首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
目的了解铜陵市颗粒物中的元素特征和主要来源。方法选择2014年冬季和春季的部分时段,在铜陵市国家环境空气监测站——新民污水处理厂(工业区)采集PM_(10)和PM_(2.5)样品,使用X射线荧光光谱(XRF)法进行元素的定量测试。采样期间,冬季的空气质量以良和中、轻度污染为主;春季以中度和重度污染天气为主,采样期间出现了明显的重污染。结果 PM_(2.5)和PM_(10)中S和Si元素的浓度均比其余元素高,P和Cu元素的浓度远低于其余元素。空气污染的指数越高,Fe、Mg、Al、Si则更易富集在PM_(10)上,而K、Cu、Na、Cl、S元素更易富集在PM_(2.5)上,Ca和P这两种元素在PM_(10)和PM_(2.5)上的富集程度相当。空气颗粒物中,富集最多的元素是K,其次为Fe和Mg;元素Cu、K、Cl在PM_(10)中的富集程度要高于PM_(2.5)。结论扬尘(包括地面扬尘和建筑尘)是PM_(10)的最大来源,其次是开采矿山和燃烧生物质,燃煤、炼铜等工企业排放贡献最小;对于PM_(2.5)而言,最大的来源是风沙、扬尘和开采矿山,其次是燃煤、燃烧生物质和其他的工企业排放,炼铜的贡献最小。  相似文献   

2.
《环境科学与技术》2021,44(5):171-178
该文用玻璃纤维滤膜采集2019年乌鲁木齐市不同功能区采暖期和非采暖期的PM_(2.5)样品,经电感耦合等离子体发射光谱仪、冷原子荧光分光度仪对8种元素进行测定,运用地累积指数法和PMF模型进行元素来源分析,并对元素的人体健康风险进行评价。结果表明,乌鲁木齐市非采暖期PM_(2.5)中各元素浓度水平为FeZnAsCuPbMnNiHg,采暖期整体表现为FeZnCu≈AsMnPbNiHg,且呈采暖期高于非采暖期特点。Igeo结果表明,乌鲁木齐市大气PM_(2.5)中Fe、As、Cu、Hg、Pb为极重污染,Zn为重度污染,Ni为中-重污染,Mn为无污染。PMF源解析结果表明,乌鲁木齐市大气PM_(2.5)中元素来源主要是机动车尾气排放、工业冶金和燃煤,其次燃油排放及燃煤排放产生的二次污染也是重要的来源。健康风险模型评估结果显示,乌鲁木齐市大气PM_(2.5)中非致癌元素均不存在非致癌风险。致癌元素As存在对人体致癌的风险。  相似文献   

3.
兰州城区大气PM2.5污染特征及来源解析   总被引:7,自引:5,他引:2  
王新  聂燕  陈红  王博  黄韬  夏敦胜 《环境科学》2016,37(5):1619-1628
为探究兰州城区PM_(2.5)的污染特征及其来源,分别在兰州市城关区和西固区设置PM_(2.5)采样点,于2013年10月(非采暖期)和12月(采暖期)采集样品并进行分析,得到了PM_(2.5)及其16种化学组成的质量浓度.结果表明,兰州城区PM_(2.5)污染水平较高,平均质量浓度为129μg·m~(-3).样品无机元素平均质量浓度为:SCaFeAlMgPbZnMnTiCu,其中S、Ca、Fe、Al的质量浓度在1μg·m~(-3)以上,是主要元素组分;样品各无机元素质量浓度表现为采暖期高于非采暖期,城关区高于西固区.样品水溶性离子平均质量浓度为:SO~(2-)_4NO~-_3NH~+_4Cl~-K~+Na~+,其中SO~(2-)_4、NO~-_3、NH~+_4的质量浓度在10μg·m~(-3)以上,是主要离子组分;样品各水溶性离子质量浓度表现为采暖期高于非采暖期,西固区高于城关区.富集因子(EF)分析结果表明,元素Al、Ca、Mg、Ti的EF值均小于1以自然来源为主;元素Cu、Pb、S、Zn的EF值显著大于10,表明这4种元素在PM_(2.5)中高度富集,且主要源于人为活动造成的污染.主成分分析结果表明,交通排放源、生物质燃烧源、土壤源和二次粒子对兰州城区大气PM_(2.5)贡献显著.  相似文献   

