首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction: Alcohol-related impairment is a key contributing factor in traffic crashes. However, only a few studies have focused on pedestrian impairment as a crash characteristic. In Louisiana, pedestrian fatalities have been increasing. From 2010 to 2016, the number of pedestrian fatalities increased by 62%. A total of 128 pedestrians were killed in traffic crashes in 2016, and 34.4% of those fatalities involved pedestrians under the influence (PUI) of drugs or alcohol. Furthermore, alcohol-PUI fatalities have increased by 120% from 2010 to 2016. There is a vital need to examine the key contributing attributes that are associated with a high number of PUI crashes. Method: In this study, the research team analyzed Louisiana’s traffic crash data from 2010 to 2016 by applying correspondence regression analysis to identify the key contributing attributes and association patterns based on PUI involved injury levels. Results: The findings identified five risk clusters: intersection crashes at business/industrial locations, mid-block crashes on undivided roadways at residential and business/residential locations, segment related crashes associated with a pedestrian standing in the road, open country crashes with no lighting at night, and pedestrian violation related crashes on divided roadways. The association maps identified several critical attributes that are more associated with fatal and severe PUI crashes. These attributes are dark to no lighting, open country roadways, and non-intersection locations. Practical Applications: The findings of this study may be used to help design effective mitigation strategies to reduce PUI crashes.  相似文献   

2.
Introduction: The pedestrian hybrid beacon (PHB) is a traffic control device used at pedestrian crossings. A recent Arizona Department of Transportation research effort investigated changes in crashes for different severity levels and crash types (e.g., rear-end crashes) due to the PHB presence, as well as for crashes involving pedestrians and bicycles. Method: Two types of methodologies were used to evaluate the safety of PHBs: (a) an Empirical Bayes (EB) before-after study, and (b) a long-term cross-sectional observational study. For the EB before-after evaluation, the research team considered three reference groups: unsignalized intersections, signalized intersections, and both unsignalized and signalized intersections combined. Results: For the signalized and combined unsignalized and signalized intersection groups, all crash types considered showed statistically significant reductions in crashes (e.g., total crashes, fatal and injury crashes, rear-end crashes, fatal and injury rear-end crashes, angle crashes, fatal and injury angle crashes, pedestrian-related crashes, and fatal and injury pedestrian-related crashes). A cross-sectional study was conducted with a larger number of PHBs (186) to identify relationships between roadway characteristics and crashes at PHBs, especially with respect to the distance to an adjacent traffic control signal. The distance to an adjacent traffic signal was found to be significant only at the α = 0.1 level, and only for rear-end and fatal and injury rear-end crashes. Conclusions: This analysis represents the largest known study to date on the safety impacts of PHBs, along with a focus on how crossing and geometric characteristics affect crash patterns. The study showed the safety benefits of PHBs for both pedestrians and vehicles. Practical Applications: The findings from this study clearly support the installation of PHBs at midblock or intersection crossings, as well as at crossings on higher-speed roads.  相似文献   

