首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
利用2017年合肥市污染监测站点PM_(2.5)浓度数据、气象数据以及土地利用类型数据,结合随机森林算法(RF)与土地利用回归模型(LUR),模拟合肥市PM_(2.5)浓度空间分布,并利用主成分分析法对PM_(2.5)影响因素进行分析。结果表明:(1)合肥市PM_(2.5)浓度日变化特征大致呈双峰变化,春季、夏季及秋季的峰值多出现在8∶00~9∶00,而冬季的峰值则出现在10∶00~11∶00。低谷值大致都出现在15∶00~17∶00。全年PM_(2.5)浓度变化趋势与春季类似。夏季PM_(2.5)浓度变化最为平稳。(2)2017年合肥市PM_(2.5)浓度分布由城市中心向外减弱,形成北高南低,西高东低的空间分布格局。(3)影响因素方面,PM_(2.5)浓度变化与降水、风速以及相对湿度等呈负相关关系,日照对PM_(2.5)浓度的影响较大,气压及其他污染物与PM_(2.5)浓度呈正相关关系,其中NO_2对PM_(2.5)浓度的影响力度较大。  相似文献   

2.
基于长时间序列的遥感反演PM_(2.5)数据,采用Theil-Sen median趋势分析、Mann-Kendall、R/S和相关系数分析法,分析了1998~2014年我国PM_(2.5)时空格局、空间变化特征以及污染来源。结果表明:1998~2014年期间,最高只有24.67%的国土面积上,PM_(2.5)浓度达到世界卫生组织(WHO)的年平均准则值10μg/m~3的要求;PM_(2.5)浓度小于10μg/m~3地区主要是青藏高原、台湾、北疆,内蒙古北部和黑龙江西北部,年均PM_(2.5)浓度大于95μg/m~3的地区主要是南疆和华北平原。1998~2014年期间,全国61.84%的国土面积PM_(2.5)浓度呈上升趋势,平均上升了3.91μg/m~3,上升最大值为39.1μg/m~3。其中,呈显著上升的地区主要分布在中西部地区和华北平原,且未来部分地区仍呈增长的趋势。PM_(2.5)浓度上升的驱动因素包括自然因素与人类活动排放,其中,南疆的PM_(2.5)主要来自塔克拉玛干沙漠的沙尘气溶胶,而其他地区PM_(2.5)主要来自人类活动排放。  相似文献   

3.
根据济南市2010—2017年空气质量监测数据,分析近年来济南市空气质量状况、颗粒物(PM_(10)、PM_(2.5))污染物浓度变化情况以及重污染天气特征,并利用MARGA离子在线分析仪ADI 2 080分析2016年12月16日—12月30日重污染期间济南市PM_(2.5)组分谱特征。结果表明:2010-2017年,济南市环境空气质量持续改善,环境空气质量以良至轻度污染为主,至2017年济南市环境空气综合指数为6.95,但重污染比例依然很高,且颗粒物(PM_(2.5)和PM_(10))作为首要污染物的比例高达81%,颗粒物污染(特别是细颗粒物污染)仍是济南市环境空气质量污染的主要污染因素,尤其是在冬季采暖季,重污染天气仍在频发,重污染过程中硝酸盐、硫酸盐为主导贡献组分。  相似文献   

4.
利用2010—2016年济南市环境空气质量监测数据,分析了济南市PM_(2.5)的年变化、月变化、日变化和区域分布特征。结果表明:(1)跑马岭监测点(远离市区的清洁对照点)PM_(2.5)浓度呈逐年下降的趋势,其余监测点PM_(2.5)的浓度均在2013年达到峰值后逐渐下降。(2)济南市冬季污染最重,1月达到最高;夏季污染最轻,8月达到最低。(3)PM_(2.5)平均浓度有两个高值中心,不同季节PM_(2.5)高值中心有所不同。(4)夏季,有无逆温时PM_(2.5)差异较小且日变化不明显;冬季,有无逆温时PM_(2.5)差异最大。  相似文献   