4.
基于福州市区2015年2月—2016年1月间的大气PM_(2.5)监测数据,综合运用HYSPLIT后向轨迹模式、潜在源贡献因子法(WPSCF)与浓度权重轨迹分析(WCWT)等方法,探讨了福州市区冬、春季PM_(2.5)污染特征和典型污染过程成因,总结了气象因子和污染来源的季节性差异.研究期间,冬、春季是福州市区PM_(2.5)污染的主要季节,福州市区不同类型站点的PM_(2.5)浓度在冬、春季污染发生时均呈现出整体升高的特点,但浓度日变化却存在季节性差异,冬季无显著日变化,春季则表现为单峰单谷特征.福州市区春季主要受锋前暖区和高压后部等天气系统影响,大气扩散条件差,PM_(2.5)极易在不利的气象条件下累积,福建沿海地区是其PM_(2.5)污染的主要潜在源区;冬季污染易受高压天气系统作用,盛行偏北风,长江三角洲地区的污染物输入会对福州市区空气质量产生较大影响,长江三角洲、浙江东南沿海、福建北部是其PM_(2.5)污染的主要潜在源区.  相似文献   

5.
传输指数在合肥市重污染过程中的应用分析   总被引:2,自引:0,他引:2  
利用潜在源区贡献法计算了合肥市2015年冬季传输指数,并基于传输指数和PM_(2.5)浓度将合肥市的重污染过程划分为3类,同时对各类重污染过程进行气象成因分析.结果表明:污染物传输型重污染过程的传输指数明显增大且PM_(2.5)浓度急剧增大;污染物积累型重污染过程的传输指数无明显增大且PM_(2.5)浓度逐渐增大;污染物暴发性排放型重污染过程的传输指数无明显增大但PM_(2.5)浓度急剧增大.污染物传输型重污染过程主要是高压南下迫使北方重污染气团输送引起的;污染物积累型重污染过程主要是静稳的天气形势导致污染物堆积造成的;污染物爆发性排放型重污染过程是由污染物暴发性排放而无法及时扩散引起的.  相似文献   

6.
为探讨包头城区大气PM_(2.5)污染特征及主要来源,在包头城区设立4个采样点,于2015年12月-2016年9月采集大气PM_(2.5)样品,共获得160个有效样品,分析了PM_(2.5)及其无机元素、水溶性离子、元素碳(EC)和有机碳(OC)的质量浓度和污染特征。同时采集了包头城区土壤风沙尘、建筑施工尘、道路扬尘、煤炭燃烧尘、装备制造尘和金属冶炼尘等6类污染源,建立了包头市大气PM_(2.5)排放源成分谱。应用非负主成分回归化学质量平衡(NCPCRCMB)模型分析了PM_(2.5)来源。结果表明:观测期间包头市PM_(2.5)的年均浓度为80.58μg/m3,是中国《环境空气质量标准》(GB 3095-2012)年均PM_(2.5)二级标准限值的2.3倍;大气PM_(2.5)的季节变化特征为春、夏、秋三季低冬季高,且冬季显著高于其他三季;大气PM_(2.5)主要来源于二次离子和道路扬尘(贡献率分别为34.37%和15.98%),其他污染源贡献率相对较小。  相似文献   