3.
Introduction: More than 800 pedestrians die annually in crashes on interstates and other freeways in the United States, but few studies have examined their characteristics. Method: Data from the Fatality Analysis Reporting System on pedestrians fatally injured during 2015–2017 were analyzed. Chi-square tests compared characteristics of pedestrians killed on interstates and other freeways with those that died on other roads, and across crash types among freeway deaths. Land use characteristics of locations where pedestrians were killed while crossing freeways in a large state (California) were identified using Google Earth. Results: A larger proportion of pedestrians killed on freeways died on dark and unlit roads (48% vs. 32%), were male (78% vs. 68%), or were ages 20–44 (55% vs. 32%) compared with pedestrians killed on other roads. Crossing (42%) was the most common crash type among pedestrian deaths on freeways, followed by disabled-vehicle-related crashes (18%). Pedestrians who died while crossing more often had blood alcohol concentrations ≥ 0.08 g/dL (40%) than those in disabled-vehicle-related (22%) or other crashes (34%). Deaths in crossing crashes were more likely than other freeway deaths to occur on urban roads (81%), at speed limits ≤50 mph (13%), or between 18:00 and 23:59 (49%), and 58% of crossing crashes analyzed for land use were located between residential and other (e.g., commercial, recreational) uses. Over a third (37%) of deaths in disabled-vehicle-related crashes occurred at speed limits ≥70 mph. Conclusions: A surprising proportion of pedestrian deaths occur on controlled-access roads not designed for walking. Countermeasures for these crashes need to be implemented to see meaningful reductions in pedestrian fatalities overall. Practical applications: Improving roadway and vehicle lighting, requiring reflective warning devices for marking disabled vehicles, constructing pedestrian overpasses and underpasses in areas frequently crossed, and promoting alternative means of traveling between residential and commercial areas could help.  相似文献   

4.
Introduction: Pedestrian fatalities in the United States increased 45.5% between 2009 and 2017. More than 85% of those additional pedestrian fatalities occurred at night. Method: We examine Fatality Analysis Reporting System (FARS) data for fatal pedestrian crashes that occurred in the dark between 2002 and 2017. Within-variable and before/after examinations of crashes in terms of infrastructure, user, vehicle, and situational characteristics are performed with one-way analysis of variance (ANOVA) and two-sample t-tests. We model changes in crash characteristic proportions between 2002–2009 and 2010–2017 using linear regressions and test for autocorrelation with Breusch-Godfrey tests. Results: The increase in fatal nighttime pedestrian crashes is most strongly correlated with infrastructure factors: non-intersection unmarked locations (saw 80.8% of additional fatalities); 40–45 mph roads (54.6%); five-lane roads (40.7%); urban (99.7%); and arterials (81.1%). In addition, SUVs were involved in 39.7% of additional fatalities, overrepresenting their share of the fleet. Increased pedestrian alcohol and drug involvement warrant further investigation. The age of pedestrians killed increased more (18.1%) than the national average (3.2%). Conclusions: By identifying factors related to the increase in nighttime pedestrian fatalities, this work constitutes a vital first step in making our streets safer for pedestrians. Practical Applications: More research is needed to understand the efficacy of different solutions, but this paper provides guidance for such future research. Engineering solutions such as road diets or traffic calming may be used to improve identified infrastructure issues by reducing vehicle speeds and road widths. Rethinking vehicle design, especially high front profiles, may improve vehicle issues. However, the problems giving rise to these pedestrian fatalities are likely a result of not only engineering issues but also interrelated social and political factors. Solutions may be correspondingly comprehensive, employing non-linear, systems-based approaches such as Safe Systems.  相似文献   

5.
Introduction: Motorcyclists are exposed to more fatalities and severe injuries per mile of travel as compared to other vehicle drivers. Moreover, crashes that take place at intersections are more likely to result in serious or fatal injuries as compared to those that occur at non-intersections. Therefore, the purpose of this study is to evaluate the contributing factors to motorcycle crash severity at intersections. Method: A data set of 7,714 motorcycle crashes at intersections in the State of Victoria, Australia was analyzed over the period of 2006–2018. The multinomial logit model was used for evaluating the motorcycle crashes. The severity of motorcycle crashes was divided into three categories: minor injury, serious injury and fatal injury. The risk factors consisted of four major categories: motorcyclist characteristics, environmental characteristics, intersection characteristics and crash characteristics. Results: The results of the model demonstrated that certain factors increased the probability of fatal injuries. These factors were: motorcyclists aged over 59 years, weekend crashes, midnight/early morning crashes, morning rush hours crashes, multiple vehicles involved in the crash, t-intersections, crashes in towns, crashes in rural areas, stop or give-way intersections, roundabouts, and uncontrolled intersections. By contrast, factors such as female motorcyclists, snowy or stormy or foggy weather, rainy weather, evening rush hours crashes, and unpaved roads reduced the probability of fatal injuries. Practical Applications: The results from our study demonstrated that certain treatment measures for t-intersections may reduce the probability of fatal injuries. An effective way for improving the safety of stop or give-way intersections and uncontrolled intersections could be to convert them to all-way stop controls. Further, it is recommended to educate the older riders that with ageing, there are physiological changes that occur within the body which can increase both crash likelihood and injury severity.  相似文献   

