首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Water managers face the daunting task of balancing limited water resources with over-subscribed water users among competing demands. They face the additional challenge of taking water planning decisions in an uncertain environment with limited and sometimes inaccurate observed and simulated hydrological data. Within South African watersheds, spatial parameterization data for hydrological models are now available at two different basin management resolutions (termed quaternary and quinary). Currently, water management decisions in the Crocodile River watershed are often made at a more coarse resolution, which may exclude crucial insights into the data. This research has the following aims (1) to explore whether model performance is improved by parameterization using a more detailed quinary-scale watershed data and (2) to explore whether quinary-scale models reduce uncertainty in allocation or restriction decisions to provide better informed water resources management and decision outcomes. This study used the Agricultural Catchments Research Unit (ACRU) agro-hydrological watershed model, to evaluate the effects of spatial discretization at the quaternary and quinary scales on watershed hydrological response and runoff within the Crocodile River basin. Model performance was evaluated using statistical comparisons of results using traditional goodness-of-fit measures such as the coefficient of efficiency (C eff), root mean square of the error and the coefficient of determination (R 2) to compare simulated monthly flows and observed flows in six subcatchments. Traditional interpretation of these goodness-of-fit measures may be inadequate as they can be subjectively interpreted and easily influenced by the number of data points, outliers and model bias. This research utilizes a recently released model evaluation program (FITEVAL) which presents probability distributions of R 2and C eff derived by bootstrapping, graphical representation of observed and simulated stream flows, incorporates statistical significance to detect the sufficiency of the R 2and C eff and determines the presence of outliers and bias. While analyses indicate that the ACRU model performs marginally better when parameterized and calibrated at the quinary scale, the measurements at both scales show significant variability in predictions for both high and low flows that are endemic to southern African hydrology. The improved evaluation methods also allow for the analysis of data collection errors at monitoring sites and help determine the effect of data quality on adaptive water planning management decisions. Given that many water resource challenges are complex adaptive systems, these expanded performance analysis tools help provide deeper insights into matching watershed decision metrics and model-derived predictions.  相似文献   

2.
Abstract: Physically based regional scale hydrologic modeling is gaining importance for planning and management of water resources. Calibration and validation of such regional scale model is necessary before applying it for scenario assessment. However, in most regional scale hydrologic modeling, flow validation is performed at the river basin outlet without accounting for spatial variations in hydrological parameters within the subunits. In this study, we calibrated the model to capture the spatial variations in runoff at subwatershed level to assure local water balance, and validated the streamflow at key gaging stations along the river to assure temporal variability. Ohio and Arkansas‐White‐Red River Basins of the United States were modeled using Soil and Water Assessment Tool (SWAT) for the period from 1961 to 1990. R2 values of average annual runoff at subwatersheds were 0.78 and 0.99 for the Ohio and Arkansas Basins. Observed and simulated annual and monthly streamflow from 1961 to 1990 is used for temporal validation at the gages. R2 values estimated were greater than 0.6. In summary, spatially distributed calibration at subwatersheds and temporal validation at the stream gages accounted for the spatial and temporal hydrological patterns reasonably well in the two river basins. This study highlights the importance of spatially distributed calibration and validation in large river basins.  相似文献   

3.
Hydrological models have been increasingly used by hydrologists and water resource managers to understand natural processes and human activities that affect watersheds. In this study, we use the physically based model, Soil and Water Assessment Tool (SWAT), to investigate the hydrological processes in the East River Basin in South China, a coastal area dominated by monsoonal climate. The SWAT model was calibrated using 8-year (1973–1980) record of the daily streamflow at the basin outlet (Boluo station), and then validated using data collected during the subsequent 8 years (1981–1988). Statistical evaluation shows that SWAT can consistently simulate the streamflow of the East River with monthly Nash–Sutcliffe efficiencies of 0.93 for calibration and 0.90 for validation at the Boluo station. We analyzed the model simulations with calibrated parameters, presented the spatiotemporal distribution of the key hydrological components, and quantified their responses to different land uses. Watershed managers can use the results of this study to understand hydrological features and evaluate water resources of the East River in terms of sustainable development and effective management.  相似文献   

