首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of additives are used in gasoline, and they can sometimes be used to help identify the source, timing, or number of gasoline spills at a site. The physicochemical characteristics of the additive MTBE, and its historical use pattern in the United States since 1979, make it a key compound to study when conducting forensic investigations of gasoline spills. MTBE's low octanol : water distribution coefficient and high solubility cause it to dissolve into groundwater more readily than other gasoline components. Thus, the initial appearance of MTBE in the groundwater is often a good indicator of a recent gasoline spill. MTBE's very low retardation and minimal biodegradation in groundwater can be used with transport rate calculations to establish relatively accurate estimates of spill timing. Because MTBE moves faster in groundwater than BTEX compounds, if a gasoline spill site has a BTEX plume that is longer than the MTBE plume, it is certain that at least two distinctly different gasoline releases have occurred. This allows for the identification of new gasoline spills, even when substantial subsurface petroleum contamination already exists. An example application is reviewed to demonstrate the use of MTBE data in forensic investigations.  相似文献   

2.
The perchlorate anion (ClO4) is produced when the solid salts of ammonium, potassium, and sodium perchlorate, and perchloric acid dissolve in water. Ammonium perchlorate, used in solid rocket engine fuels, has a limited shelf life and must periodically be replaced. Before 1997, perchlorate could not be readily detected in groundwater at concentrations below 100 μg/L, until the California Department of Health Services developed an acceptable analytical method that lowered the detection limit to 4 μg/L. Subsequently, groundwater containing perchlorate were soon encountered in several western states, and contamination became apparent in Colorado River water. Most perchlorate salts have high water solubilities; concentrated solutions have densities greater than water. Once dissolved, perchlorate is extremely mobile, requiring decades to degrade. Health effects from ingesting low dosage perchlorate-contaminated water are not well known: it interferes with the body's iodine intake, causing an inhibition of human thyroid production. Contaminated surface and groundwater treatment may require bio- and/or phytoremediation technologies. Perchlorate in groundwater is relatively unretarded; it probably travels by advection. Therefore, it may be used as a tracer for hydrocarbon and metal contaminants that are significantly more retarded. Possible forensic techniques include chlorine isotopes for defining multiple or commingled perchlorate plumes.  相似文献   

3.
A vertically averaged two-dimensional model was developed to describe areal spreading and migration of light nonaqueous-phase liquids (LNAPLs) introduced into the subsurface by spills or leaks from underground storage tanks. The NAPL transport model was coupled with two-dimensional contaminant transport models to predict contamination of soil gas and groundwater resulting from a LNAPL migrating on the water table. Numerical solutions were obtained by using the finite-difference method. Simulations and sensitivity analyses were conducted with a LNAPL of pure benzene to study LNAPL migration and groundwater contamination. The model was applied to subsurface contamination by jet fuel. Results indicated that LNAPL migration were affected mostly by volatilization. The generation and movement of the dissolved plume was affected by the geology of the site and the free-product plume. Most of the spilled mass remained as a free LNAPL phase 20 years after the spill. The migration of LNAPL for such a long period resulted in the contamination of both groundwater and a large volume of soil.  相似文献   

4.
The historical record does not support the argument that the cause of widespread groundwater contamination by chlorinated solvents in southern California was an inability to anticipate or detect the problem. The propensity of industrial wastes, including chlorinated solvents, to contaminate groundwater was understood by the 1940s in southern California. This understanding was not limited to a small group of specialists, but extended to regulators, industry, and the interested public. Industrial waste disposal was deregulated in 1949 as a result of lobbying by industry, despite a warning from the director of the State Health Department that such action would create “a backlog of water pollution over the State that will constitute a plague comparable to the air pollution in Los Angeles”. Regulators warned specifically about the danger that groundwater pollution in the San Fernando and San Gabriel valleys would result from improper disposals of industrial chemicals, and solvents were identified as major contaminants in the scientific literature. Analytical methods to detect chlorinated solvents in groundwater at the concentrations found near the DNAPL (dense non-aqueous phase liquids) source zones have been well known since at least 1950, and a method with a detection limit of 10 μg/L was published as early as 1953.  相似文献   