7.
为了研究沈阳市采暖期与非采暖期空气PM_(2.5)污染特征及来源,于2015年1月29日~2016年1月26日在沈阳市采集PM_(2.5)有效样品113组,并分析了其载带的水溶性离子、碳组分及元素组分.结果表明,采样期间沈阳市PM_(2.5)质量浓度均值为66μg·m~(-3),其中31. 0%的样品超过《环境空气质量标准》(GB 3095-2012)日均值二级标准(75μg·m~(-3)),采暖期PM_(2.5)的平均浓度和超标率(90μg·m~(-3)、68. 6%)明显高于非采暖期(51μg·m~(-3)、31. 4%).采样期间21种元素(除了Mg、Ti、Ca、Fe、Si)、水溶性离子(除Ca~(2+)以外)和OC、EC质量浓度均呈现出采暖期高于非采暖期的趋势;[NO_3~-]/[SO_4~(2-)]比值表明非采暖期受移动源影响明显增加,燃煤等固定源仍是采暖期PM_(2.5)的主要来源,PM_(2.5)中水溶性离子是固定源和移动源共同作用的结果;氮氧化率(NOR)和硫氧化率(SOR)分析得到NO_x二次转化程度较弱,SO_2二次转化程度较强,特别是在非采暖期;富集因子结果表明EF值较高的元素主要来自燃煤、交通污染和工业排放. PM_(2.5)组分重构质量与实测质量呈现较好的相关性,采暖期和非采暖期PM_(2.5)中主要组分均为有机物(OM 28. 0%、23. 1%)、矿物尘(MIN 14. 5%、26. 0%)和SO_4~(2-)(15. 1%、19. 9%),PM_(2.5)受二次粒子、燃烧源和扬尘源影响较大.  相似文献   

8.
天津市春季道路降尘PM2.5和PM10中的元素特征   总被引:1,自引:0,他引:1  
为探究天津市春季道路降尘中元素污染特征及来源,于2015年春季采集了天津市道路降尘样品,通过再悬浮得到PM_(2.5)和PM_(10)滤膜样品,继而测定了滤膜样品中16种元素的含量,通过非参数检验、分歧系数法、富集因子法等研究了道路降尘中元素的污染特征、来源和成分谱的相似性.结果表明,天津市春季道路降尘PM_(2.5)和PM_(10)质量分数平均值在1%~20%之间的元素从大到小依次为:SiAlCaFeMgKNa;PM_(10)和PM_(2.5)中元素成分谱分歧系数为0.06,表明两者元素成分谱很相似;PM_(10)和PM_(2.5)中,元素Cd和Cr强烈富集,Zn、Cu、Pb和As显著富集;道路降尘PM_(2.5)和PM_(10)中元素主要来源于土壤风沙尘、建筑尘、交通尘(汽车尾气的排放、轮胎磨损和刹车片磨损)和煤烟尘.  相似文献   

9.
本文为探究鞍山市冬季大气细颗粒(PM_(2.5))中元素的污染特征和来源,于2016年1月在鞍山市6个监测点位采集PM_(2.5)样品,对PM_(2.5)载带的元素进行了浓度特征和富集因子分析,并通过因子分析确定了鞍山市PM_(2.5)中污染元素的主要来源。结果表明,K、Fe、Al、Ca、Na、Mg、Zn、Pb元素浓度含量之和占所有检测的14种元素浓度的97.13%;Cd、Zn、Pb、As、Cu五种元素属于极强富集,Ni属于强烈富集,Cr、Ca、V处于显著富集水平,Mg、K、Na、Fe呈现中度富集。因子分析结果表明,鞍山市冬季大气细颗粒物中污染元素主要来源于钢铁冶炼、机动车尾气、燃煤和建筑扬尘的复合型污染源。  相似文献   

