5)浓度逐渐增大;污染物暴发性排放型重污染过程的传输指数无明显增大但PM_(2.5)浓度急剧增大.污染物传输型重污染过程主要是高压南下迫使北方重污染气团输送引起的;污染物积累型重污染过程主要是静稳的天气形势导致污染物堆积造成的;污染物爆发性排放型重污染过程是由污染物暴发性排放而无法及时扩散引起的.  相似文献   

15.
长三角地区2015年大气重污染特征及其影响因素   总被引:4,自引:0,他引:4  
基于2015年长三角地区129个环境空气质量监测站的空气质量指数(AQI)及主要大气污染物浓度数据,结合气象资料和HYSPLIT后向轨迹模式,探究长三角地区大气重污染的时间变化和空间集聚特征,并深入分析气象条件和区域传输对重污染过程发生和维持的影响.结果表明,2015年长三角地区各城市平均出现AQI超过200的重污染天气共8 d,重污染频率为2.01%,PM2.5作为首要污染物出现频次最多.从时间变化看,重污染主要分布在1月和12月;从空间分布看,北部地区重污染相比南部地区更为严重,徐州和常州市出现频率最高.选取典型重污染过程1月9—11日(纬向扩散型)、1月24—26日(经向扩散型)和12月20—26日(两种模式相结合的重污染天气)进行成因分析,发现长三角地区重污染天气主要受到西北风向、低风速、高湿度和逆温层的影响,导致大气污染物积累且不易扩散.基于HYSPLIT的大气传输轨迹及频率分布表明,来自西北方向的气流对江苏北部地区的污染输送特征有着显著影响.  相似文献   

16.
刘可可  张红  刘桂建 《环境科学》2019,40(8):3415-3420
通过对合肥市2018年大气PM_(2.5)和PM_(10)样品的采集,结合对样品中无机元素的测试分析,研究了PM_(2.5)和PM_(10)中的元素组成特征,并根据合肥市重污染天气和非污染天气下大气颗粒物中元素组成的差异性分析,探讨了合肥市重污染天气的主要污染物来源与成因.结果表明,本研究所检测的16种元素中,Si、Al、Mg和Ca这4种地壳元素在重污染天气的质量浓度较非污染天气低,可能是重污染状况下的静风天气引起的地面扬尘减少所造成的; S、Na、K、Cl、Ti、Fe、P、Cu和Ni等元素在重污染天气的质量浓度较非污染天气高,其中S元素的增幅最大,在重污染天气所占的比重和富集因子也大大提升,表明燃煤排放源是合肥地区重污染天气的主要污染成因;重金属元素含量低、富集因子大,其主要来源可能为垃圾焚烧、机动车和工业排放.  相似文献   

17.
2014年海口市大气污染物演变特征及典型污染个例分析   总被引:2,自引:0,他引:2  
主要分析了2014年海口市逐日的空气质量指数(AQI)和6种大气污染物的演变特征,同时,结合卫星遥感和轨迹模式等资料和方法对1次典型污染个例进行诊断.结果表明:海口市2014年的空气质量主要以优和良为主,6 d达到轻度污染级别,1 d达到中度污染(1月5日,AQI值为158).1月污染最为严重,其中,阶段1(1-6日)和阶段3(18-23日)AQI值偏高,阶段2(7-17日)和阶段4(24-31日)偏低.1月东亚地区天气形势演变对海口市AQI值具有动力影响.AQI偏高阶段,地面高压系统位于内蒙古东部,华南低层东北风场有利于污染物向海口市输送;而在AQI偏低阶段,地面高压系统东移出海,低层偏东风场不利于污染物的输送.后向轨迹聚类分析表明,1月海口市比率最大(39%)的气流主要经过大气污染相对严重的广东珠江三角洲(珠三角)地区,有利于污染物的区域传输.污染个例分析表明,海口市污染物浓度变化与气象要素有密切关系,10 m风速较小有助于近地面的污染物在区域内累积,水平风垂直切变偏弱对天气尺度扰动的发展和大气的垂直混合不利.卫星遥感和后向轨迹分析也表明,外源输送与海口市这次大气污染事件有直接关系.  相似文献   

18.
2017年5月4日至8日京津冀及周围地区出现了一次短时间的大气重污染现象。利用污染指标AQI、各污染物浓度和主要气象要素数据,借助Excel软件、SPSS软件,运用线性回归、相关性分析法,探究了本次重污染天气形成、输送与消散过程。结果表明:重度污染天气的主要污染物为PM10、PM2.5,为沙尘型重度污染天气;大气重度污染过程历时52个小时。特点为:形成、扩散及消散迅速且影响范围广;气象因子对重污染事件过程影响显著。稳定的大气环境为大气污染物输入提供条件,风向风速等气象因子为污染物扩散提供动力;污染事件在区域上呈现出明显的时空关联性:空间方面表现为,污染地的纬度值和风力风向决定了城市发生污染时间的先后顺序且污染过程具有一致性;时间方面表现为处于风向导向地的地区发生污染的时间较早、较长,即污染过程具有延后性。  相似文献   

19.
基于乌鲁木齐市大气污染物数据,对乌鲁木齐市2016年空气质量变化做趋势分析。利用乌鲁木齐市2016年同期气象要素,通过相关分析和主成分分析方法探讨了气象要素对PM_(2.5)浓度的影响。结果表明:1)PM_(2.5)、PM_(10)、SO_2、NO_2、CO的浓度全年变化趋势与空气质量指数(AQI)的变化趋势基本一致,O_3的浓度变化趋势与AQI变化趋势完全相反;2)PM_(2.5)浓度与CO、气压和相对湿度呈显著正相关,降水量、风速、气温和水气压与PM_(2.5)浓度呈显著负相关。  相似文献   

20.
《环境科学与技术》2021,44(5):162-170
该文采用空气质量指数(AQI)分析了2015-2019年哈尔滨市不同季节首要污染物的污染特征,利用HYSPLIT后向轨迹模式对近5年四季逐日72 h后向轨迹气流进行聚类分析,结合AQI数据,揭示哈尔滨市大气污染物传输路径及潜在源贡献因子和浓度权重轨迹的季节差异。结果表明:哈尔滨市优良天数占比从2015年的66%上升到2019年的83%,5年中2015年为大气污染较为严重的一年,5年来空气质量呈明显好转趋势。哈尔滨市大气污染呈现出不同的季节特征:优良天数平均值占比从高到低依次为夏季(94.6%)秋季(84.4%)春季(80%)冬季(53%),O3和PM2.5分别为空气质量最优的夏季与最差的冬季的首要污染物,春季和秋季首要污染物表现为由NO2和PM2.5复合型污染向以O3为主导的气态型污染转变。各季节轨迹分布与其所处的地理位置和季风气候密切相关,春季来自山东东部、渤海、辽宁、吉林到达哈尔滨的轨迹污染率最高;夏季污染率较高的气流轨迹均来自南部方向,主要传输方向自渤海越过山东东部到达青岛地区,经辽宁、吉林汇入哈尔滨;秋季污染率较高的轨迹分布最为分散,主要以近距离输送轨迹为主;冬季AQI值显著高于其他季节,可能与北方冬季进入燃煤采暖期,污染物排放增多有关,主要集中分布于西北方向输送进入哈尔滨,呈现出输送轨迹越短,污染率越高的特点,其中来自吉林的最短转向路径挟带的污染物浓度最高,其次为由俄罗斯东南部经内蒙古过吉林到达哈尔滨,说明吉林是影响哈尔滨市冬季大气污染物浓度偏高的主要地区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号