5.
Since current estimates of hexachlorobenzene (HCB), polychlorinated biphenyls (PCB), dioxins (PCDD) and furans (PCDF) from ships are based on a relatively limited and old data set, an update of these emission factors has been outlined as a target towards improved Swedish emission inventories. Consequently, a comprehensive study was undertaken focusing on these emissions from three different ships during December 2003 to March 2004. Analyses were performed on 12 exhaust samples, three fuel oil samples and three lubricating oil samples from a representative selection of diesel engine models, fuel types and during different “real-world” operating conditions.The determined emissions corresponded reasonably well with previous measurements. The data suggest however that previous PCDD/PCDF emission factors are somewhat higher than those measured here. As expected the greatest emissions were observed during main engine start-up periods and for engines using heavier fuel oils. Total emissions for 2002, using revised emission factors, have been calculated based on Swedish sold marine fuels and also for geographical areas of national importance. In terms of their toxic equivalence (WHO-TEQ), the PCDD/PCDF emissions from ships using Swedish fuels are small (0.37–0.85 g TEQ) in comparison to recent estimates for the national total (ca. 45 g TEQ). Emissions from other land-based diesel engines (road vehicles, off-road machinery, military vehicles and locomotives) are estimated to contribute a further 0.18–0.42 g TEQ. Similarly, HCB and PCB emissions from these sources are small compared to 1995 national emission inventories.  相似文献   

6.
This study evaluated the feasibility of supplementing groundwater monitoring protocols by assessing the vadose zone for the extent of residual subsurface contamination. The study also characterized the response of the soil gas signatures with respect to different soil types and degrees of contamination.A field study was conducted at a former gasoline vending station located in Ottawa, Canada. The current state of contamination was determined by analysis of soil samples taken from boreholes. A series of 10 nested soil gas wells with monitoring depths of 0.75, 1.5, 2.25 and 3.0 m were then installed. Using these wells, soil gas surveys were performed at regular intervals over an extended period to quantify Gaseous TPH (TPHg), oxygen and carbon dioxide concentrations in the soil gas.Results indicate that soil gas wells located near the source term exhibited characteristic soil gas signatures and significant fluctuations in TPHg, oxygen, and carbon dioxide concentrations with time. Soil gas wells located beyond the soil contamination demonstrated limited correlation between TPHg, oxygen and carbon dioxide concentrations and decreased seasonal variability.  相似文献   

7.
We demonstrated the effectiveness of a semiconductor ammonia sensor capable of performing diachronic measurements; its characteristics were checked in the laboratory by means including comparison with standard gases. We found as a result that the ammonia sensor's readings increased with increasing water vapor pressure. We compared sensor readings with values obtained by chemical analysis of samples collected in situ and checked sensor reading accuracy. Ammonia concentration was determined by combining ammonia sensor readings with measured values for water vapor pressure. In situ conditions were ammonia concentration of under 100 ppbv and water vapor pressure of 4–16 hPa. There was a good correlation with the concentration of samples trapped with boric acid and analyzed by indophenol colorimetry. We discerned a relationship between ammonia concentration and local meteorological conditions such as wind direction and speed. The estimated error of the ammonia sensor's measurements was ±9.7 ppbv when ammonia concentration as measured by acid sampling and colorimetry was regarded as correct. This demonstrated that it is possible to detect in situ fluctuations in low ammonia concentrations of about 10 ppbv, which was the background concentration in farming areas. We have shown a monitoring method for ammonia in situ that is both easy to operate and low-cost.  相似文献   