5.
长江三角洲城市群空气质量时空分布特征   总被引:2,自引:0,他引:2  
基于数理统计、空间插值技术、相关性分析与GIS地图表达,研究长江三角洲城市群AQI及各空气含量因子污染浓度的时间、空间分布特征。通过提取国务院最新规划的长江三角洲城市群空间分布数据,划分研究区为"一核五圈",探讨了空气质量指数的时间变化特征和AQI、首要污染物的空间分布规律,定量评价了AQI与其污染因子的相关性,结果表明:(1)时间变化上,长三角城市群空气质量季均变化规律为夏季最好,冬季最差;月均变化呈波浪形分布,在1月份的平均浓度皆为最高;周均变化为:在一周后半段达到一周最大值;(2)空间分布上,分季节看,AQI在春、秋、冬三季空间梯度变化显著,呈现北高、南低的分布格局。在首要污染物的分布上,以PM_(2.5)和O_3均分长三角地区;(3)PM_(2.5)含量空间分布与AQI有较高相似性,均处于北高南低的分布状态,臭氧分布呈现东高西低,即较发达的城市臭氧含量相对较高的空间分布格局。最后通过相关性计算,AQI与PM_(2.5)相关性显著,与O_3没有明显相关性,为长三角大气污染防治提供依据。  相似文献   

6.
长江经济带PM_(2.5)时空特征及影响因素研究   总被引:1,自引:0,他引:1  
大气细颗粒物(PM_(2.5))因其对空气环境质量乃至人类健康的巨大危害而逐渐引起学者们的关注。本文以我国综合实力最强、战略支撑作用最为突出的区域之一——长江经济带为研究对象,基于城市级空气质量监测数据,运用地理学时空分析与GIS可视化方法探索并呈现了2015年长江经济带PM_(2.5)的时空分布特征及其演变规律;在此基础上,结合空间回归模型考察了PM_(2.5)浓度与区域城市发展之间的内在关系。结果表明,就空间特征而言,长江中下游地区PM_(2.5)污染较长江上游地区更为严重,长江北岸地区比长江南岸地区更为严重;PM_(2.5)高浓度集聚地带主要位于鄂皖苏大部分地区,与空气质量较佳的云南及其周边地区呈"对角"分布状态。长江经济带内城市间PM_(2.5)浓度存在着显著的正向空间自相关,且自相关性随距离增大而不断减弱,其门槛尺度约为900 km;在这一范围内,PM_(2.5)空间集聚效应较为明显。就时间特征而言,冬季PM_(2.5)浓度相对较高,春秋两季次之,夏季空气质量最好;各地区浓度分布在年初相对离散,后有所趋同。此外,PM_(2.5)与其他类型的大气污染物(如SO2、NO2、O3)浓度两两之间均存在着显著的正相关性,暗示大气污染物从原发污染演变为二次污染,形成恶性循环。空间回归分析结果表明,PM_(2.5)污染随经济发展水平的提高呈现先上升后下降的趋势,在一定程度上支持了"环境库兹涅兹曲线"假说;且人口密度、公共交通运输强度均在不同程度上导致长江经济带PM_(2.5)浓度的升高。最后,从区域性联防联控、不同类型大气污染物协同治理、促进经济发展方式转型等方面为长江经济带的大气环境治理提出切实可行的政策建议。  相似文献   