10.
《环境科学与技术》2021,44(2):85-89
为探究自贡市冬季大气PM_(2.5)污染特征,文章分析了自贡市冬季大气PM_(2.5)中水溶性离子、无机元素和碳质组分的浓度水平及来源。结果表明,二次无机离子(NO_3~-、SO_4~(2-)、NH_4~+)是自贡冬季PM_(2.5)中水溶性离子的重要组成部分,占PM_(2.5)质量浓度的45.8%。SOR和NOR值分别为0.45和0.31,说明自贡市二次离子污染较为严重;PM_(2.5)中无机元素总浓度为2.7μg/m~3,占PM_(2.5)质量浓度的3.9%。通过富集因子法分析,Pd、Te、Ag、Cd、Sb、Se、Mo、Sn、Hg、Br、Cs、Tl为高度富集;As、Co、Sc、Ga、Pb、Cr、Zn、Cu、Ni为中度富集;Al、K、Mn、V、Ba为轻度富集;TC质量浓度为19.3μg/m~3,其中OC为11.7μg/m~3、EC为7.5μg/m~3,分别占PM_(2.5)质量浓度的15.3%、9.8%。PM_(2.5)中SOC平均浓度为1.6μg/m~3,占OC的13.7%;自贡市冬季PM_(2.5)来源贡献大小依次为二次硝酸盐(24.5%)、移动源(20.9%)、二次硫酸盐(18.1%)、工业源(17.2%)、生物质燃烧源(10.1%)、扬尘源(9.2%),应重点管控移动源、水泥行业、道路扬尘和施工扬尘、生物质燃烧等排放源。  相似文献   

11.
为探究临沂市PM_(2.5)和PM_(10)中元素的污染特征及来源,于2016年12月至2017年10月对临沂市环境空气中PM_(2.5)和PM_(10)进行了同步采样.利用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES)测定了其中的23种元素,并采用富集因子法和PMF法分析其来源.结果表明,采样期间临沂市PM_(2.5)和PM_(10)中主要元素为Si、Ca、Al、Fe、K、Na和Mg,分别占所测元素的质量分数为92.93%和94.61%. 18种元素(除Ti、Ni、Mo、Cd和Mg)的浓度水平在冬春季最高,夏秋季最低.其中Si、Al、Ca、K和Na表现为春季浓度最高,主要分布在粗颗粒中;Cu、Zn、Pb和Sb表现为冬季浓度最高,主要分布在细颗粒中.富集因子结果表明Cd、Sb和Bi元素富集程度显著,主要受燃煤、工业生产、垃圾焚烧等人为源共同影响.PMF源解析结果表明,临沂市PM_(2.5)中元素来源主要有燃煤和铜冶炼的混合源、市政垃圾焚烧源、扬尘源、机动车排放和工业源,贡献率分别为22.64%、 7.49%、 41.22%、 14.71%和13.94%.PM_(10)中元素来源主要有扬尘源、燃煤和铜冶炼的混合源、机动车排放和工业源,贡献率分别为55.47%、 19.80%、 7.48%和12.83%.由此可见,扬尘源和燃煤与铜冶炼的混合源是临沂市颗粒物污染形成过程中的重要源类.  相似文献   

12.
2018年12月30日至2019年1月15日石家庄市发生了连续的灰霾天气,出现12个重污染天,首要污染物均为PM2.5.本文从污染演变、时空分布、组分分析、污染来源和气象因素等多方面展开分析探讨污染成因.结果表明,PM2.5主要成分为二次无机离子(65.4%),主要来源为燃煤(24.4%)和工业工艺源(23.7%).随污染加剧SO42-占比和二次无机源贡献均大幅增加.先后受来自偏南-东南和偏西-西南方向低空气团及特殊地形、静稳高湿、近地逆温等不利气象条件影响,燃煤、工业和机动车尾气等一次源产生的污染物在太行山前快速积累,气态污染物二次转化和颗粒物吸湿增长推高PM2.5,硫酸盐暴发式增长加剧污染发生.建议重污染应急响应期间在确保各项减排措施落实到位情况下,加强二次无机组分前体物SO2、NOx及NH3排放源的管控,并重点关注SO2排放源(散煤等),同时加强市区东北方向新乐、无极、深泽、晋州和行唐区县大气排放源管理,减少局地传输影响.  相似文献   