8.
Isotope analysis was used to examine the extent of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) biodegradation in groundwater along a ca. 1.35-km contamination plume. Biodegradation was proposed as a natural attenuating remediation method for the contaminated aquifer. By isotope analysis of RDX, the extent of biodegradation was found to reach up to 99.5% of the initial mass at a distance of 1.15–1.35 km down gradient from the contamination sources. A range of first-order biodegradation rates was calculated based on the degradation extents, with average half-life values ranging between 4.4 and 12.8 years for RDX biodegradation in the upper 15 m of the aquifer, assuming purely aerobic biodegradation, and between 10.9 and 31.2 years, assuming purely anaerobic biodegradation. Based on the geochemical data, an aerobic biodegradation pathway was suggested as the dominant attenuation process at the site. The calculated biodegradation rate was correlated with depth, showing decreasing degradation rates in deeper groundwater layers. Exceptionally low first-order kinetic constants were found in a borehole penetrating the bottom of the aquifer, with half life ranging between 85.0 to 161.5 years, assuming purely aerobic biodegradation, and between 207.5 and 394.3 years, assuming purely anaerobic biodegradation.The study showed that stable isotope fractionation analysis is a suitable tool to detect biodegradation of RDX in the environment. Our findings clearly indicated that RDX is naturally biodegraded in the contaminated aquifer. To the best of our knowledge, this is the first reported use of RDX isotope analysis to quantify its biodegradation in contaminated aquifers.  相似文献   

9.
The estrogenic activities of source water from Yangtze River, Huaihe River, Taihu Lake and groundwater in Yangtze River Delta in the dry and wet season were determined by use of reporter gene assays based on African green monkey kidney (CV-1) cell lines. Higher estrogenic activities were observed in the dry season, and the estrogenic potentials in water samples from Taihu Lake were greater than other river basins. None of the samples from groundwater showed estrogen receptor (ER) agonist activity. The 17β-Estradiol (E2) equivalents (EEQs) of water samples in the dry season ranged from 9.41 × 10?1 to 1.20 × 101 ng E2 L?1. In the wet season, EEQs of all the water samples were below the detection limit as 9.00 × 10?1 ng E2 L?1 except for one sample from Huaihe River. The highest contribution of E2 was detected in Yangtze River as 99% of estrogenic activity. Nonylphenol (NP, 100% detection rate) and octylphenol (OP, 100% detection rate) might also be responsible for the estrogenic activities in water sources. Potential health risk induced by the estrogenic chemicals in source water may be posed to the residents through water drinking.  相似文献   

10.
W. Fan  Y.S. Yang  Y. Lu  X.Q. Du  G.X. Zhang 《Chemosphere》2013,90(4):1419-1426
Air sparging (AS) was explored for remediation of a petroleum contaminated semi-confined groundwater system in NE China. Physical, hydro-chemical and hydraulic behaviors in subsurface environment during AS were investigated with support of modeling to understand the hydrogeo-chemical impacts of AS on the aquifer. The responses of groundwater, dissolved oxygen and temperature indicated that the radius of influence of AS was up to 8–9 m, and a 3D boundary of the zone of influence (ZOI) was accordingly obtained with volume of 362 m3. Water mounding unlike normal observations was featured by continuous up-lift and blocked dissipation. AS induced water displacement was calculated showing no obvious spreading of contaminant plume under this AS condition. Slug tests were employed before and after AS to reveal that the physical perturbation led to sharp increase in permeability and porosity. Modeling indicated that the regional groundwater flow field was not affected by AS except the physical perturbation in ZOI. Hydro-chemically increase of pH and Eh, and reduction of TDS, electrical conductivity and bicarbonate were observed in ZOI during AS. PHREEQC modeling inferred that these chemical phenomena were induced by the inorganic carbon transfer during air mixing.  相似文献   