6.
Objective: This study looks at mitigating and aggravating factors that are associated with the injury severity of pedestrians when they have crashes with another road user and overcomes existing limitations in the literature by focusing attention on the built environment and considering spatial correlation across crashes.

Method: Reports for 6,539 pedestrian crashes occurred in Denmark between 2006 and 2015 were merged with geographic information system resources containing detailed information about the built environment and exposure at the crash locations. A linearized spatial logit model estimated the probability of pedestrians sustaining a severe or fatal injury conditional on the occurrence of a crash with another road user.

Results: This study confirms previous findings about older pedestrians and intoxicated pedestrians being the most vulnerable road users and crashes with heavy vehicles and in roads with higher speed limits being related to the most severe outcomes. This study provides novel perspectives by showing positive spatial correlations of crashes with the same severity outcomes and emphasizing the role of the built environment in the proximity of the crash.

Conclusions: This study emphasizes the need for thinking about traffic calming measures, illumination solutions, road maintenance programs, and speed limit reductions. Moreover, this study emphasizes the role of the built environment, because shopping areas, residential areas, and walking traffic density are positively related to a reduction in pedestrian injury severity. Often, these areas have in common a larger pedestrian mass that is more likely to make other road users more aware and attentive, whereas the same does not seem to apply to areas with lower pedestrian density.  相似文献   


7.
Introduction: Predicting crash counts by severity plays a dominant role in identifying roadway sites that experience overrepresented crashes, or an increase in the potential for crashes with higher severity levels. Valid and reliable methodologies for predicting highway accidents by severity are necessary in assessing contributing factors to severe highway crashes, and assisting the practitioners in allocating safety improvement resources. Methods: This paper uses urban and suburban intersection data in Connecticut, along with two sophisticated modeling approaches, i.e. a Multivariate Poisson-Lognormal (MVPLN) model and a Joint Negative Binomial-Generalized Ordered Probit Fractional Split (NB-GOPFS) model to assess the methodological rationality and accuracy by accommodating for the unobserved factors in predicting crash counts by severity level. Furthermore, crash prediction models based on vehicle damage level are estimated using the same two methodologies to supplement the injury severity in estimating crashes by severity when the sample mean of severe injury crashes (e.g., fatal crashes) is very low. Results: The model estimation results highlight the presence of correlations of crash counts among severity levels, as well as the crash counts in total and crash proportions by different severity levels. A comparison of results indicates that injury severity and vehicle damage are highly consistent. Conclusions: Crash severity counts are significantly correlated and should be accommodated in crash prediction models. Practical application: The findings of this research could help select sound and reliable methodologies for predicting highway accidents by injury severity. When crash data samples have challenges associated with the low observed sampling rates for severe injury crashes, this research also confirmed that vehicle damage can be appropriate as an alternative to injury severity in crash prediction by severity.  相似文献   