4.
The use of regression tree analysis is examined as a tool to evaluate hydrologic and land use factors that affect nitrate and chloride stream concentrations during low-flow conditions. Although this data mining technique has been used to assess a range of ecological parameters, it has not previously been used for stream water quality analysis. Regression tree analysis was conducted on nitrate and chloride data from 71 watersheds in the Willamette River Basin to determine whether this method provides a greater predictive ability compared to standard multiple linear regression, and to elucidate the potential roles of controlling mechanisms. Metrics used in the models included a variety of watershed-scale landscape indices and land use classifications. Regression tree analysis significantly enhanced model accuracy over multiple linear regression, increasing nitrate R 2 values from 0.38 to 0.75 and chloride R 2 values from 0.64 to 0.85 and as indicated by the ΔAIC value. These improvements are primarily attributed to the ability for regression trees to more effectively handle interactions and manage non-linear functions associated with watershed heterogeneity within the basin. Whereas hydrologic factors governed the conservative chloride tracer in the model, land use dominated control of nitrate concentrations. Watersheds containing higher agricultural activity did not necessarily yield high nitrate concentrations, but agricultural areas combined with either small proportions of forested land or greater urbanization generated nitrate levels far exceeding water quality standards. Although further refinements are recommended, we conclude that regression tree analysis presents water resource managers a promising tool that improves on the predictive ability of standard statistical methods, provides insight into controlling mechanisms, and helps identify catchment characteristics associated with water quality impairment.  相似文献   

5.
Eutrophication, harmful algal blooms, and human health impacts are critical environmental challenges resulting from excess nitrogen and phosphorus in surface waters. Yet we have limited information regarding how wetland characteristics mediate water quality across watershed scales. We developed a large, novel set of spatial variables characterizing hydrological flowpaths from wetlands to streams, that is, “wetland hydrological transport variables,” to explore how wetlands statistically explain the variability in total nitrogen (TN) and total phosphorus (TP) concentrations across the Upper Mississippi River Basin (UMRB) in the United States. We found that wetland flowpath variables improved landscape-to-aquatic nutrient multilinear regression models (from R2 = 0.89 to 0.91 for TN; R2 = 0.53 to 0.84 for TP) and provided insights into potential processes governing how wetlands influence watershed-scale TN and TP concentrations. Specifically, flowpath variables describing flow-attenuating environments, for example, subsurface transport compared to overland flowpaths, were related to lower TN and TP concentrations. Frequent hydrological connections from wetlands to streams were also linked to low TP concentrations, which likely suggests a nutrient source limitation in some areas of the UMRB. Consideration of wetland flowpaths could inform management and conservation activities designed to reduce nutrient export to downstream waters.  相似文献   

6.
Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the “Ecological Limits of Hydrologic Alteration (ELOHA)”. The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81–2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.  相似文献   

7.
ABSTRACT: Climatic data such as temperature, solar radiation, relative humidity, and wind speed have been widely used to estimate evapotranspiration. Moat of the solar radiation data and portions of the relative humidity data are either not available or missing from the records in Puerto Rico. Depending upon the availability and data characteristics of records, three methods (including a regression technique, an averaging of historical data, and a regional average) were used to generate missing data, and a time series analysis was used to synthesize a series of climatic data. The limitations and applicability of each method are discussed. The results showed that the time series analysis method can be successfully used to synthesize a series of monthly solar radiations for several stations. The regression technique and the regional average can be successfully applied to generate missing monthly solar radiation data. The regression technique and the averaging of historical data have been satisfactorily used to interpolate missing monthly relative humidity. The explained variance (R2) varied from 0.68 to 0.88, which are both significant at the 0.05 level of significance.  相似文献   

8.
This paper investigates the prediction of solar radiation model and actual solar energy in Osmaniye, Turkey. Four models were used to estimate using the parameters of sunshine duration and average temperature. In order to obtain the statistical performance analysis of models, the coefficient of determination (R2), mean absolute percentage error (MAPE), mean absolute bias error (MABE), and root mean square error (RMSE) were used. Results obtained from the linear regression using the parameters of sunshine duration and average temperature showed a good prediction of the monthly average daily global solar radiation on a horizontal surface. In order to obtain solar energy, daily and monthly average solar radiation values were calculated from the five minute average recorded values by using meteorological measuring device. As a result of this measurement, the highest monthly and yearly mean solar radiation values were 698 (April in 2013) and 549 (2014 year) W/m2 respectively. On an annual scale the maximum global solar radiation changes from 26.38 MJ/m2/day by June to 19.19 MJ/m2/day by September in 2013. Minimum global solar radiation changes from 14.05 MJ/m2/day by October to 7.20 MJ/m2/day by January in 2013. Yearly average energy potential during the measurement period was 16.53 MJ/m2/day (in 2013). The results show that Osmaniye has a considerable solar energy potential to produce electricity.  相似文献   