7.
使用2010~2013年气溶胶颗粒物质量浓度资料和相关气象资料,分析了风和降水对颗粒物的清除作用,结果表明:降水对气溶胶颗粒物的清除效果随雨强、降水持续时间及降水总量增加而增加。同等雨量条件下,降水对PM_(_(Course))的清除效果要好于对PM_(2.5)的清除效果。降水对气溶胶颗粒物的清除效果与降水前气溶胶颗粒物浓度关系密切,降水开始前气溶胶颗粒物浓度较低时,降水对其清除效果不佳,降水开始前气溶胶颗粒物浓度较高时,降水对其有明显的清除作用。降水前后的气溶胶颗粒物浓度有明显的正相关,气溶胶颗粒物浓度较高时,需要连续多次降水过程才会使其浓度下降到较低的水平。气溶胶颗粒物浓度在较低水平时,雨强增大不会使其浓度继续降低;强降水发生后,雨强减小会使气溶胶颗粒物浓度升高。气溶胶颗粒物大颗粒(PM_(Course))总体为碱性,小颗粒(PM_(2.5))总体为酸性。降水的pH值和电导率都和降水间隔和风速成正相关,和降水量成反相关。气溶胶颗粒物浓度随水平风速增长呈现出先减后增的趋势。对PM_(2.5)来说,当水平风速在7m/s以下时,其浓度随水平风速增大而减小,当水平风速大于7m/s时,其浓度随水平风速增大而增大。PMC ourse变化趋势与PM_(2.5)类似,其转折点的水平风速为4m/s。  相似文献   

8.
大气污染物的源排放是形成灰霾天气的内因,气象条件是形成灰霾天气的外因。本研究通过构建PM_(2.5)浓度的两段式分布滞后模型,结合自然环境因素及经济因素对PM_(2.5)的影响因素进行了综合分析。在第一段模型中构建了PM_(2.5)和大气污染物排放量的分布滞后模型,第二段模型中构建了不同的大气污染源对大气污染物排放量的影响因素模型。大气污染物排放源主要包括工业源、生活源、机动车源、集中式污染治理设施源。在工业源中,工业废气重度污染行业是大气污染物排放主要的贡献者;在生活源中,燃煤消费量对大气污染物排放影响很大,这也是冬季供暖期间PM_(2.5)剧增的原因;在机动车源中,尽管黄标车的保有量仅占汽车保有量的10%左右,但却占据了颗粒物排放量的绝大部分。利用京津冀代表性城市PM_(2.5)日度数据研究得出平均气温、平均风速、日照时数、平均气压、降雨量、平均相对湿度、沙尘暴等因素对PM_(2.5)浓度的负向与正向作用。研究发现,大气污染物排放量对PM_(2.5)浓度具有聚集的滞后效应,当期大气污染物排放量、滞后一期、滞后两期、滞后三期大气污染物对PM_(2.5)浓度具有显著的正向作用,且影响依次递减。构建的大气污染物排放量的污染源影响因素模型揭示一个地区煤炭消费量、工业废气重度污染行业工业增加值、黄标车保有量对该地区大气污染物排放量具有显著影响。本研究对优化能源消费结构和产业结构,减少空气污染物排放提出了对策建议。  相似文献   

9.
近年来,长三角地区灰霾天气持续增多,空气细颗粒物污染问题日益突出。基于2013年1月至2015年5月长三角地区及周边缓冲区内共214个空气质量监测站点PM2.5逐时监测数据,运用普通克里金插值方法,从年、季、月尺度上分析了PM2.5的空间分布格局和时间动态变化。结果表明:(1)2 a来,长三角地区PM2.5浓度空间分布明显呈现整体北部高南部低,局部地区略有突出的分布特征;长三角地区PM2.5浓度年均值为57.08μg/m3;其中,江苏省PM2.5的年均值为三省市最高,为65.84μg/m3;其次为上海市,年均值为53.87μg/m3;浙江省PM2.5的年均值较小,为51.53μg/m3。(2)从季节尺度分析,长三角地区PM2.5浓度变化表现出冬春季高,夏秋季低的变化趋势;这与区域内冬季风向来源、降水稀少、气象扩散条件差有着密切的关系; (3)长三角地区月浓度变化大致呈U形分布; 12月份PM2.5浓度最高; 3月份以后, PM2.5浓度开始呈逐步下降趋势;在5~9月份,区域PM2.5处于"U"字的谷底,其中6月份夏收时期秸秆焚烧、气象等因素导致PM2.5浓度有略微升高;进入10月份后迅速攀升,且11、12月份呈现持续升高态势。  相似文献   