8.
A great number of pedestrians are killed or injured in traffic crashes every year in the US. Vehicle crashes involving pedestrians are often more severe than other crashes because pedestrians are unprotected and are hence more likely to suffer injuries or death if struck by a motor vehicle. To improve pedestrian safety, a variety of treatments such as overhead flashing beacons, in-street crossing signs, in-roadway warning lights, and traffic calming measures have been used. One treatment, in-street yield-to-pedestrian channelizing devices (YTPCD), has been used in many states, including Pennsylvania, where approximately 10% of traffic crash fatalities are pedestrians each year.In an effort to improve pedestrian safety, the Pennsylvania Department of Transportation (PennDOT) has widely deployed YTPCD. This study examines the spillover (indirect) effects of such devices on motorist and pedestrian behavior. With data collected from eight sites that did not have but were in the vicinity of YTPCD implementations, analysis results show that such devices have significantly positive spillover effects on pedestrian safety at intersections, but they tend to have negative spillover effects at mid-block locations. Overall, the YTPCD appear to have a positive impact on changing motorist and pedestrian behavior, and merit consideration for future usage of this type of device.  相似文献   

9.
Introduction: Cycling is one of the main forms of transportation in Denmark. However, while the number of traffic crash fatalities in the country has decreased over the past decade, the frequency of cyclists killed or seriously injured has increased. The high rate of serious injuries and fatalities associated with cycling emphasizes the increasing need for mitigating the severity of such crashes. Method: This study conducted an in-depth analysis of cyclist injury severity resulting from single and multiparty bicycle-involved crashes. Detailed information was collected using self-reporting data undertaken in Denmark for a 12-month period between 1 November 2012 and 31 October 2013. Separate multilevel logistic (MLL) regression models were applied to estimate cyclist injury severity for single and multiparty crashes. The goodness-of-fit measures favored the MLL models over the standard logistic models, capturing the intercorrelation among bicycle crashes that occurred in the same geographical area. Results: The results also showed that single bicycle-involved crashes resulted in more serious outcomes when compared to multiparty crashes. For both single and multiparty bicycle crash categories, non-urban areas were associated with more serious injury outcomes. For the single crashes, wet surface condition, autumn and summer seasons, evening and night periods, non-adverse weather conditions, cyclists aged between 45 and 64 years, male sex, riding for the purpose of work or educational activities, and bicycles with light turned-off were associated with severe injuries. For the multiparty crashes, intersections, bicycle paths, non-winter season, not being employed or retired, lower personal car ownership, and race bicycles were directly related to severe injury consequences. Practical Applications: The findings of this study demonstrated that the best way to promote cycling safety is the combination of improving the design and maintenance of cycling facilities, encouraging safe cycling behavior, and intensifying enforcement efforts.  相似文献   

10.
11.
Introduction: The state of Wyoming, like other western United States, is characterized by mountainous terrain. Such terrain is well noted for its severe downgrades and difficult geometry. Given the specific challenges of driving in such difficult terrain, crashes with severe injuries are bound to occur. The literature is replete with research about factors that influence crash injury severity under different conditions. Differences in geometric characteristics of downgrades and mechanics of vehicle operations on such sections mean different factors may be at play in impacting crash severity in contrast to straight, level roadway sections. However, the impact of downgrades on injury severity has not been fully explored in the literature. This study is thus an attempt to fill this research gap. In this paper, an investigation was carried out to determine the influencing factors of crash injury severities of downgrade crashes. Method: Due to the ordered nature of the response variable, the ordered logit model was chosen to investigate the influencing factors of crash injury severities of downgrade crashes. The model was calibrated separately for single and multiple-vehicle crashes to ensure the different factors influencing both types of crashes were captured. Results: The parameter estimates were as expected and mostly had signs consistent with engineering intuition. The results of the ordered model for single-vehicle crashes indicated that alcohol, gender, road condition, vehicle type, point of impact, vehicle maneuver, safety equipment use, driver action, and annual average daily traffic (AADT) per lane all impacted the injury severity of downgrade crashes. Safety equipment use, lighting conditions, posted speed limit, and lane width were also found to be significant factors influencing multiple-vehicle downgrade crashes. Injury severity probability plots were included as part of the study to provide a pictorial representation of how some of the variables change in response to each level of crash injury severity. Conclusion: Overall, this study provides insights into contributory factors of downgrade crashes. The literature review indicated that there are substantial differences between single- and multiple vehicle crashes. This was confirmed by the analysis which showed that mostly, separate factors impacted the crash injury severity of the two crash types. Practical applications: The results of this study could be used by policy makers, in other locations, to reduce downgrade crashes in mountainous areas.  相似文献   

12.