9.
ABSTRACT The problem of estimating missing values in water quality data using linear interpolation and harmonic analysis is studied to see which one of these two methods yields better estimates for the missing values. The data used in this study consisted of midnight values of dissolved oxygen from the Ohio River collected over a period of one year at Stratton station. Various hypothetical cases of missing data are considered and the two methods of supplementing missing values are evaluated using statistical tests. The results indicate that when the percentage of missed data points exceeded ten percent of the total number in the original sample, harmonic analysis usually yielded better estimates for both the regularly and irregularly missed cases. For data that exhibit cyclic variation, examples of which are dissolved oxygen concentration and water temperature, harmonic analysis as a data generation technique appears to be superior to linear interpolation.  相似文献   

10.
Abstract: The hydrologic performance of DRAINMOD 5.1 was assessed for the southern Quebec region considering freezing/thawing conditions. A tile drained agricultural field in the Pike River watershed was instrumented to measure tile drainage volumes. The model was calibrated using water table depth and subsurface flow data over a two‐year period, while another two‐year dataset served to validate the model. DRAINMOD 5.1 accurately simulated the timing and magnitude of subsurface drainage events. The model also simulated the pattern of water table fluctuations with a good degree of accuracy. The R2 between the observed and simulated daily WTD for calibration was >0.78, and that for validation was 0.93. The corresponding coefficients of efficiency (E) were >0.74 and 0.31. The R2 and E values for calibration/validation of subsurface flow were 0.73/0.48 and 0.72/0.40, respectively. DRAINMOD simulated monthly subsurface flow quite accurately (E > 0.82 and R2 > 0.84). The model precisely simulated daily/monthly drain flow over the entire year, including the winter months. Thus DRAINMOD 5.1 performed well in simulating the hydrology of a cold region.  相似文献   

11.
Monthly composites of the Normalized Difference Vegetation Indices (NDVI), derived from the National Oceanic and Atmospheric Administration's (NOAA) Advanced Very High Resolution Radiometer (AVILRR), were transformed linearly into monthly evaporation rates and compared with detailed hydrologic-model simulation results for five watersheds across the United States. Model-simulated monthly evaporation values showed high correlations (mean R2= .77) with NDVI-derived evaporation estimates. These latter estimates, used in a classical water balance model, resulted in equally accurate simulations of monthly runoff than when the model was run to estimate monthly evaporation via soil moisture accounting. Comparison of NDVI-derived evaporation estimates with pan data showed promise for transforming NDVI values into evaporation estimates under both wet and water-limiting conditions without resorting to the application of any kind of calibrated hydrologic models.  相似文献   

12.
Abstract: This study incorporates the newly available Gravity Recovery and Climate Experiment (GRACE) water storage data and water table data from well logs to reduce parameter uncertainty in Soil and Water Assessment Tool (SWAT) calibration using a SUFI2 (sequential uncertainty fitting) framework for the Lower Missouri River Basin. Model evaluations are performed in multiple stages using a multiobjective function consisting of multisite streamflow and GRACE water storage data as well as a groundwater component. Results show that (1) a model calibrated with both streamflow and GRACE data simultaneously can maintain the water balance for the whole basin, but may improperly partition surface flow and base flow. Additional inclusion of the groundwater constraint can significantly improve the model performance in groundwater hydrological processes. In our case, the estimation of specific yield of shallow aquifers has been increased to 10?2 from previous much underestimated level (<10?3). (2) The daily streamflow data are needed to confine the parameters related to water flow in channels such as the Manning’s coefficient, which are less sensitive to the monthly simulations. (3) Parameters are nonuniformly sensitive for different goal variables, and thus, proper specification of a prior distribution of parameters may be the key factor for global optimization algorithms to obtain stable and realistic model performance.  相似文献   