10.
基于环境承载力的京津冀雾霾治理政策效果评估   总被引:2,自引:0,他引:2  
雾霾污染治理是京津冀协同发展需要解决的重大问题。2013年9月颁布的"大气污染防治行动计划(大气国十条)"明确提出了京津冀地区雾霾治理目标,各地区也制定了雾霾污染治理的政策措施。本文旨在环境承载力分析的基础上评估雾霾治理的政策效果。首先,分析了京津冀地区大气环境污染特征,并结合相关文献确定京津冀地区雾霾治理的主要影响因素为污染物排放、风力以及相邻地区的传输效应等;其次,将影响PM_(2.5)浓度主要因素进行统计建模,并采用分位数回归模型进行矫正,大大提高模型的拟合精度;再次,基于大气国十条规定的京津冀各地区的PM_(2.5)年均浓度目标计算各地区的大气环境承载力;最后,在假定风力等气象条件不变的情况下,根据大气国十条规定的京津冀地区的污染物排放量利用统计模型模拟2017年的雾霾污染水平,模拟除张家口、承德和秦皇岛以外其余10个地区年均浓度60μg/m~3和70μg/m~3目标下PM_(2.5)日均浓度发生频率的变化情况,评估和讨论大气国十条提出的京津冀雾霾治理目标。结果表明:按照大气国十条减排计划的京津冀地区污染物排放量普遍高于其PM_(2.5)浓度目标下的大气环境容量(邯郸市除外),即大气国十条所规定的减排措施难以实现既定的PM_(2.5)浓度目标;PM_(2.5)年均浓度目标从60μg/m~3上升到70μg/m~3,重污染天气发生频率上升有限,大气污染物的减排量却显著下降。因此,要实现既定的雾霾浓度控制目标,天津和河北需要进一步加大污染物减排力度;雾霾治理应注重减少重污染天气的发生频率,治理重点应转向重度雾霾发生频率较高的冬季污染物排放控制;在科学确定环境承载力的基础上,确定切实可行的PM_(2.5)浓度控制目标,制定具有可操作性的污染物减排计划。  相似文献   

11.
为揭示不同时间尺度下岩溶区地下河出口CO_2通量的变化特征及其影响因素,本研究采用静态浮游箱-气相色谱法对毛村地下河出口水-气界面CO_2交换通量开展季节性和连续48小时昼夜监测。结果显示:水-气界面CO_2交换通量具有明显的季节性和昼夜变化特征,并且均表现为由水体向大气释放CO_2,呈现出大气CO_2源的特征。在季节性尺度上,CO_2交换通量的变化范围为90.27~406.32 mg·(m~2·h)~(-1),平均值为253.50 mg·(m~2·h)~(-1)。CO_2交换通量的季节性特征表现为雨季大于旱季。在昼夜尺度上,CO_2交换通量的变化范围为46.8~244.45 mg·(m~2·h)~(-1),平均值为137.81 mg·(m~2·h)~(-1)。CO_2交换通量的昼夜性特征表现夜晚大于白天,最高值出现在凌晨0∶00和1∶00,最低值出现在下午14∶00和15∶00。由于毛村地下河出口水-气界面CO_2交换通量受到诸多因素的影响。通过相关分析表明,毛村地下河出口水-气界面CO_2交换通量在季节性尺度下的主控因素为岩溶水体中碳酸的平衡系统,但是在昼夜尺度下的主控因素为局地区域环境参数。  相似文献   

12.
于2013年3月~2014年4月采集常州市郊区、工业区、居民区和背景点的春季、秋季大气PM_(2.5)样品,用离子色谱法分析其中水溶性离子成分,对其组成、分布特征及来源等进行研究。结果表明:SO_4~(2–)、NO_3~–和NH_4~+是常州市PM_(2.5)中的主要水溶性离子,3种离子在PM_(2.5)中占比为18%~33%。不同功能区之间水溶性离子的占比和差异较小,常州背景点可能受到周边城市污染输送的影响。在PM_(2.5)中,NH_4~+与SO_4~(2–)和NO_3~–主要以(NH_4)_2SO_4和NH_NO_3存在;硫转化率(SOR)和氮转化率(NOR)是衡量二次无机粒子转化的有效手段,常州市各功能区的SOR均大于NOR;春季SOR0.25,NOR0.1,满足发生强烈光化学氧化反应的条件。  相似文献   