Introduction

Previous studies have shown that increased risk in darkness is particularly great for pedestrian crashes, suggesting that attempts to improve headlighting should focus on factors that likely influence those crashes. The current analysis was designed to provide information about how details of pedestrian crashes may differ between daylight and darkness. Method: All pedestrian crashes that occurred in daylight or dark conditions in Michigan during 2004 were analyzed in terms of the variables included in the State of Michigan crash database. Additional analysis of the narratives and diagrams in police accident reports was performed for a subset of 400 of those crashes—200 sampled from daylight and 200 sampled from darkness. Results: Several differences were found that appear to be related to the characteristic asymmetry of low-beam headlamps, which (in the United States) distributes more light on the passenger's side than the driver's side of the vehicle. These results provide preliminary quantification of the how the photometric differences between the right and left sides of typical headlamps may affect pedestrian crash risk.

Impact on Industry

The results suggest that efforts to provide supplemental forward vehicle lighting in turns may have safety benefits for pedestrians.  相似文献   

13.

Introduction

Previous research has shown that there are inequalities with regard to traffic accident risk between different social categories. This study describes the influence of the type of residential municipality (with or without deprived urban areas, “ZUS, zones urbaines sensibles”), used as an indicator of contextual deprivation, on the incidence and severity of road trauma involving people of under 25 years of age in the Rhône.

Method

Injury data were taken from The Rhône Road Trauma Registry. The study covers the 2004–2007 period, with 13,589 young casualties. The incidence of traffic injury of all severities were computed according to the type of municipality and the age, gender, and type of road user. The ratios of the incidences of deprived municipalities, compared with others were calculated. Subsequently the severity factors and incidences according to the severity level (ISS 1–8, ISS 9+) were studied.

Results

For the main types of road users except motorized two-wheeler users, the incidences were higher in the deprived municipalities: the greatest difference was for pedestrians, where the incidences were almost twice those of other municipalities. This excess risk, constituting a health inequality topic rarely considered, was even greater in municipalities with two or three ZUSs. It was essentially observed for minor injuries among motorists, cyclists, and pedestrians.

Conclusions

While the incidence increased among people less than 25 years of age, the severity of road injuries was lower in deprived neighborhoods, contrary to what is suggested by other studies. This lower severity disappeared when taking into account the crash characteristics.

Impact on industry

The incidence of injuries as a pedestrian, cyclist or motorist is higher among young people living in deprived municipalities. These areas should therefore be the targets of dedicated education programs, as well as further investigations about urban planning.  相似文献   

14.
Objectives: Engaging in active transport modes (especially walking) is a healthy and environmentally friendly alternative to driving and may be particularly beneficial for older adults. However, older adults are a vulnerable group: they are at higher risk of injury compared with younger adults, mainly due to frailty and may be at increased risk of collision due to the effects of age on sensory, cognitive, and motor abilities. Moreover, our population is aging, and there is a trend for the current cohort of older adults to maintain mobility later in life compared with previous cohorts. Though these trends have serious implications for transport policy and safety, little is known about the contributing factors and injury outcomes of pedestrian collision. Further, previous research generally considers the older population as a homogeneous group and rarely considers the increased risks associated with continued ageing.

Method: Collision characteristics and injury outcomes for 2 subgroups of older pedestrians (65–74 years and 75+ years) were examined by extracting data from the state police–reported crash dataset and hospital admission/emergency department presentation data over the 10-year period between 2003 and 2012. Variables identified for analysis included pedestrian characteristics (age, gender, activity, etc.), crash location and type, injury characteristics and severity, and duration of hospital stay. A spatial analysis of crash locations was also undertaken to identify collision clusters and the contribution of environmental features on collision and injury risk.