13.
2013年1月北京市PM2.5区域来源解析   总被引:9,自引:11,他引:9  
李璇  聂滕  齐珺  周震  孙雪松 《环境科学》2015,36(4):1148-1153
2013年1月,北京地区经历了多次严重的灰霾天气,细颗粒物污染已成为北京地区所面临的重要问题.了解和掌握北京细颗粒物的污染来源,是解决细颗粒物污染的重要途径,也是制定防治政策的重要依据.通过建立三维空气质量模型系统,对2013年1月20~24日的污染过程进行模拟,并运用PSAT技术探究北京市细颗粒物污染的区域来源.结果表明,本地源排放是北京市PM2.5的主要来源,平均贡献率为34%;河北和天津的平均贡献率分别为26%和4%;京津冀周边地区及模拟边界外的贡献分别为12%和24%.在重污染日,区域传输对北京市PM2.5的影响显著增强,是北京PM2.5污染的主要来源.PM2.5中的硝酸盐主要来自北京市周边地区的贡献,而硫酸盐和二次有机气溶胶呈现远距离传输的特性,铵盐和其他组分则主要来自北京本地的贡献.  相似文献   

14.
北京地区秋冬季大气污染特征及成因分析   总被引:1,自引:0,他引:1  
为了研究近两年北京地区PM2. 5污染特征及成因变化,利用常规观测资料和改进的后向轨迹模型(Traj Stat)对2016~2017年秋冬季大气重污染时段的颗粒物浓度、气象要素和气团传输路径进行了综合分析.结果表明,研究期间北京地区共发生13次持续2 d以上的重污染事件,冬季过程约占61. 5%,且污染程度和持续时间均高于秋季.地面受弱气压场控制、高湿度、静小风以及较低的混合层高度,加之北京三面环山的特殊地势是导致秋冬季静稳型污染频发的重要因素,重污染期间PM2. 5/PM10的平均比值高达0. 86.累积阶段气团主要来自于西北、偏西、西南和东南方向,其中西南和东南路径为典型污染传输通道,轨迹频率为21. 6%.此外,采用WRF-CAMx模型定量估算了2016年12月16~22日典型过程中本地和外来污染源对北京PM2. 5的贡献,结果发现不同气团输送条件下,二者的贡献差异较大.当南部气团输入时,本地贡献会显著下降,以外部区域输送为主导;若气流来自西北方向情况则相反.污染过程期间,本地贡献为16. 5%~69. 3%.  相似文献   

15.
海西城市群PM2.5中重金属元素的污染特征及健康风险评价   总被引:3,自引:2,他引:1  
采集2010~2011年海西城市群PM_(2.5)样品,用粒子激发-X射线发射技术(PIXE)方法测试样品中痕量重金属(Zn、Cu、Pb、Mn、Ni、Cr、As)的浓度,分析痕量重金属的污染特征、富集程度和来源,并进行重金属对人体健康风险的评价.结果表明,PM_(2.5)中重金属总浓度的时空分布特征与PM_(2.5)的不一致,这与PM_(2.5)的某些主要贡献源(如建筑尘和扬尘等)并非痕量重金属的贡献源有关.PM_(2.5)中Zn、Cu、Pb、Mn、Ni、Cr、As等重金属的EF值均高于10,呈明显的人为源富集现象.主成分-多元线性回归(PCA-MLR)解析结果显示,PM_(2.5)中痕量重金属主要有3种来源,即燃煤和机动车尾气(70.59%)、混合源(燃煤、燃油和冶炼行业,17.55%)以及其他工业源(11.86%).健康风险评价结果显示,PM_(2.5)中致癌重金属(Ni、Cr、As)的风险值高于非致癌重金属(Zn、Cu、Pb、Mn)风险值,但均低于一般可接受风险水平(10-6),说明海西城市群大气环境PM_(2.5)中重金属未对人体健康造成危害.  相似文献   

16.
为了获取机动车源尾气和主要民用燃料源燃烧过程排放的颗粒物中含碳气溶胶的排放特征,使用多功能便携式稀释通道采样器和Model 5L-NDIR型OC/EC分析仪,采集分析了典型机动车源(汽油车、轻柴油车、重柴油车)、民用煤(块煤和型煤)和生物质燃料(麦秆、木板、葡萄树树枝)的PM10和PM2.5样品中的有机碳(OC)和元素碳(EC).结果表明,不同排放源释放的PM10和PM2.5中含碳气溶胶的质量分数存在显著差异.总碳(TC)在不同源PM10和PM2.5中的质量分数范围分别为40.8%~68.5%和30.5%~70.9%,OC/EC范围分别为1.49~31.56和1.90~87.57.不同源产生的含碳气溶胶均以OC为主,OC在PM10和PM2.5中的质量分数范围分别为56.3%~97.0%和65.0%~98.7%.在PM10和PM2.5的含碳气溶胶中OC质量分数按照从高到低...  相似文献   