13.
In Massachusetts, the Charles River Watershed Association conducts a regular water quality monitoring and public notification program in the Charles River Basin during the recreational season to inform users of the river's health. This program has relied on laboratory analyses of river samples for fecal coliform bacteria levels, however, results are not available until at least 24 hours after sampling. To avoid the need for laboratory analyses, ordinary least squares (OLS) and logistic regression models were developed to predict fecal coliform bacteria concentrations and the probabilities of exceeding the Massachusetts secondary contact recreation standard for bacteria based on meteorological conditions and streamflow. The OLS models resulted in adjusted R2s ranging from 50 to 60 percent. An uncertainty analysis reveals that of the total variability of fecal coliform bacteria concentrations, 45 percent is explained by the OLS regression model, 15 percent is explained by both measurement and space sampling error, and 40 percent is explained by time sampling error. Higher accuracy in future bacteria forecasting models would likely result from reductions in laboratory measurement errors and improved sampling designs.  相似文献   

14.
The utilization of water quality analysis to inform optimal decision-making is imperative to achieve sustainable management of river water quality. A multitude of research works in the past has focused on river water quality modeling. Despite being a precise statistical regression technique that allows for fitting separate models for all potential combinations of predictors and selecting the optimal subset model, the application of best subset method in river water quality modeling is not widely adopted. The current research aims to validate the use of best subset method in evaluating the water quality parameters of the Godavari River, one of the largest rivers in India, by developing regression equations for different combinations of its physicochemical parameters. The study involves in formulating best subset regression equations to estimate the concentrations of river water quality parameters while also identifying and quantifying their variations. A total of 17 water quality parameters are analyzed at 13 monitoring sites using 13 years (1993–2005) of observed data for the monsoon (June–October) period and post-monsoon (November–February) period. The final subset model is selected among model combinations that are developed for each year's dataset through widely used statistical criteria such as R2, F value, adjusted R2a, AICc, and RSS. The final best subset model across all parameters exhibits R2 values surpassing 0.8, indicating that the models possess the ability to account for over 80% of the variations in the concentrations of dependent parameters. Therefore, the findings demonstrated the appropriateness of this method in evaluating the water quality parameters in extensive rivers. This work is very useful for decision-making and in the management of river water quality for its sustainable use in the study area.  相似文献   

15.
Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.  相似文献   

16.
ABSTRACT: Effective planning for use of water resources requires accurate information on hydrologic variability induced by climatic fluctuations. Tree-ring analysis is one method of extending our knowledge of hydrologic variability beyond the relatively short period covered by gaged streamflow records. In this paper, a network of recently developed tree-ring chronologies is used to reconstruct annual river discharge in the upper Gila River drainage in southeastern Arizona and southwestern Arizona since A.D. 1663. The need for data on hydrologic variability for this semi-arid basin is accentuated because water supply is inadequate to meet current demand. A reconstruction based on multiple linear regression (R2=0.66) indicates that 20th century is unusual for clustering of high-discharge years (early 1900s), severity of multiyear drought (1950s), and amplification of low-frequency discharge variations. Periods of low discharge recur at irregular intervals averaging about 20 years. Comparison with other tree-ring reconstructions shows that these low-flow periods are synchronous from the Gila Basin to the southern part of the Upper Colorado River Basin.  相似文献   

17.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) model was used to assess the effects of potential future climate change on the hydrology of the Upper Mississippi River Basin (UMRB). Calibration and validation of SWAT were performed using monthly stream flows for 1968–1987 and 1988–1997, respectively. The R2 and Nash‐Sutcliffe simulation efficiency values computed for the monthly comparisons were 0.74 and 0.69 for the calibration period and 0.82 and 0.81 for the validation period. The effects of nine 30‐year (1968 to 1997) sensitivity runs and six climate change scenarios were then analyzed, relative to a scenario baseline. A doubling of atmospheric CO2 to 660 ppmv (while holding other climate variables constant) resulted in a 36 percent increase in average annual streamflow while average annual flow changes of ?49, ?26, 28, and 58 percent were predicted for precipitation change scenarios of ?20, ?10, 10, and 20 percent, respectively. Mean annual streamflow changes of 51,10, 2, ?6, 38, and 27 percent were predicted by SWAT in response to climate change projections generated from the CISRO‐RegCM2, CCC, CCSR, CISRO‐Mk2, GFDL, and HadCMS general circulation model scenarios. High seasonal variability was also predicted within individual climate change scenarios and large variability was indicated between scenarios within specific months. Overall, the climate change scenarios reveal a large degree of uncertainty in current climate change forecasts for the region. The results also indicate that the simulated UMRB hydrology is very sensitive to current forecasted future climate changes.  相似文献   