Results: Adults over 65 years were involved in 21% of all pedestrian collisions. A high fatality rate was found among older adults, particularly for those aged 75 years and older: this group had 3.2 deaths per 100,000 population, compared to a rate of 1.3 for 65- to 74-year-olds and 0.7 for adults below 65 years of age. Older pedestrian injuries were most likely to occur while crossing the carriageway; they were also more likely to be injured in parking lots, at driveway intersections, and on sidewalks compared to younger cohorts. Spatial analyses revealed older pedestrian crash clusters on arterial roads in urban shopping precincts. Significantly higher rates of hospital admissions were found for pedestrians over the age of 75 years and for abdominal, head, and neck injuries; conversely, older adults were underrepresented in emergency department presentations (mainly lower and upper extremity injuries), suggesting an increased severity associated with older pedestrian injuries. Average length of hospital stay also increased with increasing age.

Conclusion: This analysis revealed age differences in collision risk and injury outcomes among older adults and that aggregate analysis of older pedestrians can distort the significance of risk factors associated with older pedestrian injuries. These findings have implications that extend to the development of engineering, behavioral, and enforcement countermeasures to address the problems faced by the oldest pedestrians and reduce collision risk and improve injury outcomes.  相似文献   

15.
Introduction: Pedestrian safety is a major concern as traffic crashes are the leading cause of fatalities and injuries for commuters. Traffic safety research in the past has developed various strategies to counteract traffic crashes, including the safety performance function (SPF). However, there is still a need for research dedicated to enhancing the SPF for pedestrians from perspectives of methodological framework and data input. To fill this gap, this study aims to add to the current SPF development practice literature by focusing on pedestrian-involved collisions, while considering the typical vehicle ones as well. Methods: First, bivariate models are used to account for the common unobserved heterogeneity shared by the pedestrian- and vehicle-related crashes at the same intersections. Second, variable importance ranking technique is used, along with correlation analysis, to determine mode-specific feature input. Third, the exposure information for both modes, annual pedestrian count, and annual daily vehicles traveled are used for model development. Fourth, a recent Bayesian inference approach (integrated nested Laplace approximation (INLA)) was adopted for bivariate setting. Finally, different evaluation criteria are used to facilitate comprehensive model assessment. Results: The results reveal different statistically significant factors contributing to each of the modes. The offset intersection provides better safety performance for both pedestrians and drivers as compared to other intersection designs. The model findings also corroborate the sensibility of using the bivariate models, rather than the separate univariate ones. Practical Applications: The study shows that pedestrians are more vulnerable to various intersection features such as left-turn channelization, intersection control, urban and rural population group, presence of signal mastarm on the cross-street, and mainline average daily traffic. Greater focus should be directed toward such intersection features to improve pedestrian safety.  相似文献   

16.
17.
Objective: In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 NHTSA. Traffic Safety Facts 2012 Pedestrians. Washington, DC: Author; 2014. DOT HS 811 888. [Google Scholar]). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track.

Methods: An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20–30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area.

Results: Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to adjust time to arrival triggers for the pedestrian actions. This article discusses the rationale behind creating the simulator scenarios and some of the procedural considerations for conducting this type of research.

Conclusions: Crash analyses can be used to construct test scenarios for driver behavior evaluations using driving simulators. By considering trajectories, roadway, and environmental conditions of real-world crashes, representative virtual scenarios can serve as safe test beds for advanced driver assistance systems. The results of such research can be used to inform pedestrian crash avoidance/mitigation systems by identifying driver error, driver response time, and driver response choice (i.e., steering vs. braking).  相似文献   