13.
我国大气污染形势严峻,科学合理地评估大气污染的经济损失不仅有益于政策效益分析,同时是“绿色国民经济”核算的一项基础性工作。基于我国2013年2月到2018年7月的区县月度房屋交易数据和7种大气污染指标(AQI、SO2、NO2、CO、O3、PM10、PM2.5)的浓度数据,运用特征价格模型实证量化大气污染物减少的边际支付意愿(MWTP)和总经济损失。首先通过改变理性预期的时间段验证理性预期假设的成立,在此基础上采用理性预期方法解决遗漏变量所导致的内生性问题。研究结果显示:①NO2、CO、PM2.5和PM10每上升1μg/m3,房价分别降低约2.04%、0.028%、0.34%和0.39%;而SO2与O3对房价的影响并不显著。②近年来大气污染的经济损失有所降低,政府的治理效果显著,但仍不容小觑。2013年AQI、PM10和PM2.5未达标导致的经济损失分别约为35600亿元、19300亿元和24100亿元,约占当年GDP的6.06%、3.29%和4.11%;2018年分别降低至19200亿元、5300亿元和6700亿元,占当年GDP的2.14%、0.60%和0.74%。尽管PM10和PM2.5浓度也在逐年下降,但仍未达到《环境空气质量标准》所要求的二级限值。最终评估结果显示,PM10和PM2.5二者导致的经济损失的加总数值,与AQI得到的数值相差无异。进一步证实了我国当前大气污染导致的社会经济福利损失主要是来自PM10和PM2.5的超标,因此治理“雾霾”是改善当前空气质量的关键。  相似文献   

14.
科学识别PM_(2.5)的空间分异及其驱动因素,是实现区域空气污染治理的关键。以国测点日均PM_(2.5)浓度为数据来源,基于多种空间分析方法,研究长江三角洲城市群PM_(2.5)浓度的时空演变及影响因素。结果发现:(1)2013~2017年,长江三角洲城市群的PM_(2.5)年平均浓度,处于不断下降的趋势;城市间的差异,呈现逐渐减少的趋势。(2)一年中,12月份的PM_(2.5)浓度最高,8月份的PM_(2.5)浓度最低。1~12月,PM_(2.5)浓度先减后增。(3)2013年,PM_(2.5)高浓度区域主要分布在江苏省;2017年,PM_(2.5)高浓度区域主要分布在安徽省。5年间,PM_(2.5)浓度的空间重心,向安徽省转移72 km。(4)长江三角洲城市群PM_(2.5)浓度存在明显的空间自相关。存在PM_(2.5)浓度高-高值区、低-低值区"扎堆"现象,且集聚程度趋于增大。(5)影响PM_(2.5)浓度的因素包括了自然因素和社会因素。自然因素中,降雨与PM_(2.5)浓度显著相关。社会因素主要来自工业排放、交通排放和能源消耗。其中,能源消耗的影响程度最大,工业排放次之,交通排放最后。  相似文献   

15.
针对目前城市河流经常断流的突出问题, 以重庆主城典型重污染河流伏牛溪为例, 开展城市小型季节性河流生态补水自动调度方案的研究。通过分析伏牛溪年内径流特征, 确定了其补水时段为每年的11月~次年4月;通过计算伏牛溪生态环境需水量, 认为对于小型季节性河流的补水不应一味地追求常年丰沛、稳定的水量, 而应以重塑季节性河流天然健康的自然流态为目标, 从而提出了一种基于天然健康需水量的生态补水调度方案, 并制定了河源水库电动阀门及补水泵的运行控制策略等具体技术措施。结果表明, 采用该调度方案, 不仅能实现伏牛溪生态补水系统的自动化运行, 而且与现有补水系统运行方式相比, 可节能67.4%, 为补水系统的可持续运行创造了条件。  相似文献   