11.
The heat island effect and the high use of fossil fuels in large city centers are well documented, but by how much fossil fuel consumption is elevating atmospheric CO2 concentrations and whether elevations in both atmospheric CO2 and air temperature from rural to urban areas are consistently different from year to year are less well known. Our aim was to record atmospheric CO2 concentrations, air temperature and other environmental variables in an urban area and compare it to suburban and rural sites to see if urban sites are experiencing climates expected globally in the future with climate change. A transect was established from Baltimore city center (Urban site), to the outer suburbs of Baltimore (suburban site) and out to an organic farm (rural site). At each site a weather station was set-up to monitor environmental variables for 5 years. Atmospheric CO2 was consistently and significantly increased on average by 66 ppm from the rural to the urban site over the 5 years of the study. Air temperature was also consistently and significantly higher at the urban site (14.8 °C) compared to the suburban (13.6 °C) and rural (12.7 °C) sites. Relative humidity was not different between sites whereas the vapor pressure deficit (VPD) was significantly higher at the urban site compared to the suburban and rural sites. An increase in nitrogen deposition at the rural site of 0.6% and 1.0% compared to the suburban and urban sites was small enough not to affect soil nitrogen content. Dense urban areas with large populations and high vehicular traffic have significantly different microclimates compared to outlying suburban and rural areas. The increases in atmospheric CO2 and air temperature are similar to changes predicted in the short term with global climate change, therefore providing an environment suitable for studying future effects of climate change on terrestrial ecosystems.  相似文献   

12.
A preliminary study of ambient carbonyls was performed in Xalapa City to measure carbonyls in the atmosphere of this City, because it has an explosive increase in population and traffic density, but few industries. The city is located at the eastern flanks of the Sierra Madre Oriental, between 1350 and 1550 m above sea level. Acetone was the most abundant carbonyl in June, followed by formaldehyde and acetaldehyde, whereas acetaldehyde was the most abundant one in November. Higher concentrations were observed in autumn than in spring, probably due to stagnation conditions in autumn and heavy rains from late spring to early autumn. The very high concentrations of acetaldehyde found in November could have been caused by an accidental leak or spill from a truck, since no stationary sources were identified and acetaldehyde concentrations steeply rose and constantly decreased after few days. Moreover, a highly transited highway traverses Xalapa. The most important ozone and carbon monoxide concentrations were below the Mexican Air Quality Standards; 216 μg m−3 (0.11 ppm) for 1 h average and 12.6 mg m−3 (11 ppm) for 8 h moving average, respectively. The low concentrations of the main carbonyls, compared with the values reported for other urban areas, and of carbon monoxide, seem to indicate that air quality is still satisfactory in Xalapa City.  相似文献   

13.
Deposition of nitric acid (HNO3) vapor to soils has been evaluated in three experimental settings: (1) continuously stirred tank reactors with the pollutant added to clean air, (2) open-top chambers at high ambient levels of pollution with and without filtration reducing particulate nitrate levels, (3) two field sites with high or low pollution loads in the coastal sage plant community of southern California. The results from experiment (1) indicated that the amount of extractable NO3 from isolated sand, silt and clay fractions increased with atmospheric concentration and duration of exposure. After 32 days, the highest absorption of HNO3 was determined for clay, followed by silt and sand. While the sand and silt fractions showed a tendency to saturate, the clay samples did not after 32 days of exposure under highly polluted conditions. Absorption of HNO3 occurred mainly in the top 1 mm layer of the soil samples and the presence of water increased HNO3 absorption by about 2-fold. Experiment (2) indicated that the presence of coarse particulate NO3 could effectively block absorption sites of soils for HNO3 vapor. Experiment (3) showed that soil samples collected from open sites had about 2.5 more extractable NO3 as compared to samples collected from beneath shrub canopies. The difference in NO3 occurred only in the upper 1–2 cm as no significant differences in NO3 concentrations were found in the 2–5 cm soil layers. Extractable NO3 from surface soils collected from a low-pollution site ranged between 1 and 8 μg NO3–N g−1, compared to a maximum of 42 μg NO3–N g−1 for soils collected from a highly polluted site. Highly significant relationship between HNO3 vapor doses and its accumulation in the upper layers of soils indicates that carefully prepared soil samples (especially clay fraction) may be useful as passive samplers for evaluation of ambient concentrations of HNO3 vapor.  相似文献   