18.
ABSTRACT: In the San Joaquin River Basin, California, a realtime water quality forecasting model was developed to help improve the management of saline agricultural and wetland drainage to meet water quality objectives. Predicted salt loads from the water quality forecasting model, SJRIODAY, were consistently within ± 11 percent of actual, within ± 14 percent for seven-day forecasts, and within ± 26 percent for 14-day forecasts for the 16- month trial period. When the 48 days dominated by rainfall/runoff events were eliminated from the data set, the error bar decreased to ± 9 percent for the model and ± 11 percent and ± 17 percent for the seven-day and 14-day forecasts, respectively. Constraints on the use of the model for salinity management on the San Joaquin River include the number of entities that control or influence water quality and the lack of a centralized authority to direct their activities. The lack of real-time monitoring sensors for other primary constituents of concern, such as selenium and boron, limits the application of the model to salinity at the present time. A case study describes wetland drainage releases scheduled to coincide with high river flows and significant river assimilative capacity for salt loads.  相似文献   

19.
The riparian ecosystem management model (REMM) was field tested using five years (2005‐2009) of measured hydrologic and water quality data on a riparian buffer located in the Tar‐Pamlico River Basin, North Carolina. The buffer site received NO3‐N loading from an agricultural field that was fertilized with inorganic fertilizer. Field results showed the buffer reduced groundwater NO3‐N concentration moving to the stream over a five‐year period. REMM was calibrated hydrologically using daily field‐measured water table depths (WTDs), and with monthly NO3‐N concentrations in groundwater wells. Results showed simulated WTDs and NO3‐N concentrations in good agreement with measured values. The mean absolute error and Willmott's index of agreement for WTDs varied from 13‐45 cm and 0.72‐0.92, respectively, while the root mean square error and Willmott's index of agreement for NO3‐N concentrations ranged from 1.04‐5.92 mg/l and 0.1‐0.86, respectively, over the five‐year period. REMM predicted plant nitrogen (N) uptake and denitrification were within ranges reported in other riparian buffer field studies. The calibrated and validated REMM was used to simulate 33 years of buffer performance at the site. Results showed that on average the buffer reduced NO3‐N concentrations from 12 mg/l at the field edge to 0.7 mg/l at the stream edge over the simulation period, while the total N and NO3‐N load reductions from the field edge to the stream were 77 and 82%, respectively.  相似文献   

20.
Abstract: Both ground rain gauge and remotely sensed precipitation (Next Generation Weather Radar – NEXRAD Stage III) data have been used to support spatially distributed hydrological modeling. This study is unique in that it utilizes and compares the performance of National Weather Service (NWS) rain gauge, NEXRAD Stage III, and Tropical Rainfall Measurement Mission (TRMM) 3B42 (Version 6) data for the hydrological modeling of the Middle Nueces River Watershed in South Texas and Middle Rio Grande Watershed in South Texas and northern Mexico. The hydrologic model chosen for this study is the Soil and Water Assessment Tool (SWAT), which is a comprehensive, physical‐based tool that models watershed hydrology and water quality within stream reaches. Minor adjustments to selected model parameters were applied to make parameter values more realistic based on results from previous studies. In both watersheds, NEXRAD Stage III data yields results with low mass balance error between simulated and actual streamflow (±13%) and high monthly Nash‐Sutcliffe efficiency coefficients (NS > 0.60) for both calibration (July 1, 2003 to December 31, 2006) and validation (2007) periods. In the Middle Rio Grande Watershed NEXRAD Stage III data also yield robust daily results (time averaged over a three‐day period) with NS values of (0.60‐0.88). TRMM 3B42 data generate simulations for the Middle Rio Grande Watershed of variable qualtiy (MBE = +13 to ?16%; NS = 0.38‐0.94; RMSE = 0.07‐0.65), but greatly overestimates streamflow during the calibration period in the Middle Nueces Watershed. During the calibration period use of NWS rain gauge data does not generate acceptable simulations in both watersheds. Significantly, our study is the first to successfully demonstrate the utility of satellite‐estimated precipitation (TRMM 3B42) in supporting hydrologic modeling with SWAT; thereby, potentially extending the realm (between 50°N and 50°S) where remotely sensed precipitation data can support hydrologic modeling outside of regions that have modern, ground‐based radar networks (i.e., much of the third world).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号