16.
长江中游城市群PM2.5时空特征及影响因素研究   总被引:1,自引:0,他引:1  
近年来,伴随着工业化和城市化进程的加快,长江中游城市群灰霾天气持续增多,空气污染问题日益突出。基于2015年1月至2016年2月长江中游城市群189个空气质量监测站点的PM2.5逐时监测数据,采用普通克里金插值、探索性空间数据分析法和相关系数法,从年、季、月尺度上分析了PM2.5的空间分布格局及其影响因素。结果表明:(1)在年尺度上,长江中游城市群PM2.5浓度空间分布总体呈现出明显的北部高南部低,局部地区略有突出的特征,该区PM2.5浓度年均值为55.28 μg/m3,其中湖北省PM2.5的年均值为三省市最高,为68.17 μg/m3;其次为湖南省,年均值为53.66 μg/m3;江西省PM2.5的年均值较小,为44.01 μg/m3。(2)在季节尺度上,长江中游城市群PM2.5浓度表现出冬春季高,夏秋季低的现势性,这与区域内夏季高温多雨、冬季低温少雨的气候条件密切相关。(3)长江中游城市群PM2.5月浓度变化大致呈U形分布,1月份PM2.5浓度最高, 1~6月份,PM2.5浓度呈逐步下降趋势, 6~8月份,区域PM2.5浓度处于“U”字的谷底。(4)NO2、CO是影响PM2.5浓度的两项主控大气污染物,而降水量和相对湿度则是影响PM2.5浓度的两个重要气象因素。 关键词: PM2.5浓度;时空特征;气象因素;长江中游城市群  相似文献   

17.
重庆市主城区空气污染天气特征研究   总被引:1,自引:0,他引:1  
利用2003~2008年重庆市主城区大气污染监测资料,分析了轻度污染以上天气的变化特征。结果表明重庆主城区的主要污染物为PM10,PM10浓度具有独特的“双峰双谷”日变化特征;污染天气具有明显的季节特征,主要污染期为秋末到初春;污染天气具有连续性特征,污染天气持续时间尺度主要集中在2~7 d;污染天气过程具有典型的大气环流和天气特征,本地地面天气类型主要以低压或均压场为主,中高纬度高空以纬向环流或西北气流为主,天气以阴天或阴晴相间为主;污染天气过程中本地气象要素变化呈现规律性,地面24 h气压变化总趋势为负变压,24 h变温为正变温,平均相对湿度维持在72%~85%,风速的变化趋势不大,基本维持在1~2 m/s,低层逆温明显。污染天气过程结束时气压明显回升,温度显著下降,相对湿度显著增加。  相似文献   

18.
近53年宜昌市霾的演变特征及气象因子诊断   总被引:2,自引:0,他引:2  
利用1955~2007年宜昌地面观测站相对湿度、能见度资料,2001~2007年08时高空探测规定层气温资料,在对霾记录进行订正处理的基础上,研究了霾天气的气候特征以及霾与地面风向风速、地面气压场、地面气温、连续不降水日数以及高空逆温层、等温层的关系。结果表明,宜昌霾天气从70年代中后期开始迅速增加,从80年代至今每年的霾日数基本在125 d以上;冬季和初春是宜昌霾天气多发的季节,尤其是1、12月几乎有一半的时间会出现霾;5~9月降水季节由于雨水的冲刷作用,宜昌霾天气出现的较少;气压场的减弱、地面气温的增加等气象因子有利于霾天气的出现;连续无降水日数比较多的月份,对应地该月的霾日一般也比较多。同时,研究也初步揭示了近些年宜昌霾日增多除了与城市工业快速发展、生态环境遭到破坏,从而使滞留在空气中的污染物增多有关外,还与宜昌静风多、风速小,低空常存在逆温层、等温层的气候特点,以及宜昌的盛行风方向多化工企业这些因素有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号