17.
樊啸辰  郎建垒  程水源  王晓琦  吕喆 《环境科学》2018,39(10):4430-4438
大气颗粒物是影响我国大多数城市环境空气质量的首要污染物,近年来随着监测技术的进步和采样设备的改进,相关研究对象逐渐从大粒径的PM_10、PM_(2.5)转移到更小粒径的PM_1上.碳质组分是大气颗粒物的重要组成部分.以北京市为研究区域,选取2016年7月、10月及2017年1月、4月作为4个季节的代表月,对大气环境中的PM_(2.5)和PM_1进行采集,分析了二者的质量浓度和季节变化特征.采用两层嵌套气象-空气质量模型系统(WRF-CMAQ)耦合模型对采样时段进行了模拟,分析观测期间PM_(2.5)和PM_1的来源贡献,并使用因子分析法解析了碳质组分的来源.结果表明,PM_(2.5)和PM_1的质量浓度均呈现春、夏、秋、冬这4个季节递增的趋势;PM_1是PM_(2.5)中的主要组成,而且秋冬季节随着灰霾发生频率的增加,PM_1质量浓度占PM_(2.5)的比值明显升高;北京市大气环境中存在明显的二次污染,且SOC更容易在粒径更小的PM_1中积聚.散煤燃烧、机动车尾气排放、居民面源及生物质燃烧排放是北京市大气颗粒物的重要贡献来源;汽油车尾气、柴油车尾气、生物质燃烧和燃煤排放是北京市大气颗粒物中碳质组分的主要来源.  相似文献   

18.
采用北京市环境监测中心35个站点的PM2.5监测数据及MODIS Terra的大气气溶胶光学厚度L3 C051产品数据,分季度建立北京市PM2.5历史浓度遥感估算模型.结合北京大气污染物(PM10、PM2.5、SO2、NO2)年均浓度数据,对北京市2001—2012年间用于工业废气污染治理投资累计额进行了效能分析.研究表明,北京市工业废气污染治理投资对于改善大气PM10、SO2、NO2均有显著贡献,但其对于大气PM2.5污染的治理效果并不明显.可能原因包括PM2.5排放源的复杂性、相关治理措施对PM2.5的针对性、经济增长导致的区域PM2.5源排放持续增长及区域外排放的持续影响等.因此,需要采取专门的有针对性的治理措施,建立健全大气污染治理技术和激励机制,控制工业燃煤及城市交通排放,削减本地及周边源排放,以有效改善北京地区大气PM2.5污染状况.  相似文献   

19.
为了研究城市大气PM2.5中重金属的污染特征和来源,于2017年的7月和10月及2018年的1月和4月,利用在线金属分析仪对郑州市大气PM2.5中的21种元素进行在线检测,分析了重金属浓度变化;通过富集因子、主成分分析和潜在源贡献等方法对重金属进行溯源;采用环境健康风险评价模型评估其健康风险.结果表明,K、 Zn、 Mn、 Pb、 Cu、 As、 Cr和Se的浓度随污染等级的提高而增加;富集因子和主成分分析法结果表明,重金属主要来源为地壳源、混合燃烧源、工业源和机动车源;雷达特征图表明,地壳源主导的污染主要发生在春、冬两季,混合燃烧源主导的污染主要发生在冬季;Pb、 As和Ni受汾渭平原、京津冀和河南南部的传输影响较大,Cd受采样点西北部影响较大;As对成年人和儿童均有显著致癌风险,Pb和Sb对儿童存在显著非致癌风险.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号