18.
Introduction: It is widely agreed that highway work zones pose significant threats to road users because driving conditions in work zones are quite different from the normal ones, particularly when traffic volumes approach a highway capacity. Therefore, work zone safety is a critical aspect for state agencies and traffic engineers. Method: In the current study, a total of 10,218 crashes that occurred in highway work zones in the state of Washington for the period between 2007 and 2013 were used. Time of day is disaggregated into four subgroups: (1) Morning from 6:00 to 11:00 a.m. (2) Midday from 12:00 to 5:00 p.m. (3) Night from 6:00 to 11:00 p.m., and (4) Late night from 12:00 to 5:00 a.m. Then, four mixed logit models were estimated to account and correct for heterogeneity in the crash data by considering three injury severity levels: severe injury, minor injury, and no injury. Results: The estimation results reveal that most contributing factors are uniquely significant in a specific time of day period, whereas three factors affect injury severity regardless of time of day such as the indicators of not deployed airbag, one passenger vehicle involved in the crash, and rear-end collision. Further, some factors were found to affect injury severity into two or three time periods, such as female drivers that found to decrease the probability of no injury in morning and night time periods, while increasing severe injury outcome in midday time. Conclusions: The effect of time of day on injury severity of work-zone related crashes should be modeled separately rather than using a holistic model. Practical applications: As a starting point, findings of the current study can be used by transportation officials to reduce fatalities and injuries of work zone crashes by identifying factors that uniquely contribute to each time of day period.  相似文献   

19.
Introduction: With the increasing trend of pedestrian deaths among all traffic fatalities in the past decade, there is an urgent need for identifying and investigating hotspots of pedestrian-vehicle crashes with an upward trend. Method: To identify pedestrian-vehicle crash locations with aggregated spatial pattern and upward temporal pattern (i.e., hotspots with an upward trend), this paper first uses the average nearest neighbor and the spatial autocorrelation tests to determine the grid distance and the neighborhood distance for hotspots, respectively. Then, the spatiotemporal analyses with the Getis-Ord Gi* index and the Mann-Kendall trend test are utilized to identify the pedestrian-vehicle crash hotspots with an annual upward trend in North Carolina from 2007 to 2018. Considering the unobserved heterogeneity of the crash data, a latent class model with random parameters within class is proposed to identify specific contributing factors for each class and explore the heterogeneity within classes. Significant factors of the pedestrian, vehicle, crash type, locality, roadway, environment, time, and traffic control characteristics are detected and analyzed based on the marginal effects. Results: The heterogeneous results between classes and the random parameter variables detected within classes further indicate the superiority of latent class random parameter model. Practical Applications: This paper provides a framework for researchers and engineers to identify crash hotspots considering spatiotemporal patterns and contribution factors to crashes considering unobserved heterogeneity. Also, the result provides specific guidance to developing countermeasures for mitigating pedestrian-injury at pedestrian-vehicle crash hotspots with an upward trend.  相似文献   

20.
Introduction: The main objective of this research is to investigate the effect of traffic barrier geometric characteristics on crashes that occurred on non-interstate roads. Method: For this purpose, height, side-slope rate, post-spacing, and lateral offset of about 137 miles of traffic barriers were collected on non-interstate (state, federal aid primary, federal aid secondary, and federal aid urban) highways in Wyoming. In addition, crash reports recorded between 2008 and 2017 were added to the traffic barrier dataset. The safety performance of traffic barriers with regards to their geometric features was analyzed in terms of crash frequency and crash severity using random-parameters negative binomial, and random-parameters ordered logit models, respectively. Results: From the results, box beam barriers with a height of 27–29 inches were less likely to be associated with injury and fatal injury crashes compared to other barrier types. On the other hand, the likelihood of a severe injury crash was found to be higher for box beam barriers with a height taller than 31 inches. Both W-beam and box beam barriers with a post-spacing between 6.1 and 6.3 inches reduced the probability of severe injury crashes. In terms of the crash frequency, flare traffic barriers had a lower crash frequency compared to parallel traffic barriers. Non-interstate roads without longitudinal rumble strips were associated with a higher rate of traffic barrier crashes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号