14.
The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground.The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between ∼9.00 and 18.00 h local time with the formation of shallow mixing heights of ∼70–250 m above the surface.The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37–76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. A ∼0.1–3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime.  相似文献   

15.
Industrialized waterways frequently contain nearshore hotspots of legacy polychlorinated biphenyl (PCB) contamination, with uncertain contribution to aquatic food web contamination. We evaluated the utility of estuarine forage fish as biosentinel indicators of local PCB contamination across multiple nearshore sites in San Francisco Bay. Topsmelt (Atherinops affinis) or Mississippi silverside (Menidia audens) contamination was compared between 12 targeted sites near historically polluted locations and 17 probabilistically chosen sites representative of ambient conditions. The average sum of 209 PCB congeners in fish from targeted stations (441 ± 432 ng g?1 wet weight, mean ± SD) was significantly higher than probabilistic stations (138 ± 94 ng g?1). Concentrations in both species were comparable to those of high lipid sport fish in the Bay, strongly correlated with spatial patterns in sediment contamination, and above selected literature thresholds for potential hazard to fish and wildlife. The highest concentrations were from targeted Central Bay locations, including Hunter’s Point Naval Shipyard (1347 ng g?1; topsmelt) and Stege Marsh (1337 ng g?1; silverside). Targeted sites exhibited increased abundance of lower chlorinated congeners, suggesting local source contributions, including Aroclor 1248. These findings indicate that current spatial patterns in PCB bioaccumulation correlate with historical sediment contamination due to industrial activity. They also demonstrate the utility of naturally occurring forage fish as biosentinels of localized PCB exposure.  相似文献   

16.
The objective of this project was to characterize on-road aerosol on highways surrounding the Minneapolis area. Data were collected under varying on-road traffic conditions and in residential areas to determine the impact of highway traffic on air quality. The study was focused on determining on-road nanoparticle concentrations, and estimating fuel-specific and particle emissions km−1.On-road aerosol number concentrations ranged from 104 to 106 particles cm−3. The highest nanoparticle concentrations were associated with high-speed traffic. At high vehicular speeds engine load, exhaust temperature, and exhaust flow all increase resulting in higher emissions. Less variation was observed in particle volume, a surrogate measure of particle mass. Most of the particles added by the on-road fleet were below 50 nm in diameter. Particles in this size range may dominate particle number, but contribute little to particle volume or mass. Furthermore, particle number is strongly influenced by nucleation and coagulation, which have little or no effect on particle volume. Measurements made in heavy traffic, speeds<32 km h−1, produced lower number concentrations and larger particles.Number concentrations measured in residential areas, 10–20 m from the highway, were considerably lower than on-road concentrations, but the size distributions were similar to on-road aerosol with high concentrations of very small (<20 nm) particles. Much lower number concentrations and larger particles were observed in residential areas located 500–700 m from the highway.Estimated emissions of total particle number larger than 3 nm ranged from 1.9 to 9.9×1014 particles km−1 and 2.2–11×1015 particles (kg fuel)−1 for a gasoline-dominated vehicle fleet.  相似文献   

17.
A series of 90 experiments were conducted in the UC Riverside/CE-CERT environmental chamber to evaluate the impact of water vapor and dissolved salts on secondary organic aerosol formation for cyclohexene ozonolysis. Water vapor (low – 30 ± 2% RH, medium – 46 ± 2% RH, high – 63 ± 2% RH) was found to directly participate in the atmospheric chemistry altering the composition of the condensing species, thus increasing total organic aerosol formation by ~22% as compared to the system under dry (<0.1% RH) conditions. Hygroscopicity measurements also indicate that the organic aerosol composition is altered in the presence of gaseous water. These results are consistent with water vapor reacting with the crigee intermediate in the gas phase resulting in increased aldehyde formation. The addition of dissolved salts ((NH4)2SO4, NH4HSO4, CaCl2, NaCl) had minimal effect; only the (NH4)2SO4 and NaCl were found to significantly impact the system with ~10% increase in total organic aerosol formation. These results indicate that the organics may be partitioning to an outer organic shell as opposed to into the aqueous salt. Hygroscopicity measurements indicate that the addition of salts does not alter the aerosol composition for the dry or water vapor system.  相似文献   

18.
Rigorous sampling and quality assurance protocols are required for the reliable measurement of personal, indoor and outdoor exposures to metals in fine particulate matter (PM2.5). Testing of five co-located replicate air samplers assisted in identifying and quantifying sources of contamination of filters in the laboratory and in the field. A field pilot study was conducted in Windsor, Ont., Canada to ascertain the actual range of metal content that may be obtained on filter samples using low-flow (4 L min−1) 24-h monitoring of personal, indoor and outdoor air. Laboratory filter blanks and NIST certified reference materials were used to assess contamination, instrument performance, accuracy and precision of the metals determination. The results show that there is a high risk of introducing metal contamination during all stages of sampling, handling and analysis, and that sources and magnitude of contamination vary widely from element to element. Due to the very small particle masses collected on low-flow 24-h filter samples (median 0.107 mg for a sample volume of approximately 6 m3) the contribution of metals from contamination commonly exceeds the content of the airborne particles being sampled. Thus, the use of field blanks to ascertain the magnitude and variability of contamination is critical to determine whether or not a given element should be reported. The results of this study were incorporated into standard operating procedures for a large multiyear personal, indoor and outdoor air monitoring campaign in Windsor.  相似文献   

19.
A detailed study of resuspension of 1.85 μm MMAD silica particles from five horizontal layers within a small scale spruce canopy was carried out in a wind tunnel in which saplings were exposed to a constant free stream wind speed of 5 m s−1. This provided quantitative estimates of the potential for a tree canopy contaminated with an aerosol deposit to provide (i) an airborne inhalation hazard within the forest environment and (ii) a secondary source of airborne contamination after an initial deposition event. Resuspension occurred with a flux of 1.05×10−7 g m−2 s−1 from spruce saplings initially contaminated at a level of 4.1×10−2 g m−2. An average resuspension rate (Λ) of 4.88×10−7 s−1 was obtained for the canopy as a whole. Values of Λ were significantly different (ANOVA, p<0.001) between canopy layers and Λ was markedly greater at the top of the canopy than lower down although there was a slight increase in Λ at the base of the canopy. The resuspended silica particles deposited onto the soil surface at an average rate of about 5.3×10−8 μg cm−2 s−1. It is concluded that resuspension under wind velocities similar to that used in the reported experiments is likely to pose a relatively small inhalation hazard to humans and a relatively minor source of secondary contamination of adjacent areas. Furthermore, resuspension rates are likely to diminish rapidly with time. The results are discussed in relation to the growing interest in the tree planting schemes in urban areas to reduce the impacts of air pollution.  相似文献   

20.
Chlorobenzene-contaminated groundwater was used to assess pulsed gas sparging as a minimum effort aeration strategy to enhance intrinsic natural attenuation. In contrast to existing biosparging operations, oxygen was supplied at minimum rate by reducing the gas injection frequency to 0.33 day?1. Field tests in a model aquifer were conducted in a 12 m long reactor, filled with indigenous aquifer material and continuously recharged with polluted groundwater over 3 years. The closed arrangement allowed yield balances, cost accounting as well as the investigation of spatial distributions of parameters which are sensitive to the biodegradation process. Depending on the injection frequency and on the gas chosen for injection (pure oxygen or air) oxygen-deficient conditions prevailed in the aquifer. Despite the limiting availability of dissolved oxygen in the groundwater, chlorobenzene degradation under oxygen-deficient conditions proved to be more effective than under conditions with dissolved oxygen being available